
Topics in Deep Learning Theory (Spring 2025)

Lecture 0: Concentration Inequalities

Instructor: Lei Wu Date: May 16, 2025

Abstract

Concentration phenomena and inequalities play a pivotal role in high-dimensional prob-
ability, as they provide powerful tools for understanding the behavior of random variables
and their aggregates in high-dimensional spaces. These tools allow us to bound the devi-
ations of random variables from their expectations, ensuring that the aggregate behavior
remains predictable even in complex systems. This is particularly critical in modern ap-
plications such as machine learning, statistical inference, and optimization, where datasets
and models often involve thousands or millions of dimensions. Great textbooks on this
topic include:

• High-Dimensional Probability by Roman Vershynin.

• Probability in High Dimension by Roman van Handel.

For more details related to the materials covered in this lecture, we specifically refer to
[Vershynin, 2018, Section 2].

1 Introduction

Let X1, . . . , Xn be i.i.d. random variables with expectation µ. Then,

E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] = µ.

We are interested in when the empirical mean 1
n

∑n
i=1Xi will concentrate around the popula-

tion mean µ.

• What conditions are required for the random variable Xi?

• What does the “concentration” mean?

Let first review two classical results in standard probability theory textbook.

Theorem 1.1 (Strong law of large numbers (LLN)). Let X1, . . . , Xn be a sequence of i.i.d. ran-
dom variables with expectation µ. Then,

1

n

n∑
i=1

Xi → µ almost surely.

LLN shows that as long as the expectation µ is finite, the empirical mean will converge to
µ. In other words, as long as we have sufficient samples, 1

n

∑n
i=1Xi will always concentrate at

µ. Unfortunately, the rate of “concentration” in LLN can be arbitrarily slow. The next theorem,
the central limit theorem, makes one step further shows that if the second moment is finite, the
deviation should be on the order of O(1/

√
n).
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Theorem 1.2 (Central limit theorem (CLT)). Let X1, . . . , Xn be a sequence of i.i.d. random
variables with mean µ and variance σ2. Then,

√
n

(
X1 +X2 + · · ·+Xn

n
− µ

)
→ N (0, σ2) in distribution.

CLT implies that 1
n

∑n
i=1Xi ≈ µ+ σ√

n
Z, where Z is the standard normal random variable.

Thus, the CLT provides a precise characterization of how the empirical mean deviates from the
population mean µ when the deviation is on the order of 1/

√
n. In other words, it delivers a

strong, yet asymptotic, understanding of the distribution of small deviations. However, if we
are interested in large deviations—those whose magnitude does not diminish as n grows—or in
non-asymptotic descriptions, the CLT alone is not sufficient.

2 Linear Concentration

Moment-based concentration. By Chebyshev’s inequality,

P

{∣∣ 1
n

n∑
i=1

Xi − µ
∣∣ ≥ t} = P

{∣∣ 1
n

n∑
i=1

Xi − µ
∣∣2 ≥ t2} ≤ E[| 1n

∑n
i=1Xi − µ|2]

t2
≤ σ2

nt2
.

This probability of having large deviations is in the order of O(1/n).
However, on the other hand, from CLT, we “anticipate” that

P

{
| 1
n

n∑
i=1

Xi − µ| ≥ t

}
≈ P

{
|σZ√
n
| ≥ t

}
= 2P

{
Z ≥

√
nt

σ

}

=

√
2

π

∫ ∞
√
nt
σ

e−
x2

2 dx . e−
1
2

(
√
nt
σ

)2 = e−
nt2

2σ2 . (1)

This suggests that the tail can decay exponentially fast, which is much stronger than the one pro-
vided by Chebyshev’s inequality. Unfortunately, this calculation is not correct since 1√

n

∑n
i=1Xi−

µ → σZ can be arbitrarily slow. Therefore, we need to control somethings stronger than the
second-order moments.

Let us first look at a simple example.

Theorem 2.1 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. symmetric Bernoulli random
variable, i.e., P(X = 1) = P(X = −1) = 1

2 . Then,

P

{
1

n

n∑
i=1

Xi ≥ t

}
. e−

nt2

2 .

Proof. We have

P

{
1

n

n∑
i=1

Xi ≥ t

}
= P

{
eλ

∑n
i=1 ≥ enλt

}
≤ E[eλ

∑n
i=1Xi ]

enλt

= e−nλt
n∏
i=1

E[eλXi ] = e−nλt+nψ(λ), (2)
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where

ψ(λ) = logE[eλX ] = log(
eλ + e−λ

2
) ≤ λ2/2. (3)

Plugging it into (2), we have

P

{
1

n

n∑
i=1

Xi ≥ t

}
≤ inf

λ>0
e−nλt+nψ(λ) = inf

λ
e−n(λt−λ2/2) = e−nt

2/2.

Remark 2.2. The above approach is often referred as the Chernoff-Cramer method.

From the proof, we can see that the key ingredient is the log-moment generating function
(log-MGF):

ψ(λ) = logE[eλ(X−E[X])] (4)

and the Legendre conjugate of the log-MGF:

ψ∗(t) = sup
λ>0
{λt− ψ(λ)}. (5)

Lemma 2.3. If X has a log-MGF ψ with the Legendre dual ψ∗, then

P{X − E[X] ≥ t} ≤ e−ψ∗(t).

Let X1, . . . , Xn be i.i.d. random variable. Then,

P

{∣∣∣ 1
n

n∑
i=1

Xi − E[X]
∣∣∣ ≥ t} ≤ 2e−nψ

∗(t).

The above lemma implies that ψ∗(t) controls the rate of concentration.

Definition 2.4 (sub-Gaussian). A random variable X is said to be sub-Gaussian with variance
proxy σ2 if ψ(λ) ≤ λ2σ2

2 .

The sub-Gaussian assumption implies that

ψ∗(t) = sup
λ>0
{λt− ψ(λ)} ≥ sup

λ>0

{
λt− λ2σ2

2

}
=

t2

2σ2
.

By Lemma 2.3, the tail of X satisfies

P{|X − E[X]| ≥ t} ≤ 2e−
t2

2σ2 , (6)

which is similar to the tail of Gaussian. In fact, the tail estimate (6) is often used as the equivalent
definition of the sub-Gaussian class.

Lemma 2.5. If the tail behavior of X satisfies

P {|X| ≥ t} ≤ C1e
−C2t2 for all t ≥ 0. (7)

Then, ϕ(λ) ≤ K1λ
2 for some constant K1.
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Proof. With loss of generality, we consider only the case of λ ≥ 0. Then, we have

E[eλX ] =

∫ ∞
0

P
{
eλX ≥ t

}
dt

=

∫ ∞
−∞

P
{
eλX ≥ eλs

}
λeλs ds (t = eλs)

= λ

(∫ 0

−∞
P {X ≥ s} eλs ds+

∫ ∞
0

P {X ≥ s} eλs ds

)
≤ λ

(∫ 0

−∞
eλs ds+ 2

∫ ∞
0

e−C1t2+λs ds

)
≤ 1 + C1λe

Kλ2

≤ eK1λ2 ,

where C,K,K1 are some absolute positive constants.

Corollary 2.6 (Chernoff’s bound). Let X1, . . . , Xn be i.i.d. sub-Gaussian random variables
with mean µ and variance proxy σ2. Then

P

{∣∣∣ 1
n

n∑
i=1

Xi − µ
∣∣∣ ≥ t} ≤ 2e−

nt2

2σ2 .

By Lemma 6, we can conclude that as long as each random variable has a sub-Gaussian tail,
we have P (| 1n

∑
iXi − µ| ≥ t) ≤ 2e−K1nt2 for some constant K1.

Examples:

• Gaussian RV: For g ∼ N (0, 1), its tail behavior satisfies [Vershynin, 2018, Proposition
2.1.2] (

1

t
− 1

t3

)
1√
2π
e−t

2/2 ≤ P {g ≥ t} ≤ 1

t
· 1√

2π
e−t

2/2

• Bounded RV: Bounded random variables obviously satisfy the tail behavior (7). Specifi-
cally, the following lemma provides a tight estimate of the variance proxy.

Lemma 2.7 (Hoeffding’s lemma). Assume a ≤ X ≤ b. Then, ψ(λ) ≤ λ2(b− a)2/8.

Proof. WLOG, assume that E[X] = 0. Recall that ψ(λ) = logE[eλX ]. Then,

ψ′(λ) =
E[XeλX ]

E[eλX ]
, ψ′′(λ) =

E[X2eλX ]

E[eλX ]
−
(
E[XeλX ]

E[eλX ]

)2

.

Let Q denote the distribution with dQ
dP = eλX/E[eλX ]. Then, we can rewrite the second-

order derivative as VarQ[X]. Since X ∈ [a, b], we have

VarQ[X] = EQ[|X − EQ[X]|2] ≤ EQ

[∣∣∣∣X − b+ a

2

∣∣∣∣2
]
≤ EQ

[∣∣∣∣b− a2

∣∣∣∣2
]

=
(b− a)2

4
,
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where the second step use the fact that E[Z] = argminµ E[(Z − µ)2] for any random
variable Z. Hence,

ψ(0) = 0, ψ′(0) = E[X] = 0, ψ′′(λ) ≤ (b− a)2

4
,

which implies

ψ(λ) = ψ(0) +

∫ λ

0
ψ′(t) dt

= ψ(0) +

∫ λ

0

(
ψ′(0) +

∫ t

0
ψ′′(s) ds

)
dt

= ψ(0) + ψ′(0)λ+

∫ λ

0
dt

∫ s

0
ψ′′(s) ds ≤ (b− a)2λ2

8
.

Remark 2.8. The Hoeffding’s lemma is sharp when X is the symmetric Bernoulli distri-
bution, i.e., P(X = 1) = P(X = −1) = 1/2. See Eq. (3).

Corollary 2.9 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. random variables. If
a ≤ Xi ≤ b, then,

P

{∣∣∣ 1
n

n∑
i=1

Xi − µ
∣∣∣ ≥ t} ≤ 2e

− 2nt2

(b−a)2 .

3 Nonlinear Concentration

Let f : Rn 7→ R be a (nonlinear) function and consider the following concentration:

f(X1, . . . , Xn) ≈ E[f(X1, . . . , Xn)] with high probability?

The preceding results correspond to f(x1, . . . , xn) = 1
n

∑n
i=1 xi. Can we extend it to nonlinear

functions?

• If f only depends on one coordinate, we can not anticipate any concentration.

• If f is equally robust to small changes for all coordinates, we anticipate that this case will
behave like the empirical mean.

Theorem 3.1 (McDiarmid’s inequality). Let f be a function satisfying the Bounded Difference
Property: there exist constants {Li}ni=1 such that the following holds for all i ∈ [n]

sup
x1,...,xn,x̃i

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x̃i, xi+1, . . . , xn)| ≤ Li

Let σ2 := 1
4

∑n
i=1 L

2
i and X1, . . . , Xn are i.i.d. . Then, Z = f(X1, . . . , Xn) is sub-Gaussian

with variance proxy σ:

P{|Z − E[Z]| ≥ t} ≤ 2e−
t2

2σ2 .
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One can think Li as a measure of the sensitivity of f to the i-th coordinates. For the case of
empirical mean,Dif(x) = O(1/n) for every i. This recovers the Hoeffding’s inequality (Corol-
lary 2.9). Thus, we can viewed McDiarmid’s inequality as a nonlinear version of Hoeffding’s
inequality. Question: Is there a similar nonlinear Chernoff’s inequality?

The proof needs following lemmas.

Lemma 3.2 (Azuma’s lemma). Let {Fi}ni=1 be a filtration. Assume σi to be positive constants
and {∆i} random variables such that

1. E[∆i|Fi−1] = 0 (Martingale difference property).

2. logE[eλ∆i |Fi−1] ≤ λ2σ2
i

2 (Conditional sub-Gaussian property).

Then,
∑n

i=1 ∆i is sub-Gaussian with the proxy variance
∑n

i=1 σ
2
i .

Proof. This time, we do not have the independence. Instead, we can exploit the conditional
independence, i.e., the martingale property. Consider the condition on the filtration

E
[
eλ

∑n
i=1 ∆i

]
= E

[
E[eλ

∑n
i=1 ∆i |Fn−1]

]
E
[
eλ

∑n−1
i=1 ∆i E[eλ∆n |Fn−1]

]
≤ e

λ2σ2n
2 E

[
eλ

∑n−1
i=1 ∆i

]
By induction, we conclude that

E[eλ
∑n
i=1 ∆i ] ≤ e

λ2
∑n
i=1 σ

2
i

2 .

This means
∑n

i=1 ∆i is sub-Gaussian with the proxy variance
∑n

i=1 σ
2
i .

Lemma 3.3 (Azuma-Hoeffding’s inequality). Under the assumption of Lemma 3.2, assume
Ai ≤ ∆i ≤ Bi almost surely and Ai, Bi are Fi−1-measurable. Then,

∑n
i=1 ∆i is sub-Gaussian

with the proxy variance σ2 = 1
4

∑n
i=1 ‖Bi −Ai‖L∞ . In particular,

P

{∣∣∣ n∑
i=1

∆i

∣∣∣ ≥ t} ≤ 2e−
t2

2σ2 .

Proof. Combining Lemma 2.3, 2.7 and 3.2, we complete the proof.

Proof of McDiarmid’s inequality. To analyze the behavior of f(X1, . . . , Xn), consider the
following decomposition

f(X)− E[f(X)] = f(X)− E[f(X)|X1, . . . , Xn−1]

+ E[f(X)|X1, . . . , Xn−1]− E[f(X)|X1, . . . , Xn−2]

+ · · ·+ E[f(X)|X1]− E[f(X)]

=

n∑
i=1

∆i, (8)

where ∆i = E[f(X)|X1, . . . , Xi] − E[f(X)|X1, . . . , Xi−1]. Let Fi = σ(X1, . . . , Xi). Then,
E[∆i|Fi−1] = 0 and

∆i = E
[
E[f(X1, . . . , Xi, . . . , Xn)|Xi]− f(X)|X1, . . . , Xi−1

]
.
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Let

Ai = E[inf
α
f(X1, . . . , Xi−1, α,Xi+1, . . . , Xn)− f(X1, . . . , Xn)|X1, . . . , Xi−1]

Bi = E[sup
α
f(X1, . . . , Xi−1, α,Xi+1, . . . , Xn)− f(X1, . . . , Xn)|X1, . . . , Xi−1]

By the assumption of f , it is easy to verify that

Ai ≤ ∆i ≤ Bi, |Bi −Ai| ≤ ‖Dif‖L∞ .

Using the Azuma-Hoeffding lemma, f(X)−E[f(X) is a sub-Gaussian with the variance proxy
σ2 = 1

4

∑n
i=1 ‖Dif‖2L∞ . This directly implies that

P{|f(X)− E[f(X)]| ≥ t} ≤ 2e
− 2∑n

i=1
‖Dif‖2L∞ .

Thus, we complete the proof.

4 Maximal Inequality

Lemma 4.1 (Maximal inequality). Assume that X1, . . . , Xn be n sub-Gaussian random vari-
ables with zero mean and the variance proxy σ2. Then,

E[max
i∈[n]

Xi] ≤ σ
√

2 log n.

Proof. Recalling the LogSumExp trick we introduced in Lecture 3, we have for any β > 0:

max
i∈[n]

Xi ≤
1

λ
log

n∑
i=1

eλXi .

For any λ > 0,

E[max
i∈[n]

Xi] ≤
1

λ
E[log

n∑
i=1

eλXi ]

≤ 1

λ
log

n∑
i=1

E[eλXi ] (Jensen’s inequality)

≤ 1

λ
log

n∑
i=1

e
σ2λ2

2 =
log n

λ
+
σ2λ

2
.

Taking λ =
√

2 log(n)/σ2 completes the proof.

Note that in the maximal inequality, we do not assume that X1, . . . , Xn are independent. In
fact, the bound in Lemma 4.1 is sharp.

Lemma 4.2. Let X1, . . . , Xn be independent N (0, 1) random variables. Then,

Emax
i∈[n]

Xi ≥ c
√

log n.
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Next, we turn to provide high-probability bound.

Lemma 4.3. Let X1, . . . , Xn be sub-Gaussian random variables with zero mean and variance
proxy σ2. Then, for any δ ∈ (0, 1), with probability at least 1− δ, it holds that

max
i∈[n]

Xi ≤ σ
√

2 log(
2n

δ
).

Proof. By union bound, we have

P{max
i
Xi ≥ t} ≤

n∑
i=1

P{|Xi| ≥ t} ≤ 2ne−t/(2σ
2).

For this probability to be smaller than δ, we quire 2ne−t/(2σ
2) ≤ δ. It gives t ≥

√
2σ2 log(2n/δ).
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