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1 The framework of statistical learning

In supervised learning, the objective is to learn a target h∗ : X 7→ Y using a finite set of samples
Sn = {(xi, yi)} where each yi = h∗(xi) + ξi represents a potentially noisy measurement of
h∗(xi). A fundamental question in learning theory is:

Question 1: How many samples are required to learn f∗ effectively?

Statistical learning theory addresses this question by framing it within a probabilistic con-
text. Assume there exist an underlying probability distribution µ ∈ P(X ) and x1, x2, . . . , xn
are i.i.d. samples drawn from µ. Given a learned model ĥ : X 7→ Y (which are often learned
using Sn), its performance is evaluated using the expected loss under ρ:

E(ĥ;h∗) := Ex∼µ[`(ĥ(x), h∗(x))]. (1)

This quantity, known as the generalization error, measures how well ĥ approximates h∗ on
average over µ.

Remark 1.1. It should be remarked that in practice, x1, . . . , xn are not always be i.i.d. and the
performance might be assessed using metrics different from (1). Nevertheless, the above ideal-
ized setup provides a reasonable and analytically tractable scenarios for answering Question 1
in a quantitative way.

To make the problem more manageable, statistical learning often shifts focus to a broader,
worst-case question:

Given a function class (or hypothesis set)H, how many samples are required to learn functions
withinH? How does this depend on the complexity ofH?

This formulation aligns with the technique of establishing a uniform bound over the entire class:

E(ĥ;h∗) ≤ sup
h∗∈H

E(ĥ;h∗). (2)

This worst-case approach ensures robust performance across all possible target functions in H.
However, the sample complexity for learning a specific h∗ ∈ H can sometimes be significantly
lower than that required for uniform learning over the entire class H. A tighter estimate may
be achieved by identifying a smaller subclass H′ ⊂ H such that h∗ ∈ H′, thereby reducing the
complexity.

In this lecture, we will demonstrate why the worst-case approach makes the analysis easier
and how to bound the uniform excess risk in (2) by leveraging two fundamental tools from
probability theory:
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• Concentration inequalities: These inequalties quantify the rate at which the empirical
mean converges to the population mean, offering probabilistic bounds on the deviations
between the two.

• Maximal inequalities: These inequalties enable the uniform bound step in (2) by con-
trolling the supremum over the hypothesis classH. SinceHmay be large or even infinite,
accurately measuring its complexity is critical for deriving tight bounds. This section fo-
cuses on developing such measures, including covering numbers and Rademacher com-
plexity.

2 Setup

Let z = (x, y), `h(z) = `(h(x), y), and

R̂(h) =
1

n

n∑

i=1

`h(zi),

R(h) = Ez[`h(z)]

(3)

be the empirical risk and population risk, respectively. Let H be a hypothesis class. Consider
the estimator:

ĥn = argmin
h∈H

R̂(h).

This type of estimator ensures the smallness of R̂(ĥn), but how small isR(ĥn)?
For any h ∈ H, consider the decomposition:

R(h) = R̂(h)︸ ︷︷ ︸
training error

+R(h)− R̂(h)︸ ︷︷ ︸
gen-gap

,

where the generalization gap satisfies

gen-gap(h) := R(h)− R̂(h) = Ez[`h(z)]− 1

n

n∑

i=1

`h(zi). (4)

One may expect that gen-gap(h) = O(1/
√
n). By concentration inequality, this is true for h

that is independent of training data (z1, . . . , zn). However, our task is to bound the gen-gap of
ĥn:

gen-gap(ĥn) = Ez[`ĥn(z)]− 1

n

∑
`ĥn(zi).

Note that ĥn depends on (z1, . . . , zn) and hence {`ĥn(zi)} are not i.i.d. . Consequently, gen-gap

may not be in the order of O(1/
√
n). In fact, gen-gap(ĥn) can be arbitrarily large if ĥn is a

very complex solution.

3 Uniform bounds

To address the issue of dependence, we consider the uniform bound:
∣∣R(ĥn)− R̂(ĥn)

∣∣ ≤ sup
h∈H

∣∣R(h)− R̂(h)
∣∣. (5)

2



Clearly, when the hypothesis space H is sufficiently “small”—for instance, in the extreme case
whereH = {h}—it is expected that

sup
h∈H

∣∣R(h)− R̂(h)
∣∣ ∼ 1√

n
.

This raises several natural questions:

• What conditions onH ensure that the uniform bound remains small?

• What is the corresponding rate? Do we still obtain O(1/
√
n)? Can the rate be faster or

slower?

Before delving into the technical details, it is helpful to develop some intuition by consider-
ing specific learning problems:

• Constant Function. Consider the setting where yi = 1 + ξi with ξi ∼ N (0, σ2) and
the true function h∗(x) ≡ 1. Here, the learning problem reduces to estimating the mean
of a Gaussian distribution. Clearly, when σ & 1, the rate of learning h∗ (i.e., estimating
the mean) cannot be faster than O(n−1/2). This suggests that in the presence of non-
negligible noise, the learning rate cannot exceed the standard Monte Carlo rateO(n−1/2),
which is a well-known result in statistical learning theory.

• Noiseless Regime. When σ = 0, learning can be arbitrarily fast. Consider the problem of
learning a quadratic function h∗(x) = x2. If the labels are noiseless, learning can proceed
at a rate faster than the standard Monte Carlo rate (e.g., you can do piecewise linear
interpolation.). Notably, in modern machine learning, many datasets are generated via
high-fidelity numerical simulations, for which this noiseless scenario is highly relevant.
However, the sample complexity of learning in this setting is still not well understood.

We focus on the traditional statistical learning framework, where noise is assumed to be at
a constant level. Consequently, we expect that the learning rate cannot surpass the Monte
Carlo rate.

To build a more general intuition, let us first examine a simple case: learning with a finite
hypothesis class.

Lemma 3.1 (Finite class). Let H be a collection of finite hypotheses and denote by |H| the
number of hypotheses. Assume supy,y′ |`(y, y′)| ≤ 1. For any δ ∈ (0, 1), with probability 1− δ
over the random sampling of the training set S, we have

sup
h∈H
|R(h)− R̂(h)| ≤

√
2 ln(2|H|/δ)

n
.

Proof. WLOG, suppose H = {h1, . . . , hm}. Let z = (x, y) and Qh(z) = `(h(x), y). Taking
the union bound gives us

P

{
sup
h∈H
| 1
n

n∑

i=1

Q(h, zi)− Ez[Q(h, z)]| ≥ t
}
≤

m∑

j=1

P

{∣∣∣∣∣
1

n

n∑

i=1

Q(hj , zi)− Ez[Z(hj , z)]

∣∣∣∣∣ ≥ t
}

(6)
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≤ m2e
−2nt2

22 = 2me
−nt2

2 , (7)

where the last step follows from the Hoeffding’s inequality. Let the failure probability 2me
−nt2

2 =

δ, which leads to t =

√
2 ln(2m/δ)

n .

Note that this lemma follows trivially from the maximal inequality, and its proof essentially
follows the same steps as the proof of the maximal inequality. We include it here for complete-
ness due to its simplicity.

We see that the upper bound only depends on the cardinality of hypothesis class |H| loga-
rithmically. This implies that even when the hypothesis class has exponentially many functions,
the generalization gap can still be well controlled.

Implication for quantized models. Consider a general model that has m parameters and
all parameters are represented using k-bit floating-point number. Then, this model can repre-
sent 2km functions. Consequently, the corresponding generalization gap must be bounded by√

km+log(1/δ)
n . This means, in such a general case, the number of parameters is a good pa-

rameter to bound generalization. Unfortunately, the generalization is guaranteed for the under-
parameterized regime.

Definition 3.2 (Empirical process). Let F be a class of real-valued functions f : Ω 7→ R where
(Ω,Σ, µ) is a probability space. LetX ∼ µ andX1, . . . , Xn be independent copies ofX . Then,
the random process (Xf )f∈F defined by

Xf :=
1

n

n∑

i=1

f(Xi)− E f(X)

is called an empirical process indexed by F .

With an abuse of notation, in our case, f(Z) = `(h(X), Y ). Our task is to bound the
supremum of empirical process:

sup
f∈F

Xf .

We emphasize that bounding the supremum of a stochastic process is a classical problem in
probability theory. To better understand this problem, let’s start by comparing it with the vanilla
maximal inequality. Recall that for n sub-Gaussian random variables X1, . . . , Xn, each with a
variance proxy σ2, the maximal inequality provides a clear bound:

E

[
sup
i∈[n]

Xi

]
≤ σ

√
2 log n.

Similarly, if each Xf in a function class F is sub-Gaussian with a variance proxy bounded by
σ2, we might anticipate an analogous result:

E

[
sup
f∈F

Xf

]
≤ σ

√
2 log |F|.
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Using Hoeffding’s or Chernoff’s inequalities, we can demonstrate that Xf is sub-Gaussian with
σ2 ≤ C/n. Substituting this into the previous bound yields:

E

[
sup
f∈F

Xf

]
≤
√

2C log |F|
n

,

where C is a constant. This derivation holds firmly when F is finite, as log |F| remains well-
defined. However, when F becomes infinite, log |F| grows unbounded, making the inequality
vacuous. To address infinite classes, we need a more refined interpretation of log |F|. Fortu-
nately, the tools introduced in this lecture note can be adapted to tackle such general scenarios,
including infinite function classes. For a more comprehensive treatment, interested readers may
explore [Vershynin, 2018].

4 Covering number or metric entropy

For the finite hypothesis classes, we have shown that log |F|, i.e., the logarithm of cardinality,
can be used as a good complexity measure. However, there are two major problems with using
the |F| as the complexity measure:

• It does not apply to the case with |F| =∞, which is common in practice.

• It does not exploit any structure of F and arguably, we should be able to reduce the
number of samples required by utilizing these structures.

One possible property that we can use is: F is compressible. One possible approach is dis-
cretization. This means that we choose a finite subset Fε ⊂ F to “represent” F .

Definition 4.1 (Covering number). Consider a metric space (T, ρ).

• We say Tε ⊂ T is an ε-cover (also called ε-net) of T , if for any t ∈ T , there exists a
t′ ∈ Tε such that ρ(t, t′) ≤ ε.

• The covering number N (T, ρ, ε) is defined as the smallest cardinality of an ε-cover of T
with respect to ρ.

Definition 4.2 (Metric entropy). The metric entropy of T is defined by logN (T, ρ, ε).

Remark 4.3. What does log2N (T, ρ, ε) represent? It denotes the number of bits required to
compress the set T up to a resolution ε under the metric ρ. In this context, the metric entropy,
defined as log2N (F , ρ, ε), quantifies the compressibility of a function class and, consequently,
provides insight into the complexity of a model.

Theorem 4.4. Let F be a function class with supf∈F ,x∈X |f(x)| ≤ B. Let ‖f − g‖∞ =
supx∈X |f(x) − g(x)|. Then, for any δ ∈ (0, 1), w.p. at least 1 − δ over the sampling of
X1, X2, . . . , Xn, we have

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ 2ε+B

√
logN (F , ‖ · ‖∞, ε) + log(2/δ)

n
.
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Proof. Let Fε be an ε-cover of F . For any f ∈ F , let f ′ ∈ Fε such that ‖f − f ′‖∞ ≤ ε. Then,
we have

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

f(Xi)−
1

n

n∑

i=1

f ′(Xi)

∣∣∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

f ′(Xi)− E[f ′(X)]

∣∣∣∣∣+
∣∣E f ′(X)− E[f(X)]

∣∣ .

Taking the surprimum with respect to f ∈ F gives

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ 2ε+ sup
f ′∈Fε

∣∣∣∣∣
1

n

n∑

i=1

f ′(Xi)− E[f ′(X)]

∣∣∣∣∣

≤ 2ε+ 2B

√
log(2|Fε|/δ)

n
,

where the last step uses Lemma 3.1. By definition, for any q > 0, there exist an ε-cover Fε,q
such that |Fε,q| ≤ N (F , ‖ · ‖∞, ε) + q. Thus, choosing the Fε to be Fε,q and taking q → 0, we
complete the proof.

We note that Theorem 4.4 is fairly intuitive but not sufficiently tight for two reasons:

• The metric entropy should ideally be defined with respect to an average-like metric rather
than the supremum norm. This limitation can be addressed using the symmetrization
technique introduced later.

• Discretization at a single resolution is inadequate; this issue will be resolved by employing
the multi-resolution analysis via chaining.

Compressibility implies learnability. This theorem suggests that the metric entropy of a
function class (and its associated model) governs its learnability. Additionally, as noted in Re-
mark 4.3, metric entropy also quantifies the compressibility of the function class. Together,
these insights lead to an intriguing conclusion:

If a model is compressible, it is also learnable.

Thus, metric entropy serves as a bridge linking compressibility to learnability.

Example: Lipschtiz models. Let f : X ×Rm 7→ R be our model, where m denotes the num-
ber of parameters. Assume that f is L-Lipschitz in the sense that supx |f(x; θ1) − f(x; θ2)| ≤
Lρ(θ1, θ2).

Let F = {f(x; θ) : θ ∈ Ω} be the function class. Let Ωε be an ε-cover of Ω with respect to
the ρ metric. Then,

‖f(·; θ1)− f(·; θ2)‖∞ ≤ Lρ(θ1, θ2).

implies that Fε = {f(·; θ) : θ ∈ Ωε/L} is an ε-cover of F . Hence, we have

N (F , ‖ · ‖∞, ε) ≤ N (Ω, ρ, ε/L) . (8)
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Linear class. Consider the linear class:

H =
{
x 7→ w>x : ‖w‖2 ≤ 1, ‖x‖2 ≤ 1

}
.

Then,
sup
‖x‖2≤1

|w>x− v>x| ≤ ‖w − v‖2 sup
‖x‖2≤1

‖x‖2 ≤ ‖w − v‖2.

Let Bd(r) = {x ∈ Rd : ‖x‖ ≤ r} be the ball of radius r. Then, (8) gives

N (H, ‖ · ‖∞, ε) ≤ N (Bd(1), ‖ · ‖2, ε).
The above examples demonstrate that one can reduce the estimation of covering number of

a function class to the covering number of a subset in Euclidean space. The latter is often easier
to estimate and we provide below one of the most important examples.

4.1 Volume argument

To help the estimation of covering number, we introduce the packing number.

Definition 4.5 (Packing number). Consider a metric space (T, ρ). Tε ⊂ T is said to be ε-
separated if ρ(x, y) > ε for any x, y ∈ Tε and x 6= y. The packing number is defined as

P(F , ρ, ε) = sup
Tε⊂T is ε-separated

|Tε|.

Lemma 4.6. N (T, ρ, ε) ≤ P(T, ρ, ε).

Proof. Let Tε be the maximal ε-separated subset. Then, we claim that Tε is also an ε-cover of
T , i.e., T ⊂ ∪x∈TεB(x; ε). If not, there exists a y ∈ T such that d(y, x) > ε for any x ∈ Tε.
Hence, Tε ∪ {y} is also ε-separated, which is contradictory with the assumption.

Lemma 4.7. (1/ε)d ≤ N (Bd(1), ‖ · ‖2, ε) ≤ (1 + 2/ε)d.

The proof follows from a volume argument.

Proof. Lower bound. Let Nε be an ε-cover of Bd(1). Then, Bd(1) ⊂ ∪x∈NεBd(x; ε).
Therefore,

Vol(Bd(1)) ≤
∑

x∈Nε

Vol(Bd(x; ε)) = |Nε|Vol(Bd(x; ε)).

Hence,

N (Bd(1), ‖ · ‖2, ε) = |Nε| ≥
Vol(Bd(1))

Vol(Bd(x; ε))
=

(
1

ε

)d
.

Upper bound. Let Pε ⊂ Bd(1) be ε-separated. Then, by definition of packing number, we
have

∪x∈PεBd(x; ε/2) ⊂ Bd(1 + ε/2)⇒
∑

x∈Pε

Vol(Bd(x; ε/2)) ≤ Vol(Bd(1 + ε/2)).

Let Cdrd be the volume of a `2 ball of radius r. Then,

|Pε|Cd(ε/2)d ≤ Cd(1 + ε/2)d ⇒ |Pε| ≤ (1 + 2/ε)d.

Then, the upper bound follows from Lemma 4.6.

Remark 4.8. The volume argument described above can also be utilized to estimate the cover-
ing number of other classes and under different metrics.
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5 Rademacher complexity

A random variable (R.V.) X is said to be symmetric if −X d
= X , where d

= denotes equality in
distribution. A key property of a symmetric R.V. is that its expectation is zero, i.e., E[X] = 0.
This property is especially valuable in problems where the tail behavior of the random variable is
the primary focus. Symmetrization, a technique that leverages this symmetry, can often simplify
the analysis of such problems by centering the variable while maintaining its tail characteristics,
as we will explore further below.

Symmetrization of a Random Variable Let ξ be a symmetric R.V., meaning−ξ d
= ξ. Define

Z := ξX . Then, Z is also a symmetric R.V. This follows because:

− Z = (−ξ)X d
= ξX = Z, (9)

using the symmetry of ξ. A significant consequence of this symmetrization is that E[Z] = 0.
Moreover, the tail behavior of X is preserved in Z, meaning that Z and X exhibit similar tail
characteristics. This preservation makes Z a useful tool for studying the properties of X .

Symmetrization of Empirical Processes Analogous to the symmetrization of a random vari-
able as presented in equation (9), we introduce the following symmetrization for empirical pro-
cesses:

(
1

n

n∑

i=1

f(Xi)

)

f∈F

−→
(

1

n

n∑

i=1

ξif(Xi)

)

f∈F

,

where ξ1, . . . , ξn are independent and identically distributed (i.i.d.) symmetric random vari-
ables. In particular, we focus on the case where ξ1, . . . , ξn are i.i.d. Rademacher random vari-
ables, defined such that P(ξi = 1) = P(ξi = −1) = 1

2 . The lemma below demonstrates that this
symmetrization does not significantly alter the supremum of the process.

Lemma 5.1 (Symmetrization of Empirical Processes).

E

[
sup
f∈F

(
1

n

n∑

i=1

f(Xi)− E[f(X)]

)]
≤ 2E

[
sup
f∈F

(
1

n

n∑

i=1

ξif(Xi)

)]
,

where ξ1, . . . , ξn are i.i.d. Rademacher random variables with P(ξi = 1) = P(ξi = −1) = 1
2 .

Proof. Let X ′i be an independent copy of Xi. To simplify the notation, we use EXi and EX′i to
denote the expectation with respect to {Xi}ni=1 and {X ′i}ni=1, respectively. Then,

E sup
f∈F

[
1

n

n∑

i=1

f(Xi)− E f(X)] = EXi sup
f∈F

EX′i [
1

n

n∑

i=1

(f(Xi)− f(X ′i))] (10)

≤ EXi,X′i
sup
f∈F

[
1

n

n∑

i=1

(f(Xi)− f(X ′i))]. (11)
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Due to that f(Xi)− f(X ′i) is symmetric 1, for any {ξi} ∈ {±1}n, we have

EXi,X′i
sup
f∈F

[
1

n

n∑

i=1

f(Xi)− f(X ′i)] = EXi,X′i
sup
f∈F

1

n

n∑

i=1

ξi[f(Xi)− f(X ′i)]

= EXi,X′i,ξ
sup
f∈F

1

n

n∑

i=1

ξi[f(Xi)− f(X ′i)]

≤ EXi,X′i,ξ
[sup
f∈F

1

n

n∑

i=1

ξif(Xi) + sup
f∈F

1

n

n∑

i=1

−ξif(X ′i)]

= 2EXi,ξ sup
f∈F

1

n

n∑

i=1

ξif(Xi).

Definition 5.2 (Rademacher complexity). The empirical Rademacher complexity of a function
class F on a set of training samples {xi}ni=1 is defined as

R̂adn(F) = Eξ[sup
f∈F

1

n

n∑

i=1

ξif(xi)].

The population Rademacher complexity is given by

Radn(F) = E[R̂adn(F)],

where the expectation is taken over the distribution of {xi}ni=1.

Thus, the symmetrization lemma (Lemma 5.1) can be restated as follows

E sup
f∈F

[
1

n

n∑

i=1

f(Xi)− E f(X)

]
≤ 2 Radn(F). (12)

This implies that the Rademacher complexity reflects the degree of concentration.

Theorem 5.3. Assume that 0 ≤ f ≤ B for all f ∈ F . For any δ ∈ (0, 1), with probability at
least 1− δ over the choice of the training set S = {X1, . . . , Xn}, we have

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f (Xi)− Ef(X)

∣∣∣∣∣ ≤ 2 Radn(F) +B

√
2 log(2/δ)

n
, (13)

and the sample-dependent version:

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f (Xi)− Ef(X)

∣∣∣∣∣ ≤ 2R̂adn(F) + 4B

√
2 log(4/δ)

n
. (14)

1A random variable Z is said to be symmetric if Z and −Z have the same distribution.
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Proof. Let

G (x1, . . . , xn) = sup
f∈F

[
1

n

n∑

i=1

f (xi)− Ef(X)

]
.

Note that for any i ∈ [n], it holds that

G(X1, . . . , Xn)−G(X̃1, . . . , X̃n)

= sup
f∈F

(
1

n

n∑

i=1

f(Xi)− E f(X))− sup
f∈F

(
1

n

n∑

i=1

f(X̃i)− E f(X))

≤ sup
f∈F

(
1

n

n∑

i=1

f(Xi)− E f(X)−
(

1

n

n∑

i=1

f(X̃i)− E f(X)

))

≤ sup
f∈F

1

n

(
f(Xi)− f(X̃i)

)
≤ 2B

n
.

Similarly, we have

G(X̃1, . . . , X̃n)−G(X1, . . . , Xn) ≥ −2B

n
.

Therefore, the variation satisfies

Li := sup
X,X̃

|G(X1, . . . , Xn)−G(X̃1, . . . , X̃n)| ≤ 2B/n,

where X = (X1, . . . , Xn) and X̃ = (X̃1, . . . , X̃n) are different for only the i-th component.
Therefore, σ2 = 1

4

∑n
i=1 L

2
i ≤ B2

n . By McDiarmid’s inequality,

P{|G(X1, . . . , Xn)− EG| ≥ t} ≤ 2e−
nt2

2B2 .

Let the failure probability 2e−
nt2

2B2 = δ, which leads to t =

√
2B2 log(2/δ)

n . Restating the above
inequality gives the bound (13).

Analogously, we can apply McDiarmid’s inequality to the Rademacher complexityQ (x1, . . . , xn) =
Eξ supf∈F

[
1
n

∑n
i=1 ξif (xi)

]
, which leads to the sample-dependent bound (14).

Examples.

• Let F = {f}. Then,

R̂adn(F) = Eξ[
1

n

n∑

i=1

ξif(xi)] = 0.

• Two functions. Let F = {f−1, f1} where f−1 ≡ −1 and f1 ≡ 1.

√
nR̂adn(F) = Eξ sup

f∈{−1,+1}
f

1√
n

n∑

i=1

ξi = Eξ |
1√
n

n∑

i=1

ξi| → EZ∼N (0,1) |Z| =
√

2

π
.

Hence, when n is sufficiently large,

Radn(F) ∼
√

2

nπ
.
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Remark: This implies that it is impossible to obtain a rate faster than O(1/
√
n) using

Rademacher complexity since it saturates even for learning/distinguishing two constant
functions. This is bad news!

Lemma 5.4 (Massart’s lemma). Assume that supx∈X ,f∈F |f(x)| ≤ B and F is finite. Then,

R̂adn(F) ≤ B
√

2 log |F|
n

.

Proof. Let Zf =
∑n

i=1 ξif(xi). Then,

logE[eλZf ] = log

(
n∏

i=1

E[eλξif(xi)]

)
≤

n∑

i=1

logE eλξif(Xi)
(i)

≤
n∑

i=1

λ2 (B − (−B))2

8
=
nB2

2
λ2,

where (i) follows from the Hoeffding’s lemma, which provides an upper bound of the log-
moment generating functions of a bounded random variable. Hence, Zf is sub-Gaussian with
the variance proxy σ2 = nB2. Using the maximal inequality, we have

R̂adn(F) =
1

n
Eξ[sup

f∈F
Zf ] ≤ 1

n
· √nB

√
2 log |F| = B

√
2 log |F|

n
. (15)

Applying Massart’s lemma to bound the generalization gap recovers Lemma 3.1.

Linear functions. Let F = {w>x : ‖w‖p ≤ 1}. Let q be the conjugate of p, i.e., 1/q+1/p =
1. Then,

R̂adn(F) = Eξ sup
‖w‖p≤1

1

n

n∑

i=1

ξiw
>Xi = Eξ sup

‖w‖p≤1
w>

(
1

n

n∑

i=1

ξiXi

)
= Eξ ‖

1

n

n∑

i=1

ξiXi‖q.

(16)

Lemma 5.5. Assume that ‖xi‖q ≤ 1 for all i ∈ [n]. Then,

• If p = 2, then

R̂adn(F) ≤
√

1

n
.

• If p = 1, then,

R̂adn(F) ≤
√

2 log(2d)

n
.

Proof. For the case where p = 2,

R̂adn(F) ≤ Eξ

∥∥∥∥∥
1

n

n∑

i=1

ξixi

∥∥∥∥∥
2

≤

√√√√Eξ

∥∥∥∥∥
1

n

n∑

i=1

ξixi

∥∥∥∥∥

2

2

=

√√√√ 1

n2

n∑

i,j=1

xixj E[ξiξj ] =

√√√√ 1

n

n∑

i=1

x2
i ≤

√
1

n
.

The case of p = 1 is left as homework.
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We have shown the Rademacher complexity of linear functions. To obtain the estimates of
more general classes, we need the following results.

Lemma 5.6 (Rademacher calculus). The Rademacher complexity has the following properties.

• Radn(λF) = |λ|Radn(F).

• Radn(F + f0) = Radn(F).

• Let Conv(F) denote the convex hull of F defined by

Conv(F) =
{ m∑

j=1

ajfj : αj ≥ 0,

m∑

j=1

aj = 1, f1, . . . , fm ∈ F ,m ∈ N+

}
.

Then, we have Radn(Conv(F)) = Radn(F).

Proof. Here, we only prove the third result. By definition,

nR̂adn(Conv(F)) = E sup
fj∈F ,‖α‖1=1

n∑

i=1

ξi

m∑

j=1

ajfj(Xi)

= E sup
fj∈F ,‖α‖1=1

m∑

j=1

aj

n∑

i=1

ξifj(Xi)

= E sup
fj∈F

max
j

n∑

i=1

ξifj(Xi)

= E sup
f∈F

n∑

i=1

ξif(Xi) = nR̂adn(F).

The third property suggests that convex combinations do not change the Rademacher com-
plexity.

Lemma 5.7 (Ledoux & Talagrand 2011, Contraction lemma). Let ϕi : R 7→ R with i = 1, . . . , n
be β-Lipschitz continuous. Then,

1

n
Eξ sup

f∈F

n∑

i=1

ξiϕi ◦ f(xi) ≤ β R̂adn(F).

Proof. WLOG, assume β = 1. Let ξ̂ = (ξ1, . . . , ξn) and Zk(f) =
∑k

i=1 ξiϕi ◦ f(xi). Then,

Eξn sup
f∈F

n∑

i=1

ξiϕi ◦ f(xi) =
1

2

[
sup
f∈F

(Zn−1(f) + ϕn ◦ f(xn)) + sup
f∈F

(Zn−1(f)− ϕn ◦ f(xn))

]

=
1

2
sup
f,f ′∈F

(
Zn−1(f) + Zn−1(f ′) + ϕn ◦ f(xn)− ϕn ◦ f ′(xn)

)

≤ 1

2
sup
f,f ′∈F

(
Zn−1(f) + Zn−1(f ′) + |f(xn)− f ′(xn)|

)

12



=
1

2
sup
f,f ′∈F

(
Zn−1(f) + Zn−1(f ′) + (f(xn)− f ′(xn))

)
(Use the symmetry)

=
1

2

[
sup
f∈F

(Zn−1(f) + f(xn)) + sup
f∈F

(Zn−1(f)− f(xn))

]

= Eξn sup
f∈F

(Zn−1(f) + ξnf(xn)).

Hence, by induction, we have

Eξ̂[sup
f∈F

Zn(f)] ≤ Eξ̂ sup
f∈F

(Zn−1(f) + ξnf(xn))

≤ Eξ̂ sup
f∈F

(Zn−2(f) + ξn−1f(xn−1) + ξnf(xn))

≤ Eξ̂ sup
f∈F

(ξ1f(x1) + · · ·+ ξnf(xn))

= nR̂adn(F). (17)

Corollary 5.8. Given a function class F and ϕ : R 7→ R, let ϕ ◦ F = {ϕ ◦ f : f ∈ F}. Then,

Radn(ϕ ◦ F) ≤ Lip(ϕ) Radn(F).

Rademacher complexity of neural networks. With the preceding results in hand, we can
now directly derive a quite surprising result: the Rademacher complexity of two-layer neural
networks. Specifically, let us examine the following steps that demonstrate how to construct a
neural network from linear functions:

L := {x 7→ w>x : w ∈ Sd−1},
Lσ := {x 7→ σ(w>x) : w ∈ Sd−1},

Nσ :=



x 7→

m∑

j=1

ajσ(w>j x) : m ∈ N, wj ∈ Sd−1, aj ≥ 0,

m∑

j=1

aj = 1



 .

Here:

• L represents the set of linear functions with weights constrained to the unit sphere in Rd.

• Lσ is formed by applying a nonlinear activation function σ to the linear functions in L.

• Nσ is the convex hull of Lσ, corresponding to functions expressed by two-layer neural
networks with non-negative outer coefficients.

It is evident thatNσ describes the functions represented by two-layer neural networks where
the outer coefficients are non-negative. Then, by applying Lemmas 5.5, 5.6, and 5.7, we obtain:

Rn(Nσ) = Rn(Lσ) ≤ Lip(σ) · Rn(L) ≤ Lip(σ)√
n

.

13



A particularly interesting observation is that the Rademacher complexity does not depend
on the network width. This suggests that, with appropriate norm constraints, the complexity
of over-parameterized models remains well-controlled. Thus, over-parameterization should not
pose a significant problem.

Next, we provide a general derivation that applies to neural networks with arbitrary (i.e.,
possibly negative) outer coefficients. Consider two-layer neural networks. Suppose the activa-
tion function σ : R 7→ R is σLip-Lipschitz continuous. Let

Fm =



fm(x; θ) =

m∑

j=1

ajσ(w>j x) :
∑

j

|aj | ≤ A, ‖wj‖2 ≤ B



 .

be the collection of two-layer neural networks fm(·; θ).

Lemma 5.9. Suppose ‖xi‖2 ≤ 1 for i = 1, . . . , n. Then, we have

R̂adn(Fm) ≤ 2σLipAB√
n

.

The above lemma implies that Rademacher complexity only depends on the parameter norm,
independent of the network width. This implies that the capacity of over-parameterized net-
works can be well-controlled by enforcing a constraint on an appropriate parameter norm. It
is worth noting that for different networks, we may need to identify the appropriate norm of
parameters.

Proof.

R̂adn(Fm) =
1

n
Eξ sup

f∈Fm

n∑

i=1

f(xi)ξi

=
1

n
Eξ sup

θ∈Θ

n∑

i=1

ξi

m∑

j=1

ajσ(w>j xi)

=
1

n
Eξ sup

θ∈Θ

m∑

j=1

aj

n∑

i=1

ξiajσ(w>j xi)

≤ 1

n
Eξ sup

θ∈Θ

m∑

j=1

|aj |
∣∣∣∣∣ sup
‖w‖≤B

n∑

i=1

ξiσ(w>xi)

∣∣∣∣∣

(i)

≤ A
1

n
Eξ sup
‖w‖≤B

∣∣∣∣∣
n∑

i=1

ξiσ(w>xi)

∣∣∣∣∣

= A
1

n
Eξ

(
sup
‖w‖≤B

n∑

i=1

ξiσ(w>xi)

)
+A

1

n
Eξ

(
− sup
‖w‖≤B

n∑

i=1

ξiσ(w>xi)

)

(ii)

≤ 2A
1

n
Eξ

(
sup
‖w‖≤B

n∑

i=1

ξiσ(w>xi)

)

iii
≤ 2AσLip

1

n
Eξ

(
sup
‖w‖≤B

n∑

i=1

ξiw
>xi

)
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(iiii)

≤ 2σLipAB√
n

,

where (i) is due to
∑m

j=1 |aj | ≤ A; (ii) use the symmetry of ξi; (iii)follows from the contrac-
tion property (Lemma 5.7); (iiii) follows from Lemma 5.5.

6 Bounding Rademacher complexity using covering number

Consider the function space (F , L2(Pn)), whereF is the hypothesis class and L2(Pn) is defined
by

‖f − f ′‖L2(Pn) =

√√√√ 1

n

n∑

i=1

(f(xi)− f ′(xi))2,

where x1, . . . , xn denote the finite training samples. Since only the n samples are available, we
can really think of these functions as a n-dimensional vector:

f̂ = (f(x1), f(x2), . . . , f(xn))> ∈ Rn.

Obviously, we cannot distinguish functions using information beyond these n-dimensional vec-
tors.

Example 1. Let F = {f : R 7→ [0, 1] : f is non-decreasing}. Then, N (F , L2(Pn), ε) =
n1/ε.

This function class is important for two reasons: 1) it encompasses cumulative distribution
functions; 2) it is associated with monotone single-index models, which involve learning func-
tions of the form x 7→ σ(w>x) where σ is an unknown monotone function. These models are
prevalent in econometrics, biostatistics, and machine learning.

Proof. WLOG, assume −∞ = x0 < x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 = 1. For any y =
(y1, y2, . . . , yn) ∈ Rn, define a piecewise constant function

fy(x) = yi for x ∈ [xi, xi+1), i = 1, 2, . . . , n.

For any ε ∈ (0, 1), let Yε = (0, ε, 2ε, 3ε, . . . , 1 − ε). Then, |Yε| ≤ 1/ε. Define the following
non-decreasing set:

Sε := {y ∈ Rn : yi ∈ Yε and y1 ≤ y1 ≤ · · · ≤ yn} .

Let Fε = { fy : y ∈ Sε} . Obviously, Fε ⊂ F . Moreover, for any f ∈ F , there exists y ∈ Sε
such that

‖f − fy‖2L2(Pn) =
1

n

n∑

i=1

(f(xi)− yi)2 ≤ ε2.

Hence, Fε is an ε-cover of F and |Fε| = |Sε|. What remains is to count the cardinality of |Sε|.
Let y0 = 0, yn+1 = 1 and ∆i = (yi − yi−1)/ε. Then, {∆i}n+1

i=1 must be non-negative integers
and satisfy

∆1 + ∆2 + . . .∆n+1 =
1

ε
.
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Hence, |Sε| is equal to the number of solutions to the above equation:

|Sε| =
(
n+ 1

ε

n

)
=

(n+ 1
ε )(n+ 1

ε − 1) · · · (n+ 1)

(1
ε )(1

ε − 1) · · · 1 ≤ n 1
ε .

In the following, we show that the Rademacher complexity can be bounded using the metric
entropy. To simplify notation, we use ‖ · ‖ and 〈, 〉 to denote L2(Pn) norm and the induced inner
product: 〈f, g〉 = 1

n

∑n
i=1 f(xi)g(xi). Then,

R̂adn(F) = E sup
f∈F
〈ξ, f〉.

Proposition 6.1 (One-resolution discretization). Suppose supx∈X ,f∈F |f(x)| ≤ B. Then,

R̂adn(F) ≤ inf
ε

(
ε+B

√
2 logN (F , L2(Pn), ε)

n

)
.

The above bound is similar to Theorem 4.4. The difference is that the above bound is
determined by the L2(Pn) covering number, while Theorem 4.4 relies on the L∞ covering
number. Technically speaking, this improvement is obtained by removing the E f(X) term with
symmetrization.

Proof. Let Fε be an ε-cover of F with respect to the metric L2(Pn). For any f ∈ F , let
π(f) ∈ Fε such that ‖f − π(f)‖ ≤ ε. Then,

E sup
f∈F
〈ξ, f〉 = E sup

f∈F

[
〈ξ, f − π(f)〉+ 〈ξ, π(f)〉

]

≤ E sup
f∈F
〈ξ, f − π(f)〉+ E sup

f∈F
〈ξ, π(f)〉

≤ E ‖ξ‖‖f − π(f)‖+ E sup
f∈Fε

〈ξ, f〉

≤ ε
√

E ‖ξ‖22
n

+ R̂adn(Fε) (Jesson’s inequality)

≤ ε+B

√
2 log |Fε|

n
, (Massart’s lemma).

Using the definition of covering number and optimizing over ε, we complete the proof.

For the non-decreasing functions considered previously, we have

Radn(F) ≤ inf

(
ε+

√
2 log n

εn

)
= C

(
log n

n

)1/3

. (18)

This rate is slower than the expected O(1/
√
n). Is it because non-decreasing functions are

complex? No! It is actually just an artifact caused by the proof technique.
In many cases, the one-resolution discretization may give us sub-optimal bounds of the

generalization gap. To fix this problem, we need a sophisticated analysis of all the resolutions.
This is typically done by using a chaining approach introduced by Dudley.
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Theorem 6.2 (Dudley’s integral inequality). LetD = supf,f ′∈F ‖f−f ′‖L2(Pn) be the diameter
of F . Then,

R̂adn(F) ≤ 12 inf
α∈[0,D]

(
α+

∫ D

α

√
logN (F , L2(Pn), ε)

n
dε

)
.

Then, for the for non-decreasing functions, we have

Radn(F) .
∫ 2

0

√
log n

nε
dε .

√
log n

n
.

Figure 1 visualizes the difference between the upper bound given in Proposition 6.1 and the one
in Theorem 6.2. Clearly, the latter is smaller.

√
logN (F ,‖·‖n,ε)

n

One resolution

∫ 1
ε

√
logN (F ,‖·‖n,t)

n dt

Chaining

Figure 1: (Left) The result of one-resolution analysis; (Right) The result of chaining with all resolutions.
In this case, the diameter D = 1. The comparison of two figures provides a visual illustration of how the
chaining bound is tigher than the one-resolution bound.

Proof. Let εj = 2−jD be the dyadic scale and Fj be an εj-cover of F . Given f ∈ F , let
fj ∈ Fj such that ‖fj − f‖ ≤ εj . Consider the decomposition

f = f − fm +
m∑

j=1

(fj − fj−1), (19)

where f0 = 0. Notice that

• ‖f − fm‖ ≤ εm.

• ‖fj − fj−1‖ ≤ ‖fj − f‖+ ‖f − fj−1‖ ≤ εj + εj−1 ≤ 3εj .

Then,

R̂adn(F) = E sup
f∈F
〈ξ, f〉

= E sup
f∈F


〈ξ, f − fm〉+

m∑

j=1

〈ξ, fj − fj−1〉




≤ εm + E sup
f∈F

m∑

j=1

〈ξ, fj − fj−1〉
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≤ εm +

m∑

j=1

E sup
f∈F
〈ξ, fj − fj−1〉

= εm +
m∑

j=1

E sup
fj∈Fj ,fj−1∈Fj−1

〈ξ, fj − fj−1〉

= εm +
m∑

j=1

R̂adn(Fj ∪ Fj−1).

Using the Massart lemma and the fact that supf∈Fj ,f ′∈Fj−1
‖fj − fj−1‖ ≤ 3εj ,

R̂adn(F) ≤ εm +
m∑

j=1

3εj

√
2 log(|Fj ||Fj−1|)

n

≤ εm +

m∑

j=1

6εj

√
log |Fj |
n

= εm +
m∑

j=1

12(εj − εj+1)

√
logN (F , L2(Pn), εj)

n
.

Taking m→∞, we obtain

R̂adn(F) ≤ 12

∫ D

0

√
logN (F , L2(Pn), t)

n
dt.

Similarly, we can obtain that

R̂adn(F) . inf
α>0

(
α+

∫ D

α

√
logN (F , L2(Pn), t)

n
dt

)
.

The key ingredient of proceeding analysis is the multi-resolution decomposition (19). The
technical reason why chaining provides a better estimate is as follows. In the one-resolution dis-
cretization, we apply Massart’s lemma to functions whose range in [−1, 1], whereas in chaining,
we apply Massart’s lemma to functions whose range has size O(εj).

Remark 6.3. Can we prove the same result by considering uniform resolutions {εj = jD/m},
where m is chosen such that D/m ≤ α?

Remark 6.4. Metric entropy is often more intuitive than Rademacher complexity, as it is fun-
damentally based on discretization and the application of Massart’s lemma. Additionally, in
many cases, metric entropy is more convenient to estimate. However, Rademacher complexity
can sometimes provide sharper upper bounds when it can be directly estimated, without relying
on covering number estimates and the subsequent application of the Dudley integral bound.
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