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Abstract

In Lecture 1, we introduced the general framework for analyzing generalization via uni-
form concentration. While this framework is broadly applicable, working with analytically
tractable models is often valuable, as they provide explicit derivations that offer deeper in-
sights beyond the general theory. In this lecture, we focus on the linear regression problem,
following [Bach, 2024, Section 3].

We shall use big-O notations likeO(·), o(·),Ω(·) and Θ(·) to hide constants and Õ(·) to
further hide logarithmic factors. We also use a . b to mean a = O(b) and a & b is defined
analogously. We use a � b if a = Θ(b). We also use C to represent an abstract positive
constant, whose value may change from line to line.

1 Motivation

In this lecture, we focus on the model given below

f(x; θ) =
m∑
j=1

φj(x)θj = φ(x)>θ.,

where x ∈ X and {φj}mj=1 are m basis/feature functions and φ(x) = (φ1(x), · · · , φm(x))>.
Obviously, this model is linear in the parameter θ, yet it can represent nonlinear functions. When
φj(x) = xj with m = d, it reduces to standard linear regression.

Remark 1.1. We can also consider a model that is linear in x but nonlinear in its parameters.
An example is the so-called diagonal linear network

f(x;α, β) =
m∑
j=1

xjαjβj .

where α = (α1, · · · , αd) ∈ Rd and β = (β1, · · · , βd) ∈ Rd are parameter vectors. Being linear
in x versus being linear in θ is quite different! This stylized model has been widely used in deep
learning theory to study how SGD facilitates feature learning and how this contributes to im-
proved sample complexity. For further discussion, we refer to [Woodworth et al., 2020] and its
follow-up works, including [Pesme et al., 2021, Andriushchenko et al., 2023, Wu and Su, 2023].

While linear models differ substantially from popular deep learning architectures like MLPs,
CNNs, and Transformers, they still play a pivotal role in understanding modern machine learn-
ing. Here are three compelling reasons why:

0Special thanks to Yuhao Liu and Zilin Wang for scribing the notes.
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• Analytical clarity and tractability: Linear models are much simpler than their deep
counterparts, making them invaluable for deriving clear theoretical insights and founda-
tional results.

• Sharper theoretical bounds: The analytical tractability allows us to prove tighter the-
oretical guarantees, such as sample complexity bounds, that are usually out of reach for
more complex models.

• Beyond traditional statistical learning: The analytical tractability of linear models
makes them an ideal testbed for studying fundamental phenomena in modern machine
learning — such as double descent, transfer learning, benign overfitting, and out-of-
distribution generalization. These insights extend beyond the in-distribution generaliza-
tion that traditional statistical learning theory primarily focuses on.

2 Setup

Let S = {(xi, yi)}ni=1 be our training data and assume that the labels are generated by

yi = f∗(xi) + ξi,

where the noise terms {ξi} are independent random variables with zero mean expectation E[ξi] =
0 and finite variance E[ξ2

i ] = σ2. Recall that our model takes the following linear form:

f(x; θ) = φ(x)>θ.

We may omit the dependence on θ and write the model simply as f whenever there is no ambi-
guity. In this lecture, we make the following assumption on the target function

f∗(x) = φ(x)>θ∗.

This is often referred to as the well-specified setting, as f∗ lies within the chosen model class.

Remark 2.1. In most practical scenarios, the target function typically falls outside the model
class, making the model mis-specified. Let F denote the class of functions our model can repre-
sent. A common approach to handling the mis-specified case is to decompose the target function
as

f∗ = f̄∗ + ε∗,

where f̄∗ ∈ F is the best approximation within the model class, and ε∗(x) := f∗(x) − f̄∗(x)
represents the residual and the term ε∗ quantifies the approximation error. We will discuss this
issue in future lectures.

Depending on how the inputs are sampled, there are two classical scenarios:

• Fixed design. In this setting, the inputs {x1, · · · , xn} are predetermined and non-stochastic.
This setting is predominantly employed in computational mathematics (such as grid de-
sign for numerical solutions of partial differential equations) and classical statistical ap-
plications, such as experimental design.

• Random design. In this setting, {xi}ni=1 are i.i.d. samples drawn from an underlying
distribution ρ. This is the common setup in statistical learning.
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Excess risk. Let (x, y) ∼ D and F be the hypothesis space of our model can represent. Given
a loss function ` : Y × Y 7→ R≥0, let

R(f) = E(x,y)∼D[`(f(x), y)] and R∗ = min
f∈F
R(f).

Then we can measure the model’s performance using the excess risk:

E(f) = R(f)−R∗. (1)

Note that the above definition is quite general without making any assumption on the joint
distribution D and the loss function.

In our setting, where the loss function is squared and the data distribution follows x ∼ π ∈
P(X ) with y = f∗(x) + ξ, where ξ is independent of x and satisfies E[ξ] = 0,E[ξ2] = σ2, the
risk function can be expressed as

R(f) = Ex∼π(f(x)− f∗(x)− ξ)2

= Ex∼π(f(x)− f∗(x))2 + E[ξ2]

= Ex∼π(f(x)− f∗(x))2 + σ2.

Since f∗ ∈ F , it follows that the optimal risk is

R∗ = σ2.

Thus, the excess risk becomes the more intuitive squared fitting error:

Eπ(f) = Ex∼π(f(x)− f∗(x))2 = ‖f − f∗‖2π, (2)

where ‖·‖π denotes theL2(π) norm. Note that in general, π is not restricted to ρ, the distribution
from which our training data is drawn. However, we will focus on two important special cases:

• Training error: When π is the empirical distribution of the training data, given by π =
ρ̂ := 1

n

∑n
i=1 δ(· − xi), this quantity corresponds to the training error, which reflects the

model’s ability to denoise the training data.

• Test error: When π = ρ, the distribution of the underlying data-generating process, this
corresponds to the test error, which measures the model’s generalization performance.

In our well-specified setting for linear model, the excess risk under a given distribution π
can be expressed in the following form

Eπ(f) = Ex∼π(f(x)− f∗(x))2

= Ex∼π(φ(x)>(θ − θ∗))2

= (θ − θ∗)>Σπ(θ − θ∗)
= ‖θ − θ∗‖2Σπ ,

(3)

where Σπ denotes the covariance matrix of the feature map under the distribution π:

Σπ = Eπ[φ(x)φ(x)>],
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and ‖u‖2A := u>Au for a psd matrix A.
To evaluate training and test error, we first define the empirical and population feature co-

variance matrices as follows:

Σ̂ = Eρ̂[φ(xi)φ(xi)
>] =

1

n

n∑
i=1

φ(xi)φ(xi)
>, Σ = Ex∼ρ[φ(x)φ(x)>]. (4)

In the random design setting, it is evident that Σ̂ converges to Σ in a suitable sense as n→∞.

Bias-variance decomposition. Our analysis will frequently rely on the celebrated bias-variance
decomposition. Let f̂ denote the model trained on the dataset S. The bias-variance decomposi-
tion for the learned model is given by

f̂ = E[f̂ ]︸︷︷︸
bias

+ f̂ − E[f̂ ]︸ ︷︷ ︸
variance

,

where the expectation is taken over the randomness in S. For instance, in the fixed-design setting
(or analyzing the training error), the expectation is taken with respect to the noise {ξi}ni=1.

Applying this decomposition to the excess risk (2), we obtain

E[E(f̂)] = E‖f̂ − f∗‖2π = E‖E[f̂ ]− f∗ + f̂ − E[f̂ ]‖2π
= ‖E[f̂ ]− f∗‖2π︸ ︷︷ ︸

bias

+E‖f̂ − E[f̂ ]‖2π︸ ︷︷ ︸
variance

. (5)

3 OLS estimator

In this section, we analyze the performance of the ordinary least squares (OLS) estimator, which
is obtained by minimizing the empirical risk:

θ̂ = argmin
θ

1

n

n∑
i=1

(φ(xi)
>θ − yi)2 = argmin

θ

1

n
‖Φθ − y‖2

with Φ = (φ(x1), · · · , φ(xn))> ∈ Rn×m. The minimizer is given by

θ̂ =

(
1

n
Φ>Φ

)−1 1

n
Φ>y =

(
1

n
Φ>Φ

)−1 1

n
Φ>(Φθ∗ + ξ) = θ∗ + Σ̂−1 1

n
Φ>ξ, (6)

where we use the fact that 1
nΦ>Φ ∈ Rm×m = Σ̂ is the empirical covariance matrix (see Eq. (4)),

assumed to be invertible.
Eq. (6) provides a closed-form expression for the OLS estimator. Notably, since E θ̂ = θ∗,

the OLS estimator is unbiased. To assess its performance, we first analyze the training error.
The following result characterizes the estimator f̂ols = f(·; θ̂).

Proposition 3.1. The expected training error of OLS estimator is given by

Ên := Eξ[Eρ̂(f̂ols)] =
σ2m

n
. (7)

4



Proof. According to (5) and (6), we have

Eξ[Eρ̂(f̂)] = Eξ ‖θ̂ − Eξ[θ̂]‖2Σ̂ + ‖Eξ[θ̂]− θ∗‖2Σ̂
=

1

n2
Eξ[ξ>ΦΣ̂−1Σ̂Σ̂−1Φ>ξ]

=
1

n2
Tr
(

Σ̂−1Φ> Eξ[ξξ>]Φ
)

=
σ2

n
Tr
(

Σ̂−1Σ̂
)

=
σ2m

n
.

Remark 3.2. To achieve a small training error, we require at least Ω(m) samples. This can be
costly when the feature space is high-dimensional.

Next, we analyze the generalization error. We can express the risk of the as follows.

Proposition 3.3. The excess risk of the OLS estimator under ρ is given by

En := Eξ[Eρ(f̂ols)] =
σ2

n
Tr(ΣΣ̂−1). (8)

Proof. Recall the expression of the OLS estimator in (6). From (5) we have

Eξ[Eρ(f̂)] = Eξ ‖θ̂ − Eξ[θ̂]‖2Σ + ‖Eξ[θ̂]− θ∗‖2Σ

=
1

n2
Eξ[ξ>ΦΣ̂−1ΣΣ̂−1Φ>ξ]

=
1

n2
Tr(ΣΣ̂−1Φ> Eξ[ξξ>]ΦΣ̂−1)

=
σ2

n
Tr(ΣΣ̂−1).

Intuitively, when n� 1, we expect Σ̂ ≈ Σ. As a result, it follows that Σ̂−1Σ ≈ Im, leading
to the approximation En ≈ σ2m

n .
To rigorously estimate the generalization error, we introduce a method based on concentra-

tion inequalities for matrices. Our analysis is motivated by considering the trace of the inverse
term Tr(Σ−1Σ̂) and rewriting it as

Tr(Σ−1Σ̂) = Tr(Σ−1/2Σ̂Σ−1/2)

=
1

n
Tr

(
Σ−1/2

(
n∑
i=1

φ(xi)φ(xi)
>

)
Σ−1/2

)

= Tr

(
1

n

n∑
i=1

ziz
>
i

)

where we define zi = Σ−1/2φ(xi). The following lemma provides a bound on the rate at which
1
n

∑n
i=1 ziz

>
i concentrates around Im.
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Lemma 3.4 (Matrix Bernstein bound). Given n independent symmetric matrices Mi ∈ Rd×d,
such that for all i ∈ {1, · · · , n}, E[Mi] = 0, ‖Mi‖2 ≤ b almost surely and ‖ 1

n

∑n
i=1 E[M2

i ]‖2 ≤
σ2. Then for all t ≥ 0, we have

P

(∥∥∥∥∥ 1

n

n∑
i=1

Mi

∥∥∥∥∥
2

≥ t

)
≤ d · exp

(
− nt2/2

σ2 + bt/3

)
.

We are now ready to prove Proposition 3.5, which provides a high-probability bound on the
excess risk.

Proposition 3.5. Let z = Σ−1/2φ(x) satisfy ‖z‖2 ≤ Cm almost surely. Then, for any δ ∈
(0, 1), if the number of samples satisfies n ≥ Cm log(m/δ), it follows that with probability at
least 1− δ over the sampling of x1, . . . , xn, the test error is bounded as

En ≤
2σ2m

n
.

Proof. Let Mi = ziz
>
i − Im. We can check that it holds for each i ∈ [n] that:

E[Mi] = 0,

and
‖Mi‖2 ≤ max

{
‖zi‖2, 1

}
≤ Cm,

as well as
‖E[M2

i ]‖2 = ‖E[‖zi‖2ziz>i ]− 2ziz
>
i + Id‖2 ≤ Cm.

Let ∆n = 1
n

∑n
i=1 ziz

>
i − Im. By applying Lemma 3.4 with b = σ2 = Cm, we obtain

P {‖∆n‖2 ≥ t} ≤ m · exp

(
− nt2/2

Cm(1 + t/3)

)
.

For any δ ∈ (0, 1), setting t = 1/2 and n ≥ C
d log(d/δ), we conclude that with probability at

least 1− δ, ∥∥∥∥∥ 1

n

n∑
i=1

ziz
>
i − Im

∥∥∥∥∥
2

≤ 1

2
.

This implies the following spectral bound:

Σ−1/2Σ̂Σ−1/2 � 1

2
Im.

Equivalently, taking inverses,
ΣΣ̂−1 � 2Im.

Combining this with equation (8) completes the proof.

We have discussed a method based on matrix concentration inequalities to obtain an non-
asymptotic bound of the test error. However, there exist alternative approaches that can achieve
similar results. Below, we briefly introduce two such methods:
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• Gaussian design. Suppose that the feature mapping φ(x) follows a Gaussian distribution
with mean zero and covariance matrix Σ. In this case, z = Σ−1/2φ(x) follows a standard
Gaussian distribution, leading to the formation of the matrixZ = (z1, · · · , zn)> ∈ Rn×m.
Under this setting, the inverse of the Gram matrix, (Z>Z)−1, follows an inverse Wishart
distribution. It is known that E[(Z>Z)−1] = 1

n−m−1Im. Furthermore, the expectation
of the trace term satisfies E[Tr(ΣΣ̂−1)] = nE[Tr(Z>Z)−1]. This allows us to derive an
explicit bound on the expected excess risk.

• Random matrix theory.

4 Ridge Regression

From the discussion in Section 3, the required sample complexity is n = Ω(m). In high-
dimensional settings, where m� 1, this dependency leads to an impractically large number of
required samples. This raises a natural question: Can we improve our results to achieve lower
training and test errors, ideally making them independent of m? Two principal strategies have
emerged in machine learning to tackle this challenge:

• Dimension reduction. This approach assumes that the feature vector Φ(x) resides within
a low-dimensional manifold. Dimension reduction techniques aim to replace the original
feature vector Φ(x) with a lower-dimensional representation obtained through classical
methods, such as Principal Component Analysis (PCA) or random projections.

• Regularization. This approach leverages structural assumptions on the parameter θ∗,
such as sparsity or bounded norm constraints. To enforce sparsity, an `1 penalty (known
as the Least Absolute Shrinkage and Selection Operator, or LASSO) is applied to θ. Alter-
natively, to impose norm constraints, an `2 penalty is utilized, yielding ridge regression.

Remark 4.1. In the limiting scenario where the number of features m → ∞, regularization
methods exhibit interesting connections to other learning models: the LASSO regularization
corresponds to a two-layer neural network, whereas ridge regression corresponds to kernel-
based methods.

Here, our primary focus is on ridge regression.

4.1 Ridge Regression

We begin by making a bounded-norm assumption on the target function.

Assumption 4.2. ‖θ∗‖2 ≤ 1.

The ridge regression (Ridge) estimator is given by

θ̂λ = argmin
θ

1

n
‖Φθ − y‖22 + λ ‖θ‖22 ,

where λ > 0 is the regularization parameter. This estimator admits the following closed-form
solution:

θ̂λ =
1

n
(Σ̂ + λI)−1Φ>y.
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Due to the regularization term λI , invertibility of Φ>Φ is no longer required, distinguishing
Ridge from OLS.

Denote f̂λ = f(x; θ̂λ). We then have the following proposition regarding the training error
of f̂λ by setting π = ρ̂:

Proposition 4.3. The expected excess risk of the prediction function f̂λ is given by

Eξ[Eρ̂(f̂λ)] = λ2θ>∗ (Σ̂ + λI)−2Σ̂θ∗ +
σ2

n
Tr
[
Σ̂2(Σ̂ + λI)−2

]
,

where the first term represents the bias, and the second term corresponds to the variance.

Proof. We use the risk decomposition in (5) into a bias term B(λ) and a variance term V (λ).
Since we have

Eξ
[
θ̂λ

]
= Eξ

[
1

n
(Σ̂ + λI)−1Φ>(Φθ∗ + ξ)

]
=

1

n
(Σ̂ + λI)−1Φ>Φθ∗ = (Σ̂ + λI)−1Σ̂θ∗

= θ∗ − λ(Σ̂ + λI)−1θ∗,

it follows that
B(λ) = ‖Eξ[θ]− θ∗‖2Σ̂ = λ2θ>∗ (Σ̂ + λI)−2Σ̂θ∗,

with the fact that Σ̂ and (Σ̂ +λI)−1 commute. For the variance term V (λ), since E[ξξ>] = σ2I
and Tr(AB) = Tr(BA), we have

V (λ) = Eξ
[∥∥∥θ̂λ − Eξ

[
θ̂λ

]∥∥∥2

Σ̂

]
= Eξ

[∥∥∥∥ 1

n
(Σ̂ + λI)−1Φ>ξ

∥∥∥∥2

Σ̂

]

= Eξ
[

1

n2
Tr
(
ξ>Φ(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1Φ>ξ

)]
= Eξ

[
1

n2
Tr
(

Φ>ξξ>Φ(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1
)]

=
σ2

n
Tr
(

Σ̂(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1
)
.

Summing the bias term B(λ) and variance term B(λ) completes the proof.

We highlight the following key observations:

• Bias term. This term captures the approximation error introduced by the ridge penalty,
which restricts the model’s expressivity.

• Variance Term. In contrast to Proposition 3.1, this term no longer depends on the number
of parameters m. Instead, it depends on the degrees of freedom (DoF):

DoF(λ) = Tr
(
Σ̂2(Σ̂ + λI)−2

)
=

m∑
j=1

µ2
j

(µj + λ)2
, (9)
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where {µj}mj=1 are the eigenvalues of Σ̂ in decreasing order. Intuitively, DoF(λ) measures
how many eigenvalues exceed the threshold λ, as discussed in Lemma 4.4. When λ = 0,
DoF(0) = m, representing the total degrees of freedom in the unregularized model.

• Bias-variance trade-off. Because the bias B(λ) and variance V (λ) vary oppositely as
functions of λ, a natural trade-off emerges between these two terms.

Let m(λ) = #{j : µj ≥ λ} be the number of eigenvalues that is greater than λ. Then, the
following lemma characterizes how the DoF depends on spectrum of Σ̂:

Lemma 4.4. When µj � j−β , then we have DoF(λ) � m(λ) = λ−1/β .

Proof. First, under the eigenvalue decay assumption, we havem(λ) � λ−1/β . Moreover, noting

DoF(λ) ≥
∑
µj≥λ

(
µj

µj + λ

)2

≥ 1

4
m(λ)

and

DoF(λ) =
∑
j

µ2
j

(µj + λ)2
=
∑
µj≥λ

µ2
j

(µj + λ)2
+
∑
µj≤λ

µ2
j

(µj + λ)2

≤
∑
µj≥λ

1 +
∑
µj≤λ

µ2
j

(µj + λ)2

≤ m(λ) +
1

λ2

∫ ∞
λ−1/β

x−2βdx ≤ C1λ
− 1
β ≤ Cλ−1/β,

we can conclude that DoF(λ) � m(λ).

Next, we present an upper bound for Eξ[Eρ̂(f̂λ)].

Proposition 4.5. The expected training error satisfies the following upper bound:

Eξ[Eρ̂(f̂λ)] ≤ λ

2
+
σ2 Tr(Σ̂)

2λn
.

Proof. Note that the eigenvalues of the matrix (Σ̂+λI)−2λΣ̂ are bounded above by 1/2, which
is a direct consequence of the inequality (µ + λ)2 ≥ 2µλ. Thus, the bias term can be bounded
as follows:

B(λ) = λ2θ>∗ (Σ̂ + λI)−2Σ̂θ∗

= λθT∗ (Σ̂ + λI)−2λΣ̂θ∗

≤ λ

2
‖θ∗‖2 ≤

λ

2
where the last inequality follows directly from Assumption 4.2. Similarly, the variance term
V (λ) can be bounded by:

V (λ) =
σ2

n
Tr
[
Σ̂2(Σ̂ + λI)−2

]
=
σ2

λn
Tr
[
Σ̂λΣ̂(Σ̂ + λI)−2

]
6
σ2 Tr Σ̂

2λn
.

Summing the bias term B(λ) and variance term V (λ) completes the proof.
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The upper bound derived above takes the form aλ + b/λ for positive constant a, b > 0.
This expression attains its minimum at λ =

√
b/a, yielding an optimal value of 2

√
ab. Taking

a = 1
2 and b = σ2 Tr(Σ̂)

2n ,we obtain the optimal regularization parameter: λ∗ = σTr(Σ̂)1/2√
n

and
consequently, the optimal upper bound:

Eξ[Eρ̂(f̂λ)] ≤ σ tr(Σ̂)1/2

√
n

The expected excess risk decays as n−1/2, independent of the dimension m, assuming Tr(Σ̂) ≤
C. However, the amplification of the mean value inequality in the aforementioned proof is
excessively relaxed, resulting in the loss of certain spectral information of Σ̂. To derive more
precise results, additional assumptions about the eigenvalue distribution are beneficial. Specifi-
cally, we introduce the following assumption regarding the polynomial decay of eigenvalues:

Assumption 4.6. (Polynomial decay) The eigenvalues µj of Σ̂ exhibit polynomial decay µj �
j−β with β > 1.

Then, combining Lemma 4.4 into Proposition 4.5 gives

Eξ[Eρ̂(f̂λ)] ≤ C
(
λ+

σ2

n
λ
− 1
β

)
.

By choosing the optimal λ∗ = (σ2/n)
β

1+β , we obtain the following bound:

Eξ[Eρ̂(f̂λ)] ≤ C
(
σ2

n

) β
1+β

. (10)

We summarize the key insights as follows:

• As β → 1, Eξ[Eρ̂(f̂λ)] decays at a rate of 1√
n

, recovering the rate established earlier
derived by Proposition 4.5.

• As β increases, the eigenvalues of Σ̂ decay more rapidly, resulting in a faster decay of the
expected excess risk Eξ[Eρ̂(f̂λ)] with respect to n. When β → ∞, we approach the fast
rate: 1/n.

We note that by following a similar strategy as in Proposition 3.5, one can derive an upper
bound for the test error analogous to (10). We defer this derivation to the analysis of kernel
methods, which can be viewed as ridge-regularized linear models in the limit m→∞.

5 Feature Extraction and Reduced Models

Beyond directly penalizing the model’s expressivity, as in ridge regression, another popular
approach to improving generalization is through feature extraction and constructing certain re-
duced models.

In our case, we aim to construct a set of basis functions {h1(x), · · · , hk(x)} with k � m to
approximate the original raw features through linear combinations:

ht(x) =

m∑
j=1

wjtφj(x), t = 1, · · · , k
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where W = (wjt) ∈ Rm×k is the projection matrix. This yields a compressed representation

fα(x) =
k∑
t=1

αtht(x) = φ(x)>Wα

where α = (α1, · · · , αk) ∈ Rk. This naturally leads to a two-stage learning framework:

• Stage I: (Unsupervised) feature extraction. Learn the combination matrix W using our
data, such as the spectral property, which are independent of the labels {yi}.

• Stage II: Supervised learning in the reduced space. Learn coefficients α ∈ Rk via
some regression methods.

Remark 5.1. In practice, we are usually given a labeled dataset {(xi, yi)}ni=1 along with a
large amount of unlabeled data {xi}Ni=n+1. In Stage I, we can utilize those enormous unlabeled
data to learn a good feature.

Remark 5.2. If both α and W are learnable in simultaneously, this framework can be viewed
as a simplified two-layer neural network:

fW,α(x) = φ(x)>Wα
with activation−−−−−−−−→ σ(φ(x)>W )α

5.1 Spectral truncation

Assume the empirical covariance matrix Σ̂ = 1
n

∑n
i=1 φ(xi)φ(xi)

> admits eigen-decomposition
as follows:

Σ̂ =
m∑
j=1

µjuju
>
j with µ1 ≥ µ2 ≥ · · · ≥ µm

For some estimator θ̂, let δ = θ̂ − θ∗. The training error is

Ên = ‖θ̂ − θ∗‖2Σ̂ =
m∑
j=1

µj(δ
>
j uj)

2.

Now, consider a reduced model where θ = Wα lies within a k-dimensional subspace. In-
tuitively, this constraint implies that at most k coordinates of δ can be optimized. Given the
decay in the eigenvalues of the covariance matrix, it is natural to construct W using the leading
eigenvectors. Thus, we define

W = (u1, · · · , uk) ∈ Rm×k

Let Φ = (φ(x1), · · · , φ(xn))> ∈ Rn×m. The estimator is obtained by solving the following
regression problem:

α̂ = argmin
α

1

n
‖ΦWα− y‖2

=

(
1

n
W>Φ>ΦW

)−1 1

n
W>Φ>y

=

(
1

n
W>Φ>ΦW

)−1 1

n
W>Φ>(Φθ∗ + ξ).

(11)

We then proceed to analyze the error of this estimator. We have the following result.
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Proposition 5.3. Assuming that the eigenvalues of the covariance matrix satisfy µ1 ≥ µ2 ≥
· · · ≥ µm. the empirical excess risk of the estimator obtained via the spectral truncation ap-
proach, as given in (11), is bounded by

En ≤ µk+1 +
σ2k

n
. (12)

Proof. Recall the bias-variance decomposition we introduced in (5). For the bias term we have

B(k) = ‖E(Wα̂)− θ∗‖2Σ̂
=
∥∥∥W (W>Σ̂W )−1W>Σ̂θ∗ − θ∗

∥∥∥2

Σ̂
.

Let θ∗ = Wα∗ +W⊥β∗ be the decomposition with ‖α∗‖2 + ‖β∗‖2 = ‖θ∗‖2, where W⊥ is the
orthogonal complement of W . Note that W>Σ̂W⊥ = 0. Then

B(k) =
∥∥∥W (W>Σ̂W )−1W>Σ̂(Wα∗ +W⊥β∗)− θ∗

∥∥∥2

Σ̂

= ‖Wα∗ − θ∗‖2Σ̂
= ‖W⊥β∗‖2Σ̂
≤ ‖W>⊥ Σ̂W⊥‖2
≤ µk+1.

For the variance term,

V (k) = Eξ

[∥∥∥∥W (W>Σ̂W )−1 1

n
W>Φ>ξ

∥∥∥∥2

Σ̂

]
=

1

n2
Eξ
[
ξ>ΦW (W>Σ̂W )−1(W>Σ̂W )(W>Σ̂W )−1W>Φ>ξ

]
=

1

n2
Tr
(

(W>Σ̂W )−1W>Φ> E[ξξ>]ΦW
)

=
σ2

n
Tr(Ik)

=
σ2k

n
.

Combining the two terms finishes the proof.

If we further assume a power-law decay of the eigenvalues, we can determine an optimal
dimension for the reduced model and establish the corresponding convergence rate.

Proposition 5.4. Let µj � j−β for some β > 0. Then the optimal dimension is given by

kop =

(
nβ

σ2

) 1
β+1

,

and we have

En ≤
(
σ2

βn

) β
β+1

The proof is straightforward. Comparing with (10), we see that the reduced model achieves
the same rate as ridge regression.
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Phase Transitions The error rate exhibits distinct phases depending on eigenvalue decay:

En ∼ n−
β
β+1 ≈


n−1 β →∞ (Parametric/fast rate)

n−1/2 β → 1 (Infinite-dimensional)
arbitrarily slow β → 0 (Ill-posed problem)

• When β →∞, the function being learned resides in a space of fixed, finite dimension. In
this scenario, the convergence rate of n−1 is known as the parametric/fast rate in statistics.

• As β → 1 and m → ∞, the function space transitions to an infinite-dimensional setting
and Σ̂ takes the form of an operator. For such an operator to possess an eigendecomposi-
tion, it must be compact. A sufficient condition for Σ̂ to be compact is that it belongs to
the trace class, which holds if the following series converges:∑

k

µk =
∑
k

k−β <∞.

This convergence occurs when β > 1.

6 Summary

In this lecture, we have examined linear regression in detail, focusing on fundamental princi-
ples that can generalize to broader settings. In particular, we introduced a general approach to
generalization analysis, applicable to both ridge regression and reduced models, summarized as
follows.

𝑓𝑓∗

𝑓𝑓𝜆𝜆∗

𝑓𝑓𝜆𝜆

ℋ

ℋ𝜆𝜆

Figure 1: Error decomposition

Consider the task of learning f∗ using a model classH. SinceH may be highly expressive,
we often impose constraints to improve generalization. Let Hλ be a constrained model class
parameterized by λ, which controls the size of the hypothesis space. Denote by f̂λ ∈ Hλ the
model learned from n samples, and let f∗λ ∈ Hλ a good approximation of f∗ within Hλ, often
chosen (though not necessary) as

f∗λ = inf
f∈Hλ

‖f − f∗‖.

Then, the error decomposition follows as:
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‖f̂λ − f∗‖ ≤ ‖f̂λ − f∗λ‖+ ‖f∗λ − f∗‖

≤ C(λ)√
n

+A(λ)

≤ inf
λ

(
C(λ)√
n

+A(λ)

)
,

as illustrated in Fig. 1. Note that ‖f̂λ−f∗λ‖ goes in the Monte-Carlo rateO(n−1/2) as we impose
constraint onHλ, which should behave well.

When the approximation error A(λ) (bias term) is small, the convergence rate approaches
the Monte-Carlo rate O(n−1/2) (aka fast rate and parametric rate). However, if A(λ) is large,
the bias-variance trade-off may lead to a significantly slower rate of n−r for some 0 < r < 1

2 .
Thus, the harder our model approximates the target f∗, the slower the learning error converges
as increasing number of samples.
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