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Abstract

Reproducing Kernel Hilbert Spaces (RKHS) play a pivotal role not only in machine
learning theory but also in statistics, computational mathematics, and functional analysis.
These structured Hilbert spaces use a kernel-induced inner product, offering a unifying
viewpoint for kernel methods. A central feature of RKHS is the Representer Theorem,
which ensures that seeking solutions within these infinite-dimensional spaces can be re-
duced to a finite-dimensional problem, making the computations tractable.

In this lecture, we delve into the theoretical properties of RKHS from multiple perspec-
tives. Particularly, we stress that, to build a better intuition, it is helpful to view an RKHS as
the approximation space of ridge-regularized linear models, expressed as

∑m
j=1 θjϕj(x),

in the limit as m → ∞. This perspective bridges finite-dimensional linear models (like
classical regression) with their infinite-dimensional counterparts (kernel ridge regression).
Please also read [Bach, 2024, Section 7.1-7.2] and [Wainwright, 2019, Section 12] for more
discussion.

1 Functional Analysis Background

We will make use of a few concepts from functional analysis and here we review what we need.

Definition 1.1 (Function Space). Let X be the input domain. A function space F is a space
whose elements are functions, e.g. f : X → R. We will focus on linear spaces of functions in
the sense that if f, g ∈ F , then r1f + r2g ∈ F for any r1, r2 ∈ R.

Definition 1.2. An inner product is a function 〈·, ·〉 : F × F → R that satisfies the following
properties for every f, g ∈ F :

1. Symmetric: 〈f, g〉 = 〈g, f〉.

2. Linear: 〈r1f1 + r2f2, g〉 = r1 〈f1, g〉+ r2 〈f2, g〉 for any r1, r2 ∈ R.

3. Positive-definite: 〈f, f〉 ≥ 0 for all f ∈ F and 〈f, f〉 = 0 iff f = 0.

Definition 1.3. A norm is a nonnegative function ‖ · ‖ : F → R such that for all f, g ∈ F and
α ∈ R

• Positivity: ‖f‖ ≥ 0 and ‖f‖ = 0 iff f = 0;

• Positive homogeneity: ‖αf‖ = |α|‖f‖.

• Triangular inequality: ‖f + g‖ ≤ ‖f‖+ ‖g‖;

Lemma 1.4. Let (F , 〈·, ·〉) be an inner product space. Let ‖f‖ =
√
〈f, f〉. Then, ‖ · ‖ is a

norm.
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Proof. It is trivial to verify the positivity and positive homogeneity. What we need is to verify
the triangular inequality. Noting

‖f + g‖2 = 〈f + g, f + g〉 = ‖f‖2 + ‖g‖2 + 2〈f, g〉
(‖f‖+ ‖g‖)2 = ‖f‖2 + ‖g‖2 + 2‖f‖‖g‖,

we only need to verify the Cauchy-Schwartz inequality

〈f, g〉 ≤ ‖f‖‖g‖.

To this end, consider

‖f + λg‖2 = ‖f‖2 + 2λ〈f, g〉+ λ2‖g‖2

=

(
‖f‖+ λ

〈f, g〉
‖f‖

)2

+ λ2
(
‖g‖2 − 〈f, g〉

‖f‖

)
As the above quantity is non-negative for any λ ∈ R. We must have

‖g‖2 − 〈f, g〉
‖f‖

≥ 0,

which establishes the Cauchy-Schwartz inequality, thereby the triangular inequality.

Note that while the dot product in Rd is an excellent example, an inner product is more
general than this, and requires only those properties given above.

Definition 1.5. A Hilbert space is a complete, (possibly) infinite-dimensional linear space en-
dowed with an inner product. Let H be a Hilbert space. Denote by 〈·, ·〉H and ‖ · ‖H the
associated inner product and norm.

The most popular finite-dimensional Hilbert space is the Euclidean space Rd equiped with
the 〈x, y〉 =

∑d
i=1 xiyi. Another popular Hilbert space is L2(µ) induced by the inner product

〈f, g〉L2(µ) =

∫
f(x)g(x) dµ(x) = Ex∼µ[f(x)g(x)],

where µ is a probability distribution over X .
While this tells us what a Hilbert space is, it is not intuitively clear why we need this mech-

anism, or what we gain by using it. Essentially, a Hilbert space lets us apply concepts from
finite-dimensional linear algebra to infinite-dimensional spaces of functions. In particular, the
fact that a Hilbert space is complete will guarantee the convergence of certain algorithms. More
importantly, the presence of an inner product allows us to make use of orthogonality and pro-
jections, which will later become important.

Definition 1.6 (Linear functional). Let F be a linear function space. A : F 7→ R is said to be a
linear functional if for any α, β ∈ R and f, g ∈ F , we have

A(αf + βg) = αA(f) + βA(g)
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Definition 1.7. Let (F , ‖ · ‖F ) be a normed function space. A linear functional A : F 7→ R is
said to be continuous if there exist a constant C > 0 such that for any f, g ∈ F , we have

|A(f − g)| ≤ C‖f − g‖F .

The norm of A is defined by
‖A‖ = sup

‖f‖F≤1
|A(f)|.

Obviously,
|A(f − g)| ≤ ‖A‖‖f − g‖F .

Theorem 1.8 (Riesz representation theorem). Suppose H to be a Hilbert space. For any con-
tinuous linear functional A, there exist a unique vector fA ∈ H, called the Riesz representation
of A, such that

A(g) = 〈fA, g〉H ∀g ∈ H.

2 Definitions of RKHS and KRR

2.1 Reproducing kernel Hilbert spaces

We begin by introducing two key types of functions that form the foundation of RKHS theory.

Definition 2.1 (Positive semidefinie (PSD) function). A function k : X × X 7→ R is said to
be PSD if (1) k is symmetric, i.e., k(x, x′) = k(x′, x) for any x, x′ ∈ X , and (2) for any
x1, . . . , xn ∈ X , the matrix K = (k(xi, xj))i,j ∈ Rn×n is PSD.

Definition 2.2 (Kernel). A function k : X ×X 7→ R is said to be a kernel if k is symmetric and
there exists a Hilbert spaceH and a feature map ϕ : X 7→ H such that

k(x, x′) = 〈ϕ(x), ϕ(x′)〉H.

It is obvious that every kernel is PSD. To see this, consider any α ∈ Rn and x1, . . . , xn ∈ X .
We have:

n∑
i,j=1

αiαjk(xi, xj) =

n∑
i,j=1

αiαj〈ϕ(xi), ϕ(xj)〉H =

∥∥∥∥∥
n∑
i=1

αiϕ(xi)

∥∥∥∥∥
2

H

≥ 0. (1)

Definition 2.3 (RKHS). LetH be a Hilbert space of real-valued functions on X . It is said to be
a reproducing kernel Hilbert space (RKHS) if there is a reproducing kernel k : X × X 7→ R
such that

• ∀x ∈ X , k(·, x) ∈ H.

• Reproducing property: ∀x ∈ X, f ∈ H, 〈f, k(·, x)〉H = f(x)

The next theorem plays a fundamental role in RKHS theory.
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Theorem 2.4 (Moore-Aronszajn theorem). Let k : X × X 7→ R be a psd function. Let

H0 =

{
n∑
i=1

αik(xi, ·) : n ∈ N, α ∈ Rn and xi ∈ X for i ∈ [n]

}
(2)

and endow it with the inner product: for f =
∑n

i=1 αik(·, xi), g =
∑m

j=1 βjk(·, x′j),

〈f, g〉H0 =

n∑
i=1

m∑
j=1

αiβjk(xi, x
′
j). (3)

Then, the pointwise closureHk = H0 is a RKHS with k as its reproducing kernel.

The formal proof is deferred to 7.1. However, the intuition behind the construction ofH0
k is

straightforward to grasp. By definition, k(x, ·) ∈ Hk for any x ∈ X , and since H0
k consists of

finite linear combinations of such functions, linearity ensures H0
k ⊆ Hk. The inner product is

naturally defined to align with the reproducing property inHk:

〈f, g〉H0
k

=

〈
n∑
i=1

αik(xi, ·),
m∑
j=1

βjk(x′j , ·)

〉
H0

=

n∑
i=1

m∑
j=1

αiβj〈k(xi, ·), k(x′j , ·)〉H0

=
n∑
i=1

m∑
j=1

αiβjk(xi, x
′
j),

where the second equality follows from the linearity of the inner product, and the final equality
anticipates the reproducing property 〈k(xi, ·), k(x′j , ·)〉H0 = k(xi, x

′
j).

One important implication of Moore-Aronszajn theorem is as follows:

Theorem 2.5. The notions of PSD functions, kernels, and reproducing kernels are equivalent.

Proof. First, (1) implies that kernels are PSD functions. Second, Moore-Aronszajn theorem
guarantees that PSD functions are reproducing kernels. Third, for any reproducing kernel k,
we can construct a feature map by setting ϕ(x) = k(x, ·) and H = Hk. Thus, k(x, x′) =
〈k(x, ·), k(x′, ·)〉Hk , suggesting that every reproducing kernel is also a kernel. Thus, the three
concepts are equivalent.

Given this equivalence, we will not explicitly distinguish between these terms and will sim-
ply refer to them as kernels in the remainder of this lecture.

Lemma 2.6. LetH be a RKHS. Then, its reproducing kernel k is unique.

Proof. For any two reproducing kernels k1, k2, we have

〈f, k1(·, x)− k2(·, x)〉H = f(x)− f(x) = 0, ∀x ∈ X, ∀ f ∈ H.

Taking f = k1(·, x)−k2(·, x) lead to ‖k1(·, x)−k2(·, x)‖2H = 0,∀x ∈ X . Hence, k1 = k2.

Lemma 2.7. For any reproducing kernel k, there is a unique RKHS with k as its reproducing
kernel. Thus, this is the one constructed by Moore-Aronszajn theorem.

The proof is lengthy and deferred to Section 7.2.
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2.2 kernel ridge regression

The kernel ridge regression (KRR) using a RKHS as its hypothesis space and fitting data using
the following strategy:

f̂λ = argmin
f∈Hk

1

n

n∑
i=1

(f(xi)− yi)2 + λ‖f‖2Hk . (4)

This is an infinite-dimensional optimizaiton. The representer theorem shows that it can be re-
duced to a finite dimensional problem:

Theorem 2.8 (Representer Theorem). For any λ > 0, there exists α = (α1, . . . , αn) ∈ Rn such
that f̂λ =

∑n
i=1 αik(xi, ·).

Proof. Define V = span{k(xi, ·) : i = 1, . . . , n}. For any f ∈ H, decompose f = f‖ + f⊥,
where f‖ ∈ V and f⊥ ∈ V ⊥, the orthogonal complement of V in H. By the reproducing
property, for any i ∈ [n],

f(xi) = 〈f, k(xi, ·)〉H = 〈f‖, k(xi, ·)〉H + 〈f⊥, k(xi, ·)〉H = 〈f‖, k(xi, ·)〉H = f‖(xi),

since f⊥ ∈ V ⊥ implies 〈f⊥, k(xi, ·)〉H = 0.
Thus, the data-fitting term

∑n
i=1(yi − f(xi))

2 =
∑n

i=1(yi − f‖(xi))2 depends only on f‖.
However, the regularization term satisfies

‖f‖2H = ‖f‖‖2H + ‖f⊥‖2H ≥ ‖f‖‖2H.

Thus, f̂λ must lie in V , i.e., there exists a α ∈ Rn such that f̂λ =
∑n

i=1 αik(xi, ·).

Noting ‖
∑n

i=1 αk(xi, ·)‖2H =
∑n

i,j=1 αiαjk(xi, xj) = α>Kα, then f̂λ =
∑n

i=1 αik(xi, ·)
with α̂ is given by minizing the following problem:

J(α) =
1

n
‖Kα− y‖2 + λα>Kα.

Kernel methods. General kernel methods employ the hypothesis fα(x) :=
∑n

i=1 αik(xi, ·) ,
which extends beyond the scope of regression. This approach is versatile and can be applied to
tasks such as classification and unsupervised learning.

3 The perspective of evaluation functional

Definition 3.1. Let F be a function space. For any x ∈ X , the evaluation functional Lx : F 7→
R is defined by

Lx(f) = f(x).

Lemma 3.2. For a RKHSHk, the evaluation functional Lx : Hk 7→ R is continuous.

Proof. For any x ∈ X and f, g ∈ H,

|Lx(f)− Lx(g)| = |f(x)− g(x)| = |〈f − g, k(x, ·)〉Hk |
≤ ‖k(x, ·)‖Hk‖f − g‖Hk ,

where the last step follows from the Cauchy-Schwartz inequality. This means that ‖Lx‖ ≤
‖k(x, ·)‖Hk <∞, as k(x, ·) ∈ Hk.
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An important implication is that the convergence in norm implies the pointwise convergence.
If limn→∞ ‖fn − f‖Hk = 0, then

|fn(x)− f(x)| ≤ ‖Lx‖‖fn − f‖Hk → 0 as n→∞.

This is a major difference between a RKHS and a general Hilbert space. For instance, for L2(µ),
the norm convergence does not imply the pointwise convergence.

This continuity of the evaluation functiona can be used as an equivalent definition of RKHS.

Theorem 3.3. Let H be a Hilbert space of real-valued functions on X . Then, H is a RKHS if
and only if the evaluation functional is continuous.

Proof. If Lx is continuous, by Riesz representation theorem, there exist Kx ∈ H such that

Lx(f) = 〈Kx, f〉H.

Define the kernel:
k(x, x′) = 〈Kx,Kx′〉H = Kx′(x) = Kx(x′),

for which
〈f, k(·, x)〉H = 〈f,Kx〉 = f(x), ∀f ∈ H.

This means k(·, ·) is a reproducing kernel ofH.

4 The perspective of approximation space and feature map

In this section, we show that KRR can be viewed as linear ridge regression in the feature space
and consequently, RKHS can be viewed as the approximation space of linear ridge regres-
sion in the feature space. Let ϕ1, ϕ2, . . . , ϕm, . . . be infinitely many features and ϕ(x) :=
(ϕ1(x), ϕ2(x), . . . , ϕm(x), . . . ) be the full feature map satisfying

Assumption 4.1.
∑∞

j=1 ϕj(x)2 <∞ for any x ∈ X .

Consider the “discrete” model: fm(x; θ) =
∑m

j=1 θjϕj(x) and the corresponding ridge
regression

min
θ

1

n

n∑
i=1

(fm(xi; θ)− yi)2 + λ‖θ‖2. (5)

Then, a natural question what is the approximation space of this ridge-regularized linear
model, i.e., the function spaces where this method can approximate and estimate well.

Proposition 4.2 (Inverse approximation theorem). Suppose Assumption (4.1) holds. If there
exists a sequence (θ(m) ∈ Rm)∞m=1 with ‖θ(m)‖2 ≤ B, such that limm→∞ fm(·; θ(m)(x) =
f∗(x) for all x ∈ X . Then, there must exist a θ∗ ∈ `2 such that f∗(x) =

∑m
j=1 ϕj(x)θ∗j and

‖θ∗‖ ≤ B.

This proposition is highly intuitive; however, its rigorous proof requires some functional
analysis arguments, which we defer to Section 7.3. Essentially, it establishes that the approxi-
mation space of a ridge-regularized linear model is given by

Gϕ =

x 7→
∞∑
j=1

θjϕj(x) : ‖θ‖2 <∞


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We next show that Gϕ is exactly the RKHSHkϕ associated with the kernel:

kϕ(x, x′) = 〈ϕ(x), ϕ(x′)〉`2 .

We proceed by considering a general feature map ϕ : X → H, where H is an arbitrary
Hilbert space, extending beyond the special case discussed above withH = `2. Specifically, we
define the kernel function as

k(x, x′) = 〈ϕ(x), ϕ(x′)〉H.

Definition 4.3. Let Fϕ = {f(x;β) = 〈β, ϕ(x)〉H : β ∈ H}. For f ∈ Fϕ, define

‖f‖Fϕ = inf
f=〈β,ϕ(·)〉H

‖β‖H.

Note that for a given f , its “representation” β is not necessarily unique. Taking the infimum
ensures that the norm is independent of the specific choice of β. Nevertheless, one can ignore
this and simply treat ‖f(·;β)‖Fϕ = ‖β‖H.

Lemma 4.4. ‖ · ‖Fϕ is indeed a well-defined norm.

Proof. Assume f1 = 〈β1, ϕ(·)〉H, f2 = 〈β2, ϕ(·)〉H. Then,

λ1f1 + λ2f2 = 〈λ1β1 + λ2β2, ϕ(·)〉H .

By the definition,

‖λ1f1 + λ2f2‖Fϕ ≤ ‖λ1β1 + λ2β2‖H ≤ |λ1|‖β1‖H + |λ2|‖β2‖H.

Taking infimum over β1 and β2 yields

‖λ1f1 + λ2f2‖Fϕ ≤ |λ1|‖f1‖Fϕ + |λ2|‖f2‖Fϕ .

In addition, let ‖f‖Fϕ = 0. By definition, for any ε > 0, there exist βε such that f = 〈βε, ϕ(·)〉H
and ‖βε‖H ≤ ε. Hence, for any x ∈ X ,

|f(x)| = |〈βε, ϕ(x)〉H| ≤ ‖βε‖H‖ϕ(x)‖H ≤ ε‖ϕ(x)‖H.

Taking ε→ 0, we obtain f(x) = 0 for any x ∈ X .

Definition 4.5. Let Fϕ be the function space defined in Definition 4.3. For any f, g ∈ Fϕ,

define 〈f, g〉Fϕ =
‖f+g‖2Fϕ−‖f−g‖

2
Fϕ

4 .

It is easy to verify that Fϕ is indeed well-defined inner product.

Lemma 4.6. For any f, g ∈ Fϕ, there exists βf , βg ∈ H such that f = 〈βf , ϕ(·)〉H, g =
〈βg, ϕ(·)〉H and

〈f, g〉F = 〈βf , βg〉H.
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Proof. Taking βf , βg such that

‖f‖2Fϕ = ‖βf‖2H
‖g‖2Fϕ = ‖βg‖2H.

Hence,

〈f, g〉Fϕ =
‖βf + βg‖2H − ‖βf − βg‖2H

4
= 〈βf , βg〉H.

The above lemma shows that the inner product of the functions are equivalent to the inner
product of the corresponding representation.

Lemma 4.7. For any x ∈ X , ‖k(·, x)‖Fϕ = ‖ϕ(x)‖2H <∞.

Proof. Note that k(x, x′) = 〈ϕ(x), ϕ(x′)〉H. If βx ∈ H is an representation of k(x, ·), i.e.,

k(x, ·) = 〈βx, ϕ(·)〉H,

then, we have 〈βx − ϕ(x), ϕ(x′)〉H = 0 for any x′ ∈ X . This means that βx − ϕ(x) ⊥
span{ϕ(x′)}. Hence,

‖βx‖2H = ‖βx − ϕ(x) + ϕ(x)‖2H = ‖βx − ϕ(x)‖2H + ‖ϕ(x)‖2H ≥ ‖ϕ(x)‖2H.

Therefore, we have ‖k(x, ·)‖2Fϕ = ‖ϕ(x)‖2H.

Theorem 4.8 (Feature perspective of RKHS). (Fϕ, 〈·, ·〉Fϕ) = (Hk, 〈·, ·〉Hk).

Proof. By the uniqueness of RKHS, we only need to verify that (Fϕ, 〈·, ·〉Fϕ) is a RKHS with
k as its reproducing kernel. First, Lemma 4.7 establishes that k(·, x) ∈ Fϕ for any x ∈ X . For
any f ∈ Fϕ, assume f(x) = 〈βf , ϕ(x)〉H and ‖βf‖2H = ‖f‖2Fϕ . Then, we have

〈f, k(·, x)〉Fϕ = 〈βf , ϕ(x)〉H = f(x),

establishing the reproducing property. Thus, we complete the proof.

Theorem 4.8 is foundational to our subsequent analysis, demonstrating that an explicit char-
acterization of the corresponding RKHS is achievable whenever a feature map can be con-
structed. We will illustrate this concept in greater detail with examples in Sections 5 and 6.

A direct consequence of Theorem 4.8 is the following conclusion, which further establishes
that performing linear ridge regression with f(·;β) is equivalent to KRR as defined in (4).

Proposition 4.9. Let f(x;β) = 〈ϕ(x), β〉H be a linear model. Let

β̂λ = argmin
β∈H

1

n

n∑
i=1

(f(xi;β)− yi)2 + λ‖β‖2H.

Then, we have f(·; β̂λ) = f̂λ, where the later is solution of KRR (4).

Proof. Note that f(·;β) ∈ Hk and ‖β‖H ≥ ‖f(·;β)‖Hk , moreover by definition, for any
f ∈ Hs, there exists a β ∈ H such that f = f(·;β) with ‖β‖H = ‖f‖Hk . Combining these
facts, we complete the proof.
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5 The perspective of spectral decomposition

For a kernel k : X × X 7→ R, we define an integral operator Tk : L2(µ) 7→ L2(µ) as follows

Tkf(x) =

∫
X
k(x, x′)f(x′) dµ(x′)

Theorem 5.1 (Mercer’s theorem). Let k be a continuous kernel on a compact set X . There exist
an orthonormal basis {ej}∞j=1 of L2(µ) such that ∀x, x′ ∈ X ,

k(x, x′) =
∞∑
j=1

λjej(x)ej(x
′). (6)

The convergence is uniform on X × X and absolute for each (x, x′) ∈ X × X .

In fact, the existence of a spectral decomposition requires only the condition
∫
k(x, x) dµ(x) <

∞, which ensures that Tk has a finite trace and thereby, is compact. However, the compactness
only guarantees the covergence in (6) is in L2(µ×µ). The Mercer’s theorem provides a stronger
guarantee, establishing a convergence in C(X × X ). Note that (λj)j≥1 and (ej)j≥1 are the
eigenvalues and eigenfunctions of the integral operator Tk in the sense that

• Tkej = λjej , i.e., Ex′∼µ[k(·, x′)ej(x′)] = λjej .

• 〈ei, ej〉L2(µ) = Ex∼µ[ej(x)ei(x)] = δi,j .

The feature map. One significant consequence of the existence of spectral decomposition is
that it provides a feature map:

ϕ : X 7→ `2, ϕ(x) =
(√
λ1e1(x),

√
λ2e2(x), . . . ,

√
λjej(x), . . .

)>
, (7)

for which

k(x, x′) =

∞∑
j=1

√
λjej(x)

√
λjej(x

′) = 〈ϕ(x), ϕ(x′)〉`2 . (8)

Combining the above feature map with Theorem 4.8, we can obtain the following result:

Theorem 5.2 (Spectral representation of RKHS). Let k be a continuous kernel on a compact
set X , and {ej} be the orthonormal basis given in Mercer’s theorem. Define

H =

f =
∑
j

ajej :
∑
j

a2j
λj

<∞

 ,

with the inner product 〈∑
j

ajej ,
∑
j

bjej

〉
H

=
∑
j

ajbj
λj

.

Then,H is the RKHSHk.
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Proof. Consider the feature map given by Eq. (8). Then, by Theorem 4.8, for any f ∈ Hk, there
must exist a af ∈ `2 such that

f(x) =
∞∑
j=1

(af )jϕj(x) =
∞∑
j=1

(af )jλ
1/2
j ej(x).

Thus, (af )j = 〈f, ej〉L2(µ)/λ
1/2
j . By Theorem 4.8, for any f, g ∈ Hk, we have

〈f, g〉Hk = 〈af , ag〉`2 =
∞∑
j=1

〈f, ej〉L2(µ)〈g, ej〉L2(µ)

λj
.

Thus, we complete the proof.

Weighted L2 space. In this way, RKHS can be viewed as a L2 space weighted by the eigen-
values.

• L2 space: ‖f‖2L2(µ) =
∑∞

j=1 a
2
j .

• RKHS/Weighted L2 space: ‖f‖2Hk =
∑∞

j=1

a2j
λj

.

Hence, the faster the eigenvalue decay is, the smaller the RKHS is. Consider λj = 1
js . Then,

‖f‖2H =
∞∑
j=1

jsa2j <∞
roughly
=⇒ a2j = O

(
1

js+1+δ

)
for some δ > 0,

A larger s leads to a faster the decay of the coefficients.

6 Examples of RKHSs

In this section, we provide some concrete examples of RKHS. We will use the following con-
vention of Fourier transform and its inverse:

F [f ](ω) = f̂(ω) =

∫
Rd
f(x)e−2πi ω·x dx

F−1[g](x) = ǧ(x) =

∫
Rd
h(ω)e2πi ω·x dω.

6.1 Brownian kernel

Let X = [0, 1] and consider the Brownian kernel (also known as the Wiener kernel):

kB(x, y) = min(x, y).

To characterize the RKHS associated with this kernel, we aim to construct its feature map rep-
resentation. Specifically, let

φ(t;x) = 1[0,x](t).

10



We can verify that the map x 7→ φ(·;x) ∈ L2([0, 1]) generates the Brownian kernel as follows:

min(x, y) =

∫ 1

0
ϕ(t;x)ϕ(t; y) dt.

Hence, by Theorem 4.8, any function f in the RKHS admits the representation

f(x) =

∫ 1

0
a(t)ϕ(t;x) dt =

∫ 1

0
a(t)1[0,x](t) dt =

∫ x

0
a(t) dt,

for some coefficient function a ∈ L2([0, 1]). Consequently,

HkB =

{
f(x) =

∫ x

0
a(t) dt : a ∈ L2([0, 1])

}
.

Since f can be written as an integral of a ∈ L2([0, 1]), it follows that f is absolutely continuous,
and moreover, f ′(x) = a(x) almost everywhere and f(0) = 0.

To see how the inner product is realized, we use the fact that af = f ′ and ag = g′. Then,
the RKHS inner product is

〈f, g〉HkB =

∫ 1

0
af (t) ag(t) dt =

∫ 1

0
f ′(t) g′(t) dt.

Thus, the RKHS norm of f is given by ‖f‖2HkB =
∫ 1
0 |f

′(t)|2 dt.

Putting these observations together, the RKHS associated with kB is the Sobolev space:{
f : f(0) = 0, f is absolutely continuous, f ′ ∈ L2([0, 1])

}
.

Note that functions in this Sobolev space vanish only at x = 0. One can easily verify that the
classical Sobolev space H1

0 ([0, 1]), whose functions vanish at both x = 0 and x = 1, is the
RKHS generated by the Brownian bridge kernel

k(x, y) = min(x, y)− xy.

6.2 Bandlimited functions

Consider bandlimited functions given by

H = {f : R 7→ R : f̂(ω) = 0 for |ω| ≥ 1/2}

equipped with the L2 inner product 〈f, g〉H =
∫
R f(x)g(x) dx. Then, we claim that H is a

RKHS with the kernel given by the sinc function: k(x, y) = sinπ(x−y)
π(x−y) = sinc(x− y).

One can easily verify that H is indeed a Hilbert space and here, we only verify the repro-
ducing property. Note that

〈f, k(x, ·)〉H =

∫
f(y)sinc(x− y) dy = (f ∗ sinc)(x). (9)

11



To evaluate this convolution, we leverage the Fourier transform, which simplifies convolution
operations by transforming them into multiplications in the frequency domain. The Fourier
transform of the sinc function is well-known:

ŝinc(ω) = rect (ω) =

{
0, if |ω| ≥ 1/2

1, if |ω| < 1/2

Since f̂(ω) = 0 for any |ω| > 1/2, for any ω ∈ R it holds: f̂(ω)ŝinc(ω) = f̂(ω). Applying the
inverse Fourier transform, we get

〈f, k(x, ·)〉H = F−1[f̂ · ŝinc](x) = f(x),

which verifies the reproducing property.

6.3 Sobolev spaces in torus

The periodic (fractional) Sobolev space Hs(T) is defined over the torus T = [0, 1). Here, s ≥ 0
is the smoothness parameter that controls the regularity of the functions in the space. Given a
f : T→ C, let its Fourier series is given by

f(x) =
∑
n∈Z

f̂(n)e2πinx.

The Sobolev norm can be defined using the Fourier transform as follows

‖f‖2Hs =
∑
n∈Z

(1 + |n|2)s|f̂(n)|2.

The term (1+|n|2)s acts as a weight that increases with |n|, penalizing higher-frequency compo-
nents more heavily as s grows. When s is positive integer, f (s)(x) =

∑
n∈Z(2πin)sf̂(n)e2πinx

and its L2 norm satisfies
∫
T |f

(s)(x)|2 dx �
∑

n∈Z n
2sf̂(n)2, where � holds because (2π)2s is

constant. Thus, we have

‖f‖2Hs �
s∑

n=0

∫
T
|f (s)(x)|2 dx,

where f (0) = f . Thus, Hs(T) consists of functions whose derivatives up to order s have finite
L2 norm, reflecting their smoothness properties.

Lemma 6.1. Consider a periodic kernel k : T×T 7→ R given by k(x, x′) = κ(x−x′). Suppose
the Fourier series of κ decay as κ̂(n) � (1 + |n|2)−s for some s > 1/2. Then,Hk is equivalent
to Hs(T).

The condition s > 1/2 ensures that
∑

n∈Z(1+ |n|)s <∞, which is necessary for the kernel
to be a well-defined PSD kernel.

Let en(x) = e2πinx be the Fourier basis functions and the underlying distribution to be
µ = Unif(T). Then, the kernel has the following expansion:

k(x, x′) = κ(x− x′) =
∑
n∈Z

κ̂(n)e2πin(x−y) =
∑
n∈Z

κ̂(n)en(x)en(x′),
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suggesting that the eigenfunctions of periodic kernels are the Fourier basis and {κ̂(n)}n∈Z are
the corresponding eigenvalues. By the spectral representation of RKHS, we have

‖f‖2Hk =
∑
n∈Z

µ−1n 〈f, en〉L2(T) =
∑
n∈Z

f̂(n)2

κ̂(n)
. (10)

Plugging κ̂(n) � (1 + |n|2)−s, we have

‖f‖2Hk �
∑
n∈Z

(1 + |n|2)sf̂(n)2 � ‖f‖2Hs .

This establishes the equivalence.

6.4 Sobolev spaces in Rd

For Sobolev spaces Hs(Rd), which consist of functions whose weak derivatives up to order
s are in L2(Rd), this property depends on the parameters s (the smoothness order) and d (the
dimension). The Sobolev norm is typically defined as:

‖f‖2Hs =

∫
Rd

(1 + ‖ω‖2)s|f̂(ω)|2 dω,

where f̂ is the Fourier transform of f . The key insight comes from the Sobolev embedding
theorem: when s > d

2 , functions in Hs(Rd) are continuous. This is because the embedding
Hs(Rd) ↪→ C0(Rd) (the space of continuous functions vanishing at infinity) holds, and there
exists a constant C such that:

‖f‖∞ = sup
x∈Rd

|f(x)| ≤ C‖f‖Hs .

Since |f(x)| ≤ ‖f‖∞, it follows that:

|δx(f)| = |f(x)| ≤ C‖f‖Hs ,

proving that δx is a continuous linear functional on Hs(Rd). Thus, when s > d
2 , Hs(Rd) is

an RKHS. Moreover, the corresponding kernel is Matérn Kernels( widely used in applications
like Gaussian processes and machine learning), defined as:

kν,d(x, y) = κν,d(x− y) =
21−ν

Γ(ν)

(√
2ν
‖x− y‖

ρ

)ν
Kν

(√
2ν
‖x− y‖

ρ

)
,

where:

• ν > 0 is the smoothness parameter,

• ρ > 0 is the length scale,

• Kν is the modified Bessel function of the second kind,

• Γ is the Gamma function.

To justify that the RKHS generated by the Matérn kernel is preciselyHs(Rd), we can follow
an argument based on the feature map perspective.
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Lemma 6.2. Let k(x, y) := κ(x− y) be a translation invariant kernel. Then, we have

‖f‖2Hk =

∫
Rd

f̂(ω)2

κ̂(ω)
dω. (11)

Proof. By the inverse Fourier transform, we have

κ(x− y) =

∫
Rd
κ̂(ω)e2πiω

>(x−y) dω = 〈ϕ(·;x), ϕ(·; y)〉L2(Rd),

where ϕ(ω;x) := κ̂1/2(ω)e2πiω
>x ∈ L2(Rd). Therefore, by Theorem 4.8, the RKHS functions

must admit the following representation

f(x) =

∫
Rd
af (ω)κ̂1/2(ω)e2πiω

>x dω,

for some af ∈ L2(Rd). By the inverse Fourier transform, we have

af (ω) = f̂(ω)κ̂−1/2(ω) a.e.

Thus, the RKHS norm of f can be written as

‖f‖2Hk =

∫
Rd
af (ω)2 dω =

∫
Rd

f̂(ω)2

κ(ω)
dω.

For the Fourier transform of Matérn kernel, up to constants, it is approximately:

κ̂ν,d(ω) �
(
1 + ‖ω‖2

)−(ν+ d
2
)
.

Thus, by (11), it holds that

‖f‖2Hkν,d �
∫
Rd

(1 + ‖ω‖2)ν+d/2|f̂(ω)|2 dω = ‖f‖2
Hν+d/2 .

This establishes that the RKHS generated by Matérn kernel is exactly the Sobolev space.
Notably, in one dimension (d = 1), for H1(R) (s = 1), the reproducing kernel is the

exponential kernel

k1,1(x, y) = κ1,1(x− y) =
1

2
e−|x−y|,

whose Fourier transform is given by κ̂1,1(ω) � 1/(1 + |ω|2).

7 Proofs

7.1 Proof of Theorem 2.4

We show that (3) indeed defines a valid inner product. First,

〈f, g〉H0 =
n∑
i=1

αig(xi) =
n∑
j=1

βjf(x′j).
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It is implied that that the inner product is independent of the specific representation of f and g.
The triangular inequality is easy to verify. Next, we show that ‖f‖H0 = 0 if and only if f = 0.
If there exist x0 ∈ X such that f(x0) 6= 0. Assume f(x) =

∑m
j=1 ajk(xj , ·) and consider

0 ≤ ‖λf + f(x0)k(·, x0)‖2H0 = λ2‖f‖2H0 + 2λf2(x0) + f2(x0)k(x0, x0).

Taking λ→ −∞, the RHS will be negative and this causes contradictory.
What remains is to show that the convergence of Cauchy sequence 1. We refer to Link for a

complete proof.
What remains is to show that k is a reproducing kernel of Hk. For f ∈ H0, we can write

f(x) =
∑m

j=1 ajk(·, xj). By definition,

〈f, k(·, x)〉Hk =
m∑
j=1

ajk(x, xj) = f(x).

For any f ∈ Hk, let limn→∞ fn(x) = f(x). Then,

〈f, k(·, x)〉Hk = lim
n→∞

〈fn, k(·, x)〉Hk = lim
n→∞

fn(x) = f(x).

7.2 Proof of Lemma 2.7

Proof. First, by Moore-Aronsajn theorem, there exists a RKHS with k being the reproducing
kernel. Assume H1 and H2 be two RKHSs with k being the reproducing kernel. First, by
definition, k(·, x) ∈ H1 for any x ∈ X . Hence, H0 ⊂ H1. Moreover, H0 is dense in H1 since
if there exists f ∈ H such that f ⊥ H0, we must have

〈f, k(·, x)〉H1 = f(x) = 0 ∀x ∈ X .

For f =
∑m

j=1 ajk(·, xj),

‖f‖2H1
=

〈
n∑
i

aik(·, xi),
m∑
j=1

ajk(·, xj)

〉
H1

=

n∑
i,j=1

aiaj〈k(·, xi), k(·, xj)〉H1

(i)
=

n∑
i,j=1

aiajk(xi, xj) = ‖f‖2H0 .

where (i) follows from the reproducing property. Hence, ‖f‖H1 = ‖f‖H0 for f ∈ H0. By the
same argument, the same results hold forH2. For any f ∈ H1, there must exits (fn) ⊂ H0 such
that f(x) = limn→∞ fn(x). This implies that f ∈ H2. Similarly,H1 andH2 contains the same
functions. What remains is to check that the two norms coincide, which results from

‖f‖H1 = lim
n→∞

‖fn‖H1 = lim
n→∞

‖fn‖H0 = lim
n→∞

‖fn‖H2 = ‖f‖H2 .

1You can skip the verification of completeness.

15

http://www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf


7.3 Proof of Proposition 4.2

We will need the following lemma, which establishes the weak lower semicontinuity of the norm
in Hilbert spaces:

Lemma 7.1. LetH be a Hilbert space, and let {xn} be a sequence inH such that xn converges
weakly to x. Then, ‖x‖ ≤ lim infn→∞ ‖xn‖.

Proof. xn ⇀ x implies 〈xn, y〉 → 〈x, y〉 for every y. In particular, setting y = x gives
〈xn, x〉 → 〈x, x〉 = ‖x‖2. By the Cauchy–Schwarz inequality, 〈xn, x〉 ≤ ‖xn‖‖x‖. Taking
the limit inferior as n→∞ on both sides yields

‖x‖2 = lim
n→∞

〈xn, x〉 = lim inf
n→∞

〈xn, x〉 ≤ lim inf
n→∞

(
‖xn‖‖x‖

)
= ‖x‖ lim inf

n→∞
‖xn‖.

If ‖x‖ > 0, dividing by ‖x‖ completes the argument:

‖x‖ ≤ lim inf
n→∞

‖xn‖.

If ‖x‖ = 0, the inequality is trivially satisfied.

Proof of Theorem 4.2. Step 1: Extend θ(m) to `2. Since each θ(m) ∈ Rm has a dimension that
increases with m, we define an extended sequence θ̃(m) ∈ `2 by padding θ(m) with zeros:

θ̃(m) = (θ
(m)
1 , θ

(m)
2 , . . . , θ(m)

m , 0, 0, . . . ).

The `2 norm of this sequence is:

‖θ̃(m)‖`2 =

√√√√ ∞∑
j=1

|θ̃(m)
j |2 =

√√√√ m∑
j=1

|θ(m)
j |2 = ‖θ(m)‖2 ≤ B.

Thus, {θ̃(m)}∞m=1 is a sequence in `2, uniformly bounded by B.
Step 2: Extract a weakly convergent subsequence. The Banach-Alaoglu theorem ensures

that any bounded sequence in `2 has a weakly convergent subsequence. Therefore, there exists
a subsequence {θ̃(mk)}∞k=1 and some θ∗ ∈ `2 such that:

θ̃(mk) ⇀ θ∗ weakly in `2. (12)

Then by Lemma 7.1, we have ‖θ∗‖`2 ≤ lim infk→∞ ‖θ̃(mk)‖`2 ≤ B.
Step 3: Verifying the representation. First,

∑∞
j=1 ϕj(x)θ∗j is well defined for all x ∈ X ,

∞∑
j=1

|ϕj(x)θ∗j | ≤

 ∞∑
j=1

|ϕj(x)|2
1/2 ∞∑

j=1

|θ∗j |2
1/2

<∞,

by Cauchy-Schwarz inequality. Moreover,

f∗(x) = lim
m→∞

〈ϕ(x), θ̃(m)〉 = lim
k→∞
〈ϕ(x), θ̃(mk)〉 = 〈ϕ(x), θ∗〉,

where the last step uses (12) and the definition of weak convergence.
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