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Abstract

Kernel Ridge Regression (KRR) serves as a cornerstone kernel method, providing a
compelling and approachable scenario for studying and understanding generalization. This
lecture note delves into the technical details of analyzing KRR, underscoring its significance
in illuminating fundamental concepts within learning theory. We examine two distinct ap-
proaches to derive generalization bounds for KRR:

1. Empirical process: This leverages uniform concentration inequalities to establish
bounds on the generalization error, offering a broad and versatile perspective appli-
cable to broader nonlinear models such as neural networks.

2. Integral operator: This approach capitalizes on KRR’s explicit closed-form solu-
tion, employing integral operator techniques to obtain precise generalization bounds.
These techniques are also applicable for analyzing properties of linear methods be-
yond traditional generalization.

By exploring these complementary methods, we illustrate how KRR bridges general
theoretical tools and specialized algorithmic insights, making it an exemplary subject for
learning theory analysis.

1 Preliminary

Let k : X×X 7→ R be a kernel and Hk be the corresponding RKHS. The kernel ridge regression
(KRR) using the RKHS Hk as its hypothesis space and fitting data using the following strategy:

f̂λ = argmin
f∈Hk

Jλ(f) :=
1

n

n∑
i=1

(f(xi)− yi)
2 + λ∥f∥qHk

, (1)

where q ≥ 1. We shall focus on the classical case where q = 2. However, one may wonder how
the choice of q, such as q = 1 or other values, affects the conclusions on the optimality of KRR.

We make the following assumptions to simplify our derivation.

Assumption 1.1. The kernel satisfies supx∈X k(x, x) ≤ 1.

Assumption 1.2. yi = f∗(xi) + ξi where f∗ ∈ Hk satisfies ∥f∗∥Hk
≥ 1. Suppose x1, . . . , xn

are iid samples drawn from ρ ∈ P(X ) and the noise ξi is independent of xi with E[ξi] = 0 and
|ξi| ≤ σ ≤ 1.

Question 1. Note that assuming the well-specified case where f∗ ∈ H is a natural starting
point for theoretical analysis. However, in practice, it is quite possible that f∗ /∈ H. How can
we address such a scenario?
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2 Derivation via Empirical Process

Theorem 2.1. Under Assumption 1.1 and 1.2, with probability at least 1 − δ, the estimator
obtained from KRR satisfies

∥f̂λ − f∗∥2L2(ρ) ≲

√
log(1/δ) + 1√

n
∥f∗∥2Hk

,

if we set λ =
3
(
1+
√

2 log(2/δ)
)

√
n

σ.

Without making any additional assumption, the above bound is tight. However, as we will
show later, this bound becomse loose when extra structures are available:

• Target function. f∗ may lie in a function space smaller than Hk, i.e., it has extra smooth-
ness beyond Hk.

• Model. The eigenvalues of k may decay very fast. Faster decay corresponds to a smaller
model, which should have led to a faster rate for the estimation error.

2.1 Proof

We shall state a few lemmas related to RKHSs.

Lemma 2.2. For any f ∈ Hk and x ∈ X , |f(x)| ≤ ∥f∥Hk

√
k(x, x).

Proof. By the reproducing property, we have

|f(x)| = | ⟨f, k(x, ·)⟩Hk
| ≤ ∥f∥Hk

∥k(x, ·)∥Hk
= ∥f∥Hk

√
k(x, x).

Lemma 2.3. Let FQ = {f : ∥f∥Hk
≤ Q}. Then, we have R̂adn(FQ) ≤ Q

√
1
n2

∑n
i=1 k(xi, xi).

Proof. By the definition of the empirical Rademacher complexity, we have

R̂adn(FQ) = Eϵ

[
sup

∥f∥Hk
≤Q

1

n

n∑
i=1

ϵif(xi)

]

= Eϵ

 sup
∥f∥Hk

≤Q

〈
f,

1

n

n∑
i=1

ϵik(·, xi)

〉
Hk


≤ Eϵ

 sup
∥f∥Hk

≤Q
∥f∥Hk

∥∥∥∥∥ 1n
n∑
i=1

ϵik(·, xi)

∥∥∥∥∥
Hk

 ≤ QEϵ

∥∥∥∥∥ 1n
n∑
i=1

ϵik(·, xi)

∥∥∥∥∥
Hk

,
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where the second equality follows from the reproducing property of the kernel and the first
inequality derives from Cauchy-Schwarz inequality. By Jensen’s inequality, we then obtain

Eϵ

∥∥∥∥∥ 1n
n∑
i=1

ϵik(·, xi)

∥∥∥∥∥
Hk

≤

√√√√Eϵ

∥∥∥∥∥ 1n
n∑
i=1

ϵik(·, xi)

∥∥∥∥∥
2

Hk

=

√√√√Eϵ

〈
1

n

n∑
i=1

ϵik(·, xi),
1

n

n∑
i=1

ϵik(·, xi)

〉
Hk

=

√√√√ 1

n2
Eϵ

n∑
i,j=1

ϵiϵjk(xi, xj) =

√√√√ 1

n2

n∑
i=1

k(xi, xi).

Combining the above estimation, we complete the proof.

2.1.1 Step 1: Comparison inequality

In order to extract some basic properties of f̂λ, we can compare it with certain reference solu-
tions, whose properties are well understood. For instance, a typical choice for such a reference
solution is the ground truth f∗ , though it is not strictly necessary.

Since f̂λ minimizes Jλ(·) over Hk, and f∗ ∈ Hk, we have

Jλ(f̂λ) ≤ Jλ(f
∗). (2)

Thus, we have

1

n

n∑
i=1

(f̂λ(xi)− f∗(xi)− ξi)
2 + λ∥f̂λ∥2Hk

≤ 0 + λ∥f∗∥2Hk
,

which leads to

1

n

n∑
i=1

(f̂λ(xi)− f∗(xi))
2 ≤ 2

n

n∑
i=1

ξi(f̂λ(xi)− f∗(xi)) + λ(∥f∗∥2Hk
− ∥f̂λ∥2Hk

). (3)

We next show that we can obtain an upper bound of empirical risk and the the norm of f̂λ by
utilizing this comparison inequality.

Question. In the case where f∗ ̸∈ Hk, how should the reference solution be chosen? Since f∗

cannot be selected as the reference solution in this scenario, what alternative approach should
be taken?

2.1.2 Step 2: Controlling the noise interaction term

We next to deal with the noise term 1
n

∑n
i=1 ξi(f̂λ(xi) − f∗(xi)) in (3). It follows from the

reproducing property that f̂λ(xi)− f∗(xi) = ⟨f̂λ − f∗, k(·, xi)⟩Hk
and thus, we have

1

n

n∑
i=1

ξi(f̂λ(xi)− f∗(xi)) =

〈
f̂λ − f∗,

1

n

n∑
i=1

ξik(·, xi)

〉
Hk

.
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Applying the Cauchy-Schwarz inequality, we get:∣∣∣∣∣ 1n
n∑
i=1

ξi(f̂λ(xi)− f∗(xi))

∣∣∣∣∣ ≤ ∥f̂λ − f∗∥Hk

∥∥∥∥∥ 1n
n∑
i=1

ξik(·, xi)

∥∥∥∥∥
Hk

. (4)

To bound the second term on the right-hand side, we then need the following lemma.

Lemma 2.4. Let k : X × X → R be a PSD kernel satisfying supx∈X k(x, x) ≤ 1. Let {ξi}ni=1

be i.i.d. random variables with mean zero and |ξi| ≤ σ. Given fixed points x1, . . . , xn ∈ X , for
any δ ∈ (0, 1), with probability at least 1− δ, the following holds:∥∥∥∥∥ 1n

n∑
i=1

ξik(xi, ·)

∥∥∥∥∥
Hk

≤
1 +

√
2 log(1/δ)√
n

σ.

It is worth noting that one can apply certain concentration inequalities for Hilbert-valued ran-
dom vectors or the Hanson–Wright inequality (Theorem 3.11) to obtain a similar upper bound
without assuming bounded noise. Nevertheless, we provide an elementary, self-contained proof
here that leverages the special structure of RKHS.

Proof. We aim to bound the RKHS norm of the random element 1
n

∑n
i=1 ξik(xi, ·) in Hk. Using

the properties of the RKHS, the square of RKHS norm is:∥∥∥∥∥ 1n
n∑
i=1

ξik(xi, ·)

∥∥∥∥∥
2

Hk

=

〈
1

n

n∑
i=1

ξik(xi, ·),
1

n

n∑
j=1

ξjk(xj , ·)

〉
Hk

=
1

n2

n∑
i,j=1

ξiξjk(xi, xj),

where the last equation is due to the reproducing property. This expresses the square of RKHS
norm as a quadratic form in the random variables ξi.

Next, we compute the expectation of the squared norm:

E

∥∥∥∥∥ 1n
n∑
i=1

ξik(xi, ·)

∥∥∥∥∥
2

Hk

 =
1

n2

n∑
i,j=1

E[ξiξj ]k(xi, xj) =
1

n2

n∑
i=1

E[ξ2i ]k(xi, xi),

since {ξi} are independent and E[ξi] = 0. Given |ξi| ≤ σ, we have E[ξ2i ] ≤ σ2. Additionally,
since k(xi, xi) ≤ 1, it follows that

1

n2

n∑
i=1

E[ξ2i ]k(xi, xi) ≤
1

n2

n∑
i=1

σ2 · 1 =
σ2

n
.

Applying Jensen’s inequality, we get:

E

∥∥∥∥∥ 1n
n∑
i=1

ξik(xi, ·)

∥∥∥∥∥
Hk

 ≤

√√√√√E

∥∥∥∥∥ 1n
n∑
i=1

ξik(xi, ·)

∥∥∥∥∥
2

Hk

 ≤ σ√
n
.

This gives an upper bound on the expected norm.

4



To obtain a high-probability bound, define

O(ξ1, . . . , ξn) =

∥∥∥∥∥ 1n
n∑
i=1

ξik(xi, ·)

∥∥∥∥∥
Hk

.

To apply McDiarmid’s inequality, we should bound the difference in f when one variable
changes. Let ξ and ξ(i) differ only in the i-th component. Then

|O(ξ)−O(ξ(i))| ≤ 1

n
∥(ξi − ξ′i)k(xi, ·)∥Hk

.

Since ∥k(xi, ·)∥Hk
=
√
k(xi, xi) ≤ 1 and |ξi − ξ′i| ≤ 2σ, we have

|O(ξ)−O(ξ(i))| ≤ 1

n
· 2σ · 1 =

2σ

n
.

The bounded difference condition holds with ci =
2σ
n . By McDiarmid’s inequality,

P (O ≥ EO + t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
= exp

(
− nt2

2σ2

)
.

To ensure this probability is at most δ, set

exp

(
− nt2

2σ2

)
≤ δ =⇒ t ≥

√
2 log(1/δ)σ√

n
.

Combining with EO ≤ σ√
n

, with probability at least 1− δ:

O ≤ σ√
n
+

√
2 log(1/δ)σ√

n
=

1 +
√

2 log(1/δ)√
n

σ.

This completes the proof.

Applying Lemma 2.4, with probability at least 1− δ/2, we have∥∥∥∥∥ 1n
n∑
i=1

ξik(·, xi)

∥∥∥∥∥
Hk

≤ λn,

where λn =
1+
√

2 log(2/δ)√
n

σ. Thus, with probability at least 1− δ/2:

1

n

n∑
i=1

ξi(f̂λ(xi)− f∗(xi)) ≤ λn∥f̂λ − f∗∥Hk
. (5)

2.1.3 Step 3: Controlling the training error and the norm of f̂λ

Combining (3) and (5), we have

1

n

n∑
i=1

(f̂λ(xi)− f∗(xi))
2 ≤ 2λn

∥∥∥f∗ − f̂λ

∥∥∥
Hk

+ λ

(
∥f∗∥2Hk

−
∥∥∥f̂λ∥∥∥2

Hk

)
(6)

Let λ ≥ 3λn. We know from (6) that the following two are satisfied with probability at least
1− δ/2:
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• The norm of the estimator is bounded by

0 ≤ 2

3
λ

(
∥f∗∥Hk

+
∥∥∥f̂λ∥∥∥

Hk

)
+ λ

(
∥f∗∥2Hk

−
∥∥∥f̂λ∥∥∥2

Hk

)
=⇒

(∥∥∥f̂λ∥∥∥
Hk

− 1

3

)2

≤ ∥f∗∥2Hk
+

2

3
∥f∗∥Hk

+
1

9

=⇒ ∥f̂λ∥Hk
≤ 2∥f∗∥Hk

.

(7)

where we have used the assumption ∥f∗∥Hk
≥ 1.

• The training error is bounded by

1

n

n∑
i=1

(f̂λ(xi)− f∗(xi))
2 ≤ 2

3
λ

(
∥f∗∥Hk

+
∥∥∥f̂λ∥∥∥

Hk

)
+ λ

(
∥f∗∥2Hk

−
∥∥∥f̂λ∥∥∥2

Hk

)
≤ 2λ ∥f∗∥Hk

+ λ ∥f∗∥2Hk

≤ 3λ ∥f∗∥2Hk
.

(8)

2.1.4 Step 4: Estimating the Rademacher complexity

Define the shift class GQ by

GQ = {x 7→ f(x)− f∗(x) : f ∈ FQ},

and let
LQ = {x 7→ ϕ(g(x)) : g ∈ GQ} = {x 7→ (f(x)− f∗(x))2 : f ∈ FQ}.

where ϕ(t) = t2. The following lemma provides a bound on R̂ad(LQ).

Lemma 2.5. Suppose Assumption 1.1 holds. Then, we have R̂adn(LQ) ≤ 2Q√
n
(Q+ ∥f∗∥Hk

) .

Proof. For any g ∈ GQ, we see that

|g(x)| = |f(x)− f∗(x)|
≤ |f(x)|+ |f∗(x)|
= |⟨f, k(·, x)⟩Hk

|+ |⟨f∗, k(·, x)⟩Hk
|

≤
√
k(x, x) [∥f∥Hk

+ ∥f∗∥Hk
] ≤ Q+ ∥f∗∥Hk

.

Since ϕ(t) is 2M-Lipschitz on the interval [−M,M ], then by the contraction lemma, we have

R̂adn(LQ) = R̂adn(ϕ ◦ GQ)

≤ 2(Q+ ∥f∗∥Hk
)R̂adn(GQ)

≤ 2(Q+ ∥f∗∥Hk
)R̂adn(FQ)

≤ 2Q√
n
(Q+ ∥f∗∥Hk

),

where the equality R̂adn(GQ) = R̂adn(FQ) follows from the shift invariance of the Rademacher
complexity, and the last inequality uses Lemma 2.3 in conjunction with Assumption 1.1. This
completes the proof.
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2.1.5 Step 5: Putting all together

According to (7), we can set Q = 2∥f∗∥Hk
. Conditional on ∥f̂λ∥Hk

≤ Q, and with probability
at least 1− δ/2, we have that

Ex[(f̂λ(x)− f∗(x))2] ≤ 1

n

n∑
i=1

(f̂λ(xi)− f∗(xi))
2 + 2R̂adn(LQ) + 2B

√
2 log(8/δ)

n
.

where B = supx∈X (f̂λ(x)− f∗(x))2 ≤ (Q+ ∥f∗∥Hk
)2. Combining this with (8) and Lemma

2.5, and setting

λ = 3λn =
3
(
1 +

√
2 log(2/δ)

)
√
n

σ,

we finally get

Ex[(f̂λ(x)− f∗(x))2] ≲ λ∥f∗∥2Hk
+

∥f∗∥2Hk√
n

+ ∥f∗∥2Hk

√
log(1/δ)

n

≍
√

log(1/δ) + 1√
n

∥f∗∥2Hk
.

with probability at least 1− δ.

2.2 Remarks

The choice of q. If going through the proof, we can see that the choice of q is not essential for
deriving the generalization bound; a similar bound can be obtained for q = 1. In practice, the
choice q = 2 is primarily motivated by the availability of a closed-form solution.

Handle the case where f∗ ̸∈ Hk. In certain scenarios—especially within computational
mathematics—one may encounter cases where the true target function f∗ ̸∈ Hk. For exam-
ple, if f∗ ∈ W r,2([0, 1]d) and r < d

2 , then W k,2 is not an RKHS, and the standard KRR analysis
may not directly apply. To address this, one can select f∗

ϵ ∈ Hk such that ∥f∗
ϵ − f∗∥L2(ρ) ≤ ϵ.

This yields

∥f̂λ − f∗∥L2(ρ) ≤ ∥f̂λ − f∗
ϵ ∥L2(ρ) + ∥f∗

ϵ − f∗∥L2(ρ) ≤ ∥f̂λ − f∗
ϵ ∥L2(ρ) + ϵ.

The term ∥f̂λ − fϵ∥L2(ρ) can be bounded using an approach similar to above analysis but with
fϵ as the new target function. However, q∗(ϵ) := ∥fϵ∥Hk

grows with ϵ. Roughly speaking, we
may get somethimg like

∥f̂λ − f∗∥L2(ρ) ≤
∥f∗
ϵ ∥√
n

+ ϵ =
q∗(ϵ)√

n
+ ϵ.

Then, we can obtain the rate is

∥f̂λ − f∗∥L2(ρ) ≤ inf
ϵ

(
q∗(ϵ)√

n
+ ϵ

)
.
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Sharper bounds via localization. The reason that above derivation stems from that when
applying the uniform bound, we consider something like

∥f̂λ − f∗∥ρ ≤ sup
f∈HQ

k

∥f − f∗∥ρ.

However, argubaly, f̂λ is close to f∗, as the final bound tells us ∥f̂λ − f∗∥ρ = O(n−1/2).
Therefore, we should be above to obtain a tighter bound by using this information. Specifically,
define the localized hypothesis:

Hr,Q = {f : ∥f∥Hk
≤ Q, ∥f − f∗∥ρ ≤ r}.

• We first apply the above derivation to H1,Q, then obtain

f̂λ ∈ Hϵn,1,Q, with ϵn,1 =
1√
n
.

• We then apply uniform bound over a smaller hypoheis Hϵ1n,Q
to obtain an error bound

ϵn,2, with ϵn,2 ≤ ϵn,1.

• Repeat the above process until the estimate does not improve anymore.

The idea of localization to obtaining sharper bounds is very intuitive. However, rigorously
formalizing this intuition is nontrivial and beyond our scope. For further details, we refer readers
to [Wainwright, 2019, Section 13–14].

3 Derivation via Integral Operator

Express KRR solution using operator. Consider the integral operator T : Hk 7→ Hk given
by

T f =

∫
X
k(·, x)f(x) dρ(x) =

∫
X
k(·, x)⟨k(x, ·), f⟩Hk

dρ(x) = Ex[k(x, ·)⊗ k(x, ·)]f

Then, its empirical version is given by

T̂ f =
1

n

n∑
i=1

k(·, xi)f(xi) =

(
1

n

n∑
i=1

k(·, xi)⊗ k(·, xi)

)
f.

Here, the outer product is defined as follows: Given two Hilbert spaces H1,H2 and v ∈ H1,
u ∈ H2, the operator u⊗ v : H1 → H2 is defined by (u⊗ v)f = ⟨v, f⟩H1u for any f ∈ H1.

Thus, T : Hk 7→ Hk and its empirical T̂ : Hk 7→ Hk are well-defined. Then, using these
operators, the objective of KRR can be rewritten as

Jλ(f) =
1

n

n∑
i=1

(⟨f, k(xi, ·)⟩Hk
− yi)

2 + λ∥f∥2Hk

=
〈
f, (T̂ + λ)f

〉
Hk

− 2

〈
f,

1

n

n∑
i=1

yik(xi, ·)

〉
Hk

+
1

n

n∑
i=1

y2i .
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A simple variation calculus gives

f̂λ = (T̂ + λ)−1ĝ, ĝ =
1

n

n∑
i=1

yik(xi, ·). (9)

Note that

ĝ =
1

n

n∑
i=1

f∗(xi)k(xi, ·) +
1

n

n∑
i=1

ξik(xi, ·)

=
1

n

n∑
i=1

k(xi, ·)⟨k(xi, ·), f∗⟩Hk
+

1

n

n∑
i=1

ξik(xi, ·)

= T̂ f∗ +
1

n

n∑
i=1

ξik(xi, ·).

Plugging it into (9) gives

f̂λ = (T̂ + λ)−1T̂ f∗︸ ︷︷ ︸
bias

+
1

n

n∑
i=1

ξi(T̂ + λ)−1k(xi, ·)︸ ︷︷ ︸
variance

The integral operator approach leverages the above closed-form solution to derive sharp er-
ror estimates; for details, we refer interested readers to [Fischer and Steinwart, 2020, Zhang et al., 2023].
However, because this approach relies heavily on operator calculus and remains somewhat ab-
stract, we instead adopt equivalent methods that naturally reduce the problem to finite-dimensional
linear regression, offering greater intuition and ease of understanding.

Translating KRR to a (infinitely-dimensional) linear ridge regression. Suppose that Mer-
cer’s theorem holds, i.e., the kernel admits the following spectral decomposition

k(x, x′) =

p∑
j=1

λjej(x)ej(x
′),

where p = ∞. One can treat p as a finite integer without losing any intuition (even rigor). Let
ℓ2p be Rp equipped with the ℓ2 norm. Then, consider the feature map

φ(x) = (
√
λ1e1(x), . . . ,

√
λpep(x)) ∈ ℓ2p, (10)

under which
Σ = Ex[φ(x)φ(x)⊤] = diag(λ1, . . . , λp).

We shall denote its empirical version as

Σ̂ =
1

n

n∑
i=1

φ(xi)φ(xi)
⊤.

By our previous theory, KRR is equivalent to perform linear regression for fθ = φ(x)⊤θ.
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Assumption 3.1. Let f∗(x) = φ(x)⊤θ∗ with ∥θ∗∥ ≤ 1.

This assumption is equivalent to assume ∥f∗∥Hk
≤ 1. Then, the KRR is equivalent to linear

ridge regression

θ̂λ = argmin
θ∈ℓ2p

(
1

n

n∑
i=1

(φ(xi)
⊤θ − yi) + λ∥θ∥2

)
. (11)

It is easy to obtain the close-form solution of ridge regression:

θ̂λ = (Σ̂ + λ)−1Σ̂θ∗ + (Σ̂ + λ)−1 1

n
Φ⊤ξ,

Note that for any θ ∈ ℓ2p, E(fθ) = ∥fθ−f∗∥L2(µ) = ∥θ−θ∗∥Σ. Thus, by the triangle inequality,
we have the following bias-variance decomposition:

E(fθ̂λ) ≤
∥∥∥(Σ̂ + λ)−1Σ̂θ∗ − θ∗

∥∥∥
Σ︸ ︷︷ ︸

B(λ)

+

∥∥∥∥(Σ̂ + λ)−1 1

n
Φ⊤ξ

∥∥∥∥
Σ︸ ︷︷ ︸

V (λ)

,

for which we shall estimate the two terms separately.

Remark 3.2. We remark that all of the following derivations, in principle, hold for any feature
map φ : X → H satisfying k(x, x′) = ⟨φ(x), φ(x′)⟩H. In what follows, we consider the specific
feature map given in (10), as it makes all computations explicit, particularly the following max
degree of freedom (DoF).

To establish a high-probability bound, we first introduce the following degree-of-freedom
(DoF):

Definition 3.3 (Max-DoF). Let F (λ) = supx∈X ∥(Σ + λ)−1/2φ(x)∥2.

Due to the choice of the feature map φ in (10), we have

F (λ) = sup
x∈X

∞∑
j=1

λj
λj + λ

e2j (x).

It follows that

F (λ) = sup
x∈X

∞∑
j=1

λj
λj + λ

e2j (x) ≥
∫ ∞∑

j=1

λj
λj + λ

e2j (x) dµ(x) =
∞∑
j=1

λj
λj + λ

=: N(λ),

implying that F (λ) lower bounds the classical average DoF N(λ) = tr
[
(Σ + λ)−1Σ

]
,

Lemma 3.4. If the eigenfunctions are uniformly bounded, i.e., supj ∥ej∥∞ ≤ C, then

N(λ) ≤ F (λ) ≤ C N(λ).

10



The proof is straightforward and implies that the max DoF is equivalent to the average DoF
up to a multiplicative constant. For periodic kernels—whose eigenfunctions are Fourier basis
functions—the condition holds. However, for dot-product kernels k(x, x′) = κ(x⊤x′) with
x, x′ ∈ Sd−1, the eigenfunctions are spherical harmonics, which are not uniformly bounded.
Essentially, we expect the max DoF to behave similarly to the average DoF when the eigenfunc-
tions are reasonably well-behaved. Uniform boundedness is only one sufficient condition; alter-
native conditions, such as the embedding property introduced in [Fischer and Steinwart, 2020],
can also be used to ensure a similar behavior. Nonetheless, the reader may treat these quantities
as essentially equivalent without overly concerning themselves with the precise conditions.

Theorem 3.5. For any δ ∈ (0, 1), let

λ ≥ λn,δ := inf {λ : n ≳ F (λ)max(1, log(F (λ)/δ))} .

Then, it holds w.p. at least 1− δ that

∥f̂λ − f∗∥2L2(ρ) ≲ λ+
Cδσ

2

n
F (λ),

where Cδ = 1 + log(1/δ).

When λj ≍ j−β with β > 1 and the eigenfunctions are uniformly bounded, we have
F (λ) ≤ λ−1/β . Then, we have

inf
λ

(
λ+

Cδσ
2

n
λ−1/β

)
=

(
Cδσ

2

βn

) β
β+1

≍ n
− β

β+1 .

Similar to the bound of training error, we observe that the test error also converges to zero at a
rate of O(n−β/(1+β)). As β approaches infinity, this rate improves to the fast rate. Conversely,
as β approaches 1 from above, the rate reduces to O(n−1/2), which matches the rate obtained
through the above coarse-grained application of the empirical process technique.

Remark 3.6. Consider the noiseless regime where σ = 0. The generalization error bound
simplifies to

∥f̂λ − f∗∥2L2(ρ) ≲ λ,

where we can take λ = λn,δ. With max(1, log(F (λ)/δ)) ≲ λ−ϵ for any ϵ > 0 when 0 < λ < 1

and F (λ) ≤ λ−1/β , we obtain an upper bound for λn,δ as λn,δ ≲ n
− β

1+ϵβ . Hence

∥f̂λ − f∗∥2L2(ρ) ≲ n
− β

1+ϵβ → n−β.

In the noisy regime, the rate cannot improve upon the standard parametric/fast rate O(n−1).
In contrast, in the noiseless regime, the rate can exceed O(n−1) when β > 1, implying that
substantially fewer samples may be required compared to the noisy setting.

Remark 3.7. Note that the integral operator approach is limited to the squared loss and to
penalties with q = 2. In contrast, the empirical process approach applies to general Lipschitz
loss functions and to penalties with q ≥ 1.

11



3.1 Proof

3.1.1 Step 1: Concentration of the empirical covariance

We need the following dimension-free matrix/operator concentration inequality:

Theorem 3.8 (Theorem 3.1 in [Minsker, 2017]). Let X1, . . . , Xn be a sequence of independent
self-adjoint random operators on Hilbert space H such that EXi = 0 for i = 1, . . . , n and∥∥∑n

i=1 EX2
i

∥∥ ≤ σ2. Assume that ∥Xi∥ ≤ U almost surely for all 1 ≤ i ≤ n and some positive

U ∈ R. Then, for any t ≥ 1
6

(
U +

√
U2 + 36σ2

)
,

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 14

Tr(
∑n

i=1 EX2
i )

σ2
exp

[
− t2/2

σ2 + tU/3

]
. (12)

One major difference compared to the matrix concentration inequality utilized in Lecture 2 is

that the multiplicative factor on the right-hand side is now
Tr(

∑n
i=1 EX2

i )
σ2 . This factor essentially

reflects the stable rank of the operators rather than their dimension, thereby rendering the bound
dimension-free.

We remark that the above theorem is slightly tighter than the version stated in [Minsker, 2017,
Theorem 3.1], where Tr(

∑n
i=1 EX2

i )

σ2 in (12) is replaced by Tr(
∑n

i=1 EX2
i )

∥∑n
i=1 EX2

i ∥
. However, [Minsker, 2017]

in fact has proved the tighter presented here; we refer to the paragraphs below Eq. (3.9) in
[Minsker, 2017] for more details. It is worth noting that a larger σ imposes a stricter condition
on t, which limits the size of deviation for which we can provide concentration guarantees.

Proposition 3.9. For any δ ∈ (0, 1), if λ ≥ λn,δ, it holds w.p. at least 1− δ that

∥(Σ + λ)−1/2(Σ− Σ̂)(Σ + λ)−1/2∥ ≤ 1/4.

Proof. The proof follows from the observation that

(Σ + λ)−1/2Σ̂(Σ + λ)−1/2 =
1

n

n∑
i=1

(Σ + λ)−1/2φ(xi)φ(xi)
⊤(Σ + λ)−1/2 =

1

n

n∑
i=1

ziz
⊤
i ,

where zi = z(xi) = (Σ + λ)−1/2φ(xi). Noting that

∥z(x)z(x)⊤∥ = ∥zi∥2 ≤ F (λ)

E
[∑

(ziz
⊤
i )

2
]
= E

[∑
∥zi∥2ziz⊤i

]
≤ F (λ)2.

Then, applying Theorem 3.8, we complete the proof.

We shall mostly use the following corollary of Proposition 3.9:

Corollary 3.10. For any δ ∈ (0, 1) and n ∈ N, if λ ≥ λn,δ, it holds with probability 1− δ that

∥(Σ̂ + λ)−1/2Σ1/2∥ ≤ ∥(Σ̂ + λ)−1/2(Σ + λ)1/2∥ ≤ 2.

12



Proof. By Proposition 3.9, it holds w.p. at least 1− δ that

1

4
I − (Σ + λ)−1/2(Σ− Σ̂)(Σ + λ)−1/2 ⪰ 0.

Thus,

Σ̂ + λ ⪰ 3

4
(Σ + λ) =⇒ (Σ + λ)1/2(Σ̂ + λ)−1(Σ + λ)1/2 ⪯ 4

3
I.

Lastly,

∥(Σ̂ + λ)−1/2(Σ + λ)1/2∥ =

√
∥(Σ + λ)1/2(Σ̂ + λ)−1(Σ + λ)1/2∥ ≤

√
4/3.

3.1.2 Step 2: Control the bias term

Noting
(Σ̂ + λ)−1Σ̂θ∗ − θ∗ = −λ(Σ̂ + λ)−1θ∗,

we thus have

B(λ) = λ∥Σ1/2(Σ̂ + λ)−1θ∗∥ ≤ λ∥Σ1/2(Σ̂ + λ)−1∥

= λ∥Σ1/2(Σ̂ + λ)−1/2∥∥(Σ̂ + λ)−1/2∥

≤ 2λ∥(Σ̂ + λ)−1/2∥ ≤ 2λ1/2,

where the third step uses Corollary 3.10.

3.1.3 Step 3: Control the variance term

To bound the variance termm we will need the following concentration inequality for quadratic
form (see, e.g., [Vershynin, 2018, Theorem 6.2.1]):

Theorem 3.11 (Hanson-Wright inequality). Let X = (X1, . . . , Xn) be a vector of independent,
mean zero, sub-Gaussian R.V. such that ∥Xi∥ψ2 ≤ K for all i = 1, . . . , n. Let A be an n × n
symmetric matrix. Then, for any t > 0,

P
(∣∣∣X⊤AX − E[X⊤AX]

∣∣∣ ≥ t
)
≤ 2 exp

(
−c ·min

(
t2

K4∥A∥2F
,

t

K2∥A∥op

))
,

where c > 0 is a universal constant.

Let us examine the variance term:

V (λ)2 =

∥∥∥∥(Σ̂ + λ)−1 1

n
Φ⊤ξ

∥∥∥∥2
Σ

=
1

n2
ξ⊤Φ(Σ̂ + λ)−1Σ(Σ̂ + λ)−1Φξ =:

1

n
ξ⊤Âξ,

where
Â =

1

n
Φ(Σ̂ + λ)−1Σ(Σ̂ + λ)−1Φ.

Noting

Tr[Â] = Tr[(Σ̂ + λ)−1Σ(Σ̂ + λ)−1 1

n
ΦΦ⊤] = Tr[(Σ̂ + λ)−1Σ(Σ̂ + λ)−1Σ̂]
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= ∥Σ1/2(Σ̂ + λ)−1Σ̂1/2∥2F =: Q2.

we have

Eξ[V (λ)2] =
σ2

n
Tr[Â] =

σ2

n
Q2.

By the Hanson-Wright inequality, the essential step is to bound Tr[Â] = Q2, for which

Q ≤ ∥Σ1/2(Σ + λ)−1Σ̂1/2∥F + ∥Σ1/2
(
(Σ + λ)−1 − (Σ̂ + λ)−1

)
Σ̂1/2∥F

= ∥Σ1/2(Σ + λ)−1Σ̂1/2∥F + ∥Σ1/2(Σ + λ)−1
(
Σ̂− Σ

)
(Σ̂ + λ)−1Σ̂1/2∥F

= Q1 +Q2.

We next shall bound Q1 and Q2 separately.

Bound Q1.

Q2
1 ≤ ∥(Σ + λ)−1/2Σ̂1/2∥2F = Tr[(Σ + λ)−1/2Σ̂(Σ + λ)−1/2] = Tr[(Σ + λ)−1Σ̂]

=
1

n

n∑
i=1

Tr[(Σ + λ)−1/2φ(xi)φ(xi)
⊤(Σ + λ)−1/2]

=
1

n

n∑
i=1

∥(Σ + λ)−1/2φ(xi)∥2

≤ F (λ). (13)

Bound Q2.

∥Σ1/2(Σ + λ)−1
(
Σ̂− Σ

)
(Σ̂ + λ)−1Σ̂1/2∥F

≤ ∥(Σ + λ)−1/2
(
Σ̂− Σ

)
(Σ̂ + λ)−1Σ̂1/2∥F

≤ ∥(Σ + λ)−1/2
(
Σ̂− Σ

)
(Σ + λ)−1/2∥∥(Σ + λ)1/2(Σ̂ + λ)−1Σ̂1/2∥F

≤ 1

4
∥(Σ + λ)1/2(Σ̂ + λ)−1Σ̂1/2∥F

≤ 1

4
∥(Σ̂ + λ)−1/2Σ̂1/2∥F

≤ 1

4
∥(Σ + λ)−1/2Σ̂1/2∥F

=
1

4

√
Tr[(Σ + λ)−1Σ̂] =

1

4
F (λ)1/2. (14)

Combining (13) and (14), we obtain

Tr[Â] ≲ F (λ).

Thus, it is easy to obtain

∥Â∥op ≤ Tr[Â] ≲ F (λ)

∥Â∥2F = ∥Â∥opTr[Â] ≲ F (λ)2.

Then, applying the Hanson-Wright inequality, we know w.p. 1− δ, we have

ξ⊤Âξ ≤ E[ξ⊤Âξ] + F (λ) log(1/δ) ≤ F (λ)(1 + log(1/δ)).
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3.1.4 Step 4: Putting all together

We obtain w.p. at least 1− δ that

∥f̂λ − f∗∥2L2(ρ) ≲ B2(λ) + V 2(λ) ≲ λ+
σ2(1 + log(1/δ))

n
F (λ).

3.2 Smooth adaptation

3.3 The source condition

Definition 3.12 (Sobolev-type interpolation spaces). Let Hs =
{∑∞

j=1 ajλ
s/2
j ej :

∑∞
j=1 a

2
j < ∞

}
equipped with inner product〈 ∞∑

j=1

ajλ
s/2
j ej ,

∞∑
j=1

bjλ
s/2
j ej

〉
Hs

=
∞∑
j=1

ajbj .

Note that when s = 1, H1 = Hk, when s = 0, H1 = L2(ρ) (assuming the eigenfunctions
{ej}∞j=1 forms a complete basis of L2(ρ)). Thus, Hs defines function spaces interpolate “be-
tween” L2(ρ) and Hk. It is often referred “Sobolev-type” as it generalizes the classic Sobolev
spaces. Consider the periodic kernel k(x − x′) = κ(x − x′), for which the eigenfunctions are
ej(x) := e2πijx for j ∈ Z. Suppose that

κ̂(j) ≍ (1 + |j|2)−1.

Then, we have Hk = H1(T), the Sobolev space with the first-order weak derivate belonging to
L2(T). Then,

∥f∥2Hs =
∑
j∈Z

⟨f, ej⟩2L2

λsj
=
∑
j∈Z

(1 + |j|2)sf̂(j)2 = ∥f∥2Hs(T).

We make the following assumption:

Assumption 3.13 (Source condition). f∗ ∈ Hs
k.

Here, s describes the relative smoothness of f∗ for our model Hk. We shall show that KRR
can adapt to the relative smoothness f∗. The case of s ≥ 1 is referred to as the well-specified
case, while s < 1, it means that f∗ is less smoothness than the model, a regime referred to the
misspecified case as f∗ ̸∈ Hk. Notably, when s > 1, it means that f∗ has extra smoothness.

3.3.1 KRR learns smoother functions more efficiently

Suppose that the target function f∗ is in Hs for some s ∈ [1, 2), and we perform KRR in H1. Let
φ(x) = (

√
λ1e1(x), · · · ,

√
λpep(x)) be the feature map. The target function can be represented

as

f∗(x) = φ(x)⊤θ∗ =

p∑
j=1

θ∗j
√

λjej(x)

where
θ∗j = λ

s−1
2

j a∗j ⇐⇒ θ∗ = Σ
s−1
2 a∗
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for some a∗ ∈ ℓp2. We assume ∥a∗∥ ≤ 1. Then, Σ = diag(λ1, · · · , λp) is the covariance matrix.
Recall that in the bias-variance decomposition, only the bias term relies on the target θ∗. We

then provide an intuitive derivation by assuming Σ̂ ≈ Σ:

B(λ) = ∥Σ1/2λ(Σ̂ + λ)−1θ∗∥

= ∥Σ1/2λ(Σ̂ + λ)−1Σ
s−1
2 a∗∥

≤ ∥Σ1/2λ(Σ̂ + λ)−1Σ
s−1
2 ∥

≈ ∥Σ1/2λ(Σ + λ)−1Σ
s−1
2 ∥

≤ λmax
j

λ
s
2
j

λj + λ

≤ λ max
t∈[0,λ1]

t
s
2

t+ λ
.

(15)

Lemma 3.14. For any s ≥ 0, maxt∈[0,λ1]
t
s
2

t+λ ≲ λmin(s,2)/2−1.

Proof. Let h(t) = tα

t+λ . Then,

h′(t) =
αtα−1(t+ λ)− tα

(t+ λ)2
=

(1− α)tα−1

(t+ λ)2

(
λα

1− α
− t

)
.

For α ∈ (0, 1), f is increasing in [0, t∗] and decreasing in [t∗,∞) with t∗ = λα/(1−α) =: cαλ.
Thus,

h(t) ≤ h(t∗) = cαα
λα

cαλ+ λ
=

cαα
1 + cα

λα−1.

For α ≥ 1, h is monotonically increasing. Therefore

max
t∈[0,λ1]

t
s
2

t+ λ
≲ λmin(s,2)/2−1.

Using the above lemma, we obtain that when n is sufficiently large,

B(λ) = O(λs/2) (16)

Combining with the variance term (which does not change), we have

∥f̂λ − f∗∥2L2(ρ) ≲ B2(λ) + V 2(λ) ≲ λs +
σ2

n
F (λ)

where we have ignored the dependence on δ. Recall that when λj ≍ j−β with β > 1 and the
eigenfunctions are uniformly bounded, we have F (λ) ≤ λ−1/β . Finally we obtain the optimal
λ and the convergence rate as

λop ∝ n
− β

sβ+1 , ∥f̂λ − f∗∥2L2(ρ) ≲ n
− sβ

sβ+1 .

The learning benefits from the smoothness since the rate improves from n
− β

β+1 to n
− sβ

sβ+1 for
s ∈ [1, 2].
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Remark 3.15. When s > 2, the last equation in (15) is increasing in t. The maximum is attained
at t = λ1 and B(λ) = O(λ). This is the same rate as in the case s = 2. Therefore, the rate
cannot be further improved for s > 2.

Remark 3.16. The convergence rate n− sβ
sβ+1 reveals that the model class (an RKHS with s = 1)

can leverage the smoothness of the target function f∗ up to order s = 2. Why can a model class
with first-order smoothness detect up to second-order smoothness in the target function, yet not
benefit from higher-order smoothness?

A concrete illustration is provided by approximating a function f ∈ C∞[a, b] via piecewise
linear functions. In this scenario, we have

|f(x)− f(a)− f ′(a)(x− a)| = |f ′′(ξ)|
2

(x− a)2

where ξ ∈ (a, b). This bound demonstrates that approximation error using first-order smooth
functions is governed by the second-order smoothness of the target function. Consequently,
information regarding any higher-order smoothness (e.g., third-order or above) remains unex-
ploited by a model class constrained to first-order smoothness.

3.3.2 Choosing a smoother kernel according to target function

We make an informal argument to show how we should choose the kernel according to the
smoothness of the target function. Suppose the target f∗ lies in a γ-th order Sobolev space
Hγ(T). Specifically,

f∗(x) =
∑
j

aj(1 + |j|2)−
γ
2 ej(x). (17)

where
∑

j a
2
j < ∞. For simplicity, let us naively suppose aj ∼ j−1/2. Next, we consider using

KRR to learn f∗. Let the kernel be

k(x, x′) =
∑
j

λjej(x)ej(x
′)

where λj ∼ j−β . In order for KRR to incur no approximation error, f∗ must lie in Hk, defined
by

Hs
k =


∞∑
j=1

bjλ
s/2
j ej :

∞∑
j=1

b2j < ∞


If we again assume bj ∼ j−1/2, we obtain

f∗(x) =
∑
j

bjλ
s/2
j ej ∼

∑
j

ajj
− sβ

2 ej .

Comparing this with (17) leads to

j−γ ∼ j−
sβ
2 =⇒ s =

2γ

β
.
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This equation reveals: the smoother the kernel (i.e., the larger β), the smaller the corresponding
smoothness parameter s in an RKHS. According to the analysis above, given a kernel with
eigenvalue decay with λj ∼ j−β , we can bound the bias term by O(λs̃) where

s̃ = min

{
2,

2γ

β

}
Therefore, we should at least set β = γ so that KRR can fully adapt to the smoothness of the
target function.

Considering the Gaussian kernel as

k(x, x′) = exp

(
−∥x− x′∥2

2

)
,

whose eigenvalues decay on the order of

λj ≍ exp(−cj log j) as j → +∞,

which effectively corresponds to β = ∞. Therefore, the Gaussian kernel can adapt to any level
of smoothness in the target function, helping to explain its enduring popularity in KRR and
general kernel-based methods.
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