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Abstract

In this lecture, we explore the random feature (RF) approximation of KRR, introducing
a Monte Carlo perspective to understand high-dimensional function learning. Additionally,
we analyze how stochastic gradient descent (SGD) performs in learning RKHS functions,
discussing its optimality and limitations, as well as the phenomenon known as spectral bias.
We stress, in this lecture, we choose to examine classical RKHS function learning from
perspectives that are applicable to nonlinear neural networks, establishing a connection
between classical learning theory and deep learning.

1 Introduction

An important implication of Lecture 4 is the sample complexity of kernel ridge regression
(KRR), which refers to the number of samples necessary to achieve a specified generalization
error. Specifically, for a reproducing kernel Hilbert space (RKHS) endowed with the kernel k
with a power-law eigenvalue decay, λj � j−β under the underlying distribution ρ, we obtain
the following bound for the generalization error for f∗ ∈ Hsk as

‖f̂λ − f∗‖2L2(ρ) . n
− min(s,2)β

min(s,2)β+1 . (1)

WLOG, assuming s ∈ [0, 2]. Then, to achieve a precision of ε, the number of samples we need
is at least

nε ≥
(

1

ε

) sβ+1
sβ

.

Another significant aspect to consider is the time complexity, which represents the compu-
tational time required to complete a task. Discussions of time complexity typically include the
following categories:

• Information-theoretic: The information-theoretic lower bound on time complexity refers
to the minimal time required to solve a given task, irrespective of the algorithm employed.
For instance, sorting a sequence of length n necessitates at least O(n log n) comparisons.

• Commonly used algorithms: Alternatively, one can study the time complexity of solving
the given task using a specific learning algorithm (e.g., KRR or stochastic gradient descent
(SGD)).

0Special thanks to Yuhao Liu and Zilin Wang for scribing the notes.
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In this lecture, we primarily focus on the time complexity of learning RKHS functions.
To begin, we provide a naive estimation of the time complexity for KRR. By the Representer
theorem, the KRR estimator can be expressed as

f̂λ =
n∑
j=1

(âλ)jk(xj , ·)

where
âλ = (K + nλI)−1y (2)

Computing the inverse of an n × n matrix typically requires O(n3) operations. Consequently,
the time complexity is bounded by

Ckrr
ε . n3

ε =

(
1

ε

) 3(sβ+1)
sβ

. (3)

Note that sβ represents the inherent smoothness of f∗.

Remark 1.1 (Periodic Sobolev spaces). Suppose f∗ ∈ Hγ(T), which is defined as

‖f‖2Hγ(T) =
∑
m∈Z

(1 + |m|2)γ |f̂(m)|2,

where {f̂(m)}m∈Z denotes the Fourier coefficients of f : f∗ =
∑

m∈Z f̂(m)ej where em(x) :=
e2πimx is the Fourier basis functions.

This regularity condition ‖f∗‖Hγ(T) < ∞ implies that f̂(m) � m−γ−
1
2 . To ensure f∗ lies

inHsk, we require

m−γ−
1
2 � m−

1
2
− sβ

2 ,

which gives 2γ = sβ. Under these assumptions, the resulting time complexity can be bounded
by Equation (3) as

Ckrr
ε .

(
1

ε

)3+ 3
2γ

,

indicating that the time complexity depends directly on the inherent smoothness of f∗.

2 Preliminaries

Equation (3) provides an upper bound on the time complexity when f̂λ is computed analytically
by inverting the regularized Gram matrix (see Equation (2)). In practice, however, one often
prefer gradient-based algorithms and expect improved time complexity.

2.1 The model and target functions

Firstly, let us translate the KRR into a linear regression problem. Assume the kernel k admits
the following decomposition

k(x, x′) =
∞∑
j=1

λjej(x)ej(x
′),
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where {ej}∞j=1 forms an orthogonal basis for L2(ρ). The model is defined as

fθ(x) = ϕ(x)>θ where ϕ(x) = (
√
λ1e1(x), · · · ,

√
λpep(x))>,

and let p =∞ in principle. Then,

Σ = Ex[ϕ(x)ϕ(x)>] = diag(λ1, . . . , λp). (4)

Define

R(θ) =
1

2
Ex,y

[(
ϕ(x)>θ − y

)2
]
.

Suppose that x ∼ ρ and y = ϕ(x)>θ∗ + ξ, where the noise ξ is assumed to satisfy E ξ = 0 and
E ξ2 = σ2. Then, we have the decomposition:

R(θ) = E(θ) +
σ2

2
, (5)

where E(·) is the excess risk given by

E(θ) =
1

2
Ex
[
(fθ(x)− f∗(x))2

]
. (6)

Suppose f∗(x) = ϕ(x)>θ∗ for some θ∗, the excess risk is given by

E(θ) =
1

2
(θ − θ∗)>Σ(θ − θ∗) =

1

2
‖θ − θ∗‖2Σ. (7)

For target function we make the following assumption:

Assumption 2.1 (Source condition). Suppose f∗ ∈ Hs. This is equivalent to assume θ∗ =(
a∗jλ

(s−1)/2
j

)
j≥1

with a ∈ `2.

Here, the index s denotes the smoothness of f∗ relative to the model space Hk. For the
model, we make the power-law decay assumption:

Assumption 2.2 (Capacity condition). Suppose λj � j−β for some β > 1.

2.2 Stochastic Gradient Descent

We consider the algorithm of online stochastic gradient descent (SGD) to minimizeR(·). At the
t-th iteration, SGD draws a batch of i.i.d. samples (denoted as St) and updates the θ as follows

θt+1 = θt − ηtgt

= θt − ηt∇θ

1

2

∑
(x,y)∈St

(ϕ(x)>θt − y)2


= θt −

ηt
|St|

∑
(x,y)∈St

ϕ(x)(ϕ(x)>θt − y), (8)
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where gt ∈ Rp denotes the minibatch gradient and ηt is the learning rate (LR). Substituting
y = ϕ(x)>θ∗ + ξ into (8) yields

gt =

 1

|St|
∑

(x,y)∈St

ϕ(x)ϕ(x)>

 (θt − θ∗) +
ηt
|St|

∑
(x,y)∈St

ϕ(x)ξ

= Σ̂t(θt − θ∗) +
ηt
|St|

∑
(x,y)∈St

ϕ(x)ξ,

(9)

where
Σ̂t =

1

|St|
∑

(x,y)∈St

ϕ(x)ϕ(x)>.

For better understanding and analysis, we often rewrite the SGD iteration as:

θt+1 = θt − ηtgt = θt − ηt(E[gt] + εt),

where E[gt] = ∇R(θt) is the full-batch gradient and εt = gt − E[gt] is the gradient noise.
Specifically, we have

∇R(θt) = Σ(θt − θ∗)

and
εt = (Σ̂t − Σ)(θt − θ∗) +

1

|St|
∑

(x,y)∈St

ϕ(x)ξ.

Note that there are two distinct sources of gradient noise:

• Label noise ξ, which directly perturbs the observed outputs.

• Estimation noise arising from the discrepancy between the empirical covariance Σ̂t and
the true covariance Σ. This source of noise persists even in the noiseless setting where
σ = 0.

We shall make the following assumption for the SGD.

Assumption 2.3 (Batch size). Assume |St| = B for all t ∈ N.

Assumption 2.4 (Initialization). We shall focus on the zero initialization: θ0 = 0.

3 Full-batch Gradient Descent

We first consider the regime with |St| =∞ and ηt = η (constant learning rate). Then, the SGD
iteration reduces to the full-batch GD:

θt+1 = θt − ηΣ(θt − θ∗). (10)

For the simplicity of analysis, we further assume that the learning rate η is infinitesimally small
(η → 0). In this regime, GD reduces to the gradient flow (GF):

d

dt
θt = Σ(θt − θ∗).
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Let δ(t) = θ − θ∗. Then, GF reduces to

δ̇(t) = −Σδ(t), (11)

with the initialization
δ(0) = −θ∗.

Moreover, the excess risk becomes

E(θt) = ‖δ(t)‖2Σ

Because {ej}∞j=1 constitutes an orthogonal basis of L2(ρ), the matrix Σ is diagonalizable,
with

Σ = diag(λ1, · · · , λp)

Hence, the solution to Equation (11) can be written component-wise as

δj(t) = δj(0)e−λjt for j = 1, 2, . . . , p. (12)

The fitting error evolution. Using the solution δj(t) from (12), we have

fθt − f∗ =

p∑
j=1

δj(t)λ
1/2
j ej =

p∑
j=1

δj(0)λ
1/2
j e−λjtej . (13)

As t→∞, we see that fθt → f∗.
The following lemma further characterizes the evolution of the average generalization error:

Lemma 3.1. Et := E(θt) =
∑p

j=1 |θ∗j |2λje−2λjt.

Proof. Note that

E(θt) = ‖θt − θ∗‖2Σ =

p∑
j=1

λjδ
2
j (t).

Since δj(t) = −θ∗j e−λjt, we obtain Et =
∑p

j=1 λj(θ
∗
j )

2e−2λjt.

By lemma 3.1, the convergence for the j-th component is governed by both the coefficient
θ∗j and the eigenvalue λj . Specifically, components with smaller |θ∗j |2 and larger λj converge
more rapidly.

3.1 Convergence Rate

By Lemma 3.1, when the dimension p is finite (assuming λ1 ≥ λ2 ≥ · · · ≥ λp), the error
E(θt) = Et decays exponentially as

Et = O
(
e−λpt

)
in the limit t→∞. However, this pure exponential convergence breaks down in the infinite-dimensional
setting (p→∞), or more generally whenever the time horizon t is small relative to p.

Indeed, by definition we have

Et =

p∑
j=1

∣∣θ∗j ∣∣2 λj e−2λjt. (14)
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As p→∞, the shape of the decay curve is determined by the two sequences

(θ∗j )j≥1 (target coefficients), (λj)j≥1 (eigenvalues).

Intuitively, (14) acts like a discrete analogue of an inverse Laplace transform in t, so different
asymptotic regimes of (θ∗j ) and (λj) can lead to qualitatively distinct convergence behaviors.

Proposition 3.2 (Convergence of GD). Under Assumptions 2.2 and 2.1, we have

Et . t−s.

Proof. By Lemma 3.1 and Assumption 2.1, we obtain

Et =

p∑
j=1

λjλ
s−1
j (a∗j )

2e−2λjt

=

p∑
j=1

(a∗j )
2λsje

−2λjt

.
p∑
j=1

j−(sβ+1)e
− 2t

jβ .
∫ ∞

1
h(z)dz,

where we define
h(z) = z−(sβ+1)e

− 2t

zβ

The integration can be bounded by∫ ∞
1

h(z) =

∫ ∞
1

z−(sβ+1)e
− 2t

zβ dz

(i)
=

1

β

∫ 1

0
us−1e−2tudu

(ii)
=

1

2sβts

∫ 2t

0
vs−1e−vdv .

1

ts
,

where (i) we use the variable substitution u = z−β and (ii) we use the variable substitution
v = 2tu. This completes the proof.

Remark 3.3. Under the structural assumption θ∗j = a∗j λ
s−1
2

j , the error decays at the rate
O(t−s), improving upon the classical O(t−1) guarantee from standard convex analysis. More-
over, increased smoothness of the target function f∗ (i.e., larger s) leads to faster convergence.

This example shows that even in linear regression—a mere quadratic optimization prob-
lem—convergence in infinite dimensions can exhibit a strikingly rich variety of behaviors. This
is very different from the pictures in traditional optimization.
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4 Stochastic Gradient Descent

Note that the convergence rate given in Proposition 3.2 does not directly gives us the time
complexity, as the compuational cost of each step is infinite. Moreover, we ignored the presence
of label noise. In this section, we shift our focus to practical SGD under the noisy regime.

The key step in analyzing SGD, as opposed to the full-batch GD, lies in characterizing the
structure of gradient noise. WLOG, we focus on the case B = 1, for which

εt =
(
ϕ(xt)ϕ(xt)

> − E[ϕ(x)ϕ(x)>]
)

(θt − θ∗)︸ ︷︷ ︸
qt

−ϕ(xt)ξt︸ ︷︷ ︸
pt

.

Let δt = θt − θ∗ for t ∈ N. We have

δt+1 = δt − ηt(Σδt + εt).

Noting Σ = diag(λ1, · · · , λp), the j-th component of δt is updated as

δt+1,j = (1− ηtλj)δt,j − ηte>j εt,

where ej ∈ Rp denotes the cannonical basis of Rp. Let ∆t,j = E δ2
t,j . Since E εt = 0, we have

∆t+1,j = (1− ηtλj)2∆t,j + η2
tE(e>j εt)

2. (15)

This implies that the problem boils down to estimate the noise energy (i.e., the second-order
moment) along each coordinates.

The anisotropic structure of SGD noise. We turn to examine the quantity E(ε>t u)2 for any
u ∈ Sp−1. It holds that

E(ε>t u)2 = E(q>t u)2 + E(p>t u)2 − 2E[(q>t u)(p>t u)] = E(q>t u)2︸ ︷︷ ︸
Qt

+E(p>t u)2︸ ︷︷ ︸
Pt

,

where the second step uses the independence between label noise and input. Then

Pt = E[ξ2
t ]E(ϕ(xt)

>u)2 = σ2u>Σu (16)

Qt ≤ E(u>ϕ(x)ϕ(x)>δt)
2 = E[(u>ϕ(x))2(ϕ(x)>δt)

2]

To bound Qt, we assume the feature map ϕ(·) satisfies the following condition:

Assumption 4.1 ((4,2)-Hypercontractivity condition). There exists some C > 0 such that it
holds for any u, v ∈ Sp−1 that

E[(u>ϕ(x))2(ϕ(x)>v)2] ≤ C E[(u>ϕ(x))2]E[(ϕ(x)>v)2]

This condition means that the fourth-order moment can be controlled by the second-order
moment. This condition essentially means that our features ϕ(X) are not too heavy-tailed and
it is obvious that this condition holds when ϕ(X) is sub-Gaussian for X ∼ ρ.

With Assumption 4.1, we have

Qt ≤ C E[(u>ϕ(x))2]E[(ϕ(x)>δt)
2] = 2CE(θt)u

>Σu (17)

due to E(θt) = 1
2δ
>
t E[ϕ(x)ϕ(x)>]δt, by definition.

Combining (16) and (17), we obtain:
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Lemma 4.2 (Noise structure). For any u ∈ Sp−1, it holds that

E(ε>t u)2 . (u>Σu)(E(θt) + σ2) � R(θt)u
>Σu.

Note that u>Σu represents the curvature along the direction u. This lemma therefore im-
plies:

• The noise magnitude scales with the loss value.

• The noise energy in direction u scales with the directional curvature u>Σu.

This stands in contrast to the usual stochastic-optimization assumption

E[‖εt‖2] ≤ C
for some constant C. Instead, Lemma 4.2 shows that the gradient noise is anisotropic and
aligned with the local geometry encoded by the Hessian Σ.

Theorem 4.3. Define the intrinsic time as Tt =
∑t

τ=0 ηt. Under the source condition (Assump-
tion 2.1), we have

E[E(θt)] .
p∑
j=1

|a∗j |2λsje−2λjTt + σ2
t∑

τ=0

η2
τ

p∑
j=1

λ2
je
−2λj(Tt−Tτ )

Proof. Towards the end of training, the excess risk becomes relatively small, i.e., E(θt) � σ2,
so we approximately have

E(ε>t u)2 . (u>Σu)σ2.

Plugging this into (15),
∆t+1,j ≤ (1− ηtλj)2∆t,j + η2

t λjσ
2

It then holds that

∆t+1,j ≤
t∏

τ=0

(1− ητλj)2∆0,j + λjσ
2

t∑
τ=0

η2
τ

t∏
τ ′=τ+1

(1− ητ ′λj)2 (18)

Then for any τ, t, we have
t∏

τ ′=τ+1

(1− ητ ′λj)2 = e
∑t
τ ′=τ+1 log(1−ητ ′λj)2 ≈ e−2

∑t
τ ′=τ+1 ητ ′λj = e−2λj(Tt−Tτ )

Therefore,

∆t+1,j ≤ e−2λjTt∆0,j + λjσ
2

t∑
τ=0

η2
τe
−2λj(Tt−Tτ )

For the zero initialization, ∆0,j = (θ∗j )
2. Then, the excess risk is given by

E[E(θt+1)] =
1

2

p∑
j=1

λj∆t,j

=
1

2

p∑
j=1

λje
−2λjTt∆0,j +

1

2
σ2

p∑
j=1

λ2
j

t∑
τ=0

η2
τe
−2λj(Tt−Tτ )

=
1

2

p∑
j=1

(a∗j )
2λsje

−2λjTt +
1

2
σ2

t∑
τ=0

η2
τ

p∑
j=1

λ2
je
−2λj(Tt−Tτ )
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Corollary 4.4. Under Assumptions 2.1 and 2.2, we have

E[E(θt+1)] .
1

1 + T st
+ σ2

t∑
τ=0

η2
τ

1

1 + (Tt − Tτ )
2− 1

β︸ ︷︷ ︸
Nt

.

Proof. Applying the capacity condition, we have

E[E(θt+1)] =
1

2

p∑
j=1

j−sβ+1e−2j−βTt +
1

2
σ2

t∑
τ=0

η2
τ

p∑
j=1

j−2βe−2j−β(Tt−Tτ )

Following the same derivation as in Lemma 3.2, we have

p∑
j=1

j−sβ+1e−2j−βTt .
1

1 + T st

p∑
j=1

j−2βe−2j−β(Tt−Tτ ) .
1

1 + (Tt − Tτ )
2− 1

β

.

where we get the bound 1
1+T s instead of 1

T s by applying the argument when T is large. For
small T , we naturally have a constant upper bound. The expected excess risk is then bounded as

E[E(θt+1)] .
1

1 + T st
+ σ2

t∑
τ=0

η2
τ

1

1 + (Tt − Tτ )
2− 1

β︸ ︷︷ ︸
Nt

.

Lemma 4.5. When using a constant learning rate schedule ητ ≡ η, we have

Nt . η.

Proof. Let ν = 2− 1
β > 1, then

Nt = η2
t∑

τ=0

1

1 + (ητ)ν

= η2

∑
τ< 1

η

1

1 + (ητ)ν
+
∑
τ> 1

η

1

1 + (ητ)ν


. η2

(
1

η
+

∫ +∞

1
η

1

(ηz)ν
dz

)

. η2

(
1

η
+

1

η

)
= η

(19)
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Convergence Rate. Therefore, under the constant LR ητ ≡ η, we have Tt = tη and

E[E(θt)] . inf
η>0

(
1

(ηt)s
+ η

)
.

By optimizing over η, we have

ηop ∝
(

1

t

) s
s+1

(20)

and

E[E(θt)] .

(
1

t

) s
s+1

(21)

Sample Complexity. Note that in SGD, each step only uses one sample and thus, for n
samples, SGD achives the error O(n−s/(s+1)). Let us compare it with the one for KRR:
O(n−βmin(s,2)/(βmin(s,2)+1)).

• When β is close to 1, SGD is nearly optimal and moreover, can adapt to the smoothness
of any s ∈ (0,∞). In contrast, KRR’s smoothness adaptation saturate at s = 2, beyond
which extra smoothness does not yield improvement.

• When β is significantly larger than 1, it seems that KRR’s adaptation is stronger, as SGD’s
error is independent of the value of β.

However, it should be remarked that in driving (21), we only consider the schedule of constant
LR. We conjecture that when adopting better LR schedule (such as exponential decay), we are
able to obtain the minimax optimal rate O(n−βs/(βs+1)).

Time Complexity. In practice, we are unable directly use the SGD algorithm, as p can be
infinite. Thus, there are two approaches: truncation p to a finite one and representer theorem.
Here, we discuss the second one:

Lemma 4.6 (Representer theorem for SGD). Let θt be the solution of SGD. Then, under zero
initialization, we have ft := fθt ∈ span{k(xi, ·) : i ∈ [t]} given by

ft+1 =
t∑
i=0

rik(xi, ·), rt = −ηt(ft(xt)− yt), for t = 0, 1, . . . .

with the initialization f0(x) ≡ 0.

Proof. Note that the one-step update of SGD is given by

θt+1 = θt − ηtϕ(xt)(ϕ(xt)
>θt − yt).

Let ft(x) := ϕ(x)>θt. Then,

ϕ(x)>θt+1 = ϕ(x)>θt − ηtϕ(x)>ϕ(xt)(ϕ(xt)
>θt − yt)), (22)

which is equivalent to
ft+1 = ft − ηtk(·, xt)(ft(xt)− yt).
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By this lemma, at the t-th step, the compuation cost is O(t). Thus, we have that the total
compuation cost to reach the ε accuracy, we need Tε = ε−(1+1/s) steps and the total computa-
tional cost is

Csgd
ε = O(T 2

ε ) = O(ε−(2+2/s)).

This impoves the one of direct KRR given in (3) when β is close to 1.

5 A Fine-Grained Viewpoint: Spectral Bias

In the foregoing analysis, we have focused exclusively on the convergence of the overall gener-
alization error E(θt), which effectively averages convergence across the entire spectrum. How-
ever, by examining each spectral component individually, one uncovers the phenomenon of
spectral bias, a critical concept for understanding model training in practice that extends be-
yond linear regression and kernel methods.

Specifically, by Eq. (13), the j-th spectral component converges at an exponential rate

O
(
e−λjt

)
.

Consequently, modes associated with smaller eigenvalues λj decay far more slowly than those
linked to larger λj . Identifying which features or functions correspond to large versus small
eigenvalues in real-world settings provides deeper insight into the algorithm’s behavior.

For the purpose of illustration, consider a translation-invariant kernel on the torus T:

k(x, x′) = κ(x− x′) =
∑
j∈Z

κ̂(j) ei2πj(x−x
′) =

∑
j∈Z

κ̂(j) ej(x) ej(x′),

where ej(x) = ei2πjx is the Fourier basis and κ̂(j) is the Fourier coefficients (which serves as the
jth eigenvalue of k) of κ. The smoother κ is, the faster κ̂(j) decays as |j| → ∞. Consequently,
high-frequency modes (large |j|) correspond to small eigenvalues, while low-frequency modes
correspond to large eigenvalues. Since the j-th component converges at rate O(e−κ̂(j) t), low
frequencies are learned exponentially faster than high frequencies—a phenomenon we term the
curse of frequency.

Although this example uses a periodic kernel, the same intuition applies to general smooth
kernels: components associated with higher “frequency” or complexity decay more slowly.
Moreover, a very similar spectral bias persists in nonlinear models such as neural networks:

• In Figure 1, we show the training curves for learning f∗(x) = sin(kx) for k = 1, 5 with
two-layer ReLU networks. The optimizers are online SGD.

– Obviously, two-layer neural networks also exhibit the curse of frequency.
– Learning high-frequence functions is much slower than low-frequency functions.

• In Figure 4, we show the learning of a function with multiple frequencies:

f∗(x) = c(1 + 0.5 sin(x) + 0.5 sin(5x))

with the Gaussian kernel k(x, x′) = e−
−(x−x′)2

h2 with h = 1. We can see that the opti-
mization process exhibit a very clean frequency bias. The low-frequency component is
learned firstly.

For more illustration of the curse of frequency of neural networks, we refer to [Rahaman et al., 2019,
Xu et al., 2019]
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Figure 1: (left) f∗(x) = sin(x); (right) f∗(x) = sin(5x).
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Figure 2: The example that demonstrates the curse of frequency. The model is linear regression
with Gaussian kernel e−(x−x′)2/(h2) with h = 1. The four plots correspond to the function ft at
t = 0, 10, 100, 1000, compared to the target function.

Alleviate the curse of frequency. When the target function f∗ has substantial energy in its
high-frequency components, learning with a smooth kernel of geneally smooth model can be
very slow due to the curse of frequency. Therefore, one may wnat to accelerate the learning
convergence by inflating the eigenvalues corresponding to the high-frequency eigenfunctions.
One way to achieve this is to rescale the kernel:

kh(x− x′) = k

(
x− x′

h

)
=
∑
j∈Z

κ̂(j)ei
2πj
h

(x−x′) =
∑
j∈Z

κ̂(hj)ei2πj(x−x
′),

which yields
λj = κ̂(jh) ∼ h−γ−

1
2 j−γ−

1
2 .

Although λj still decays at the same rate j−γ−
1
2 , it is effectively scaled by a factor of h−γ−

1
2 .

Consequently, the high-frequency components (those with larger |j|) are associated with larger
λj compared with before, thereby enabling faster convergence. In the limiting case h → 0, we
have

lim
h→0

kh(x− x′) ∝ δ(x− x′),

which implies λj = O(1) for all frequencies. In Figure 3, we plot the triangular wave function

κh(x) =

(
1− |x|

h

)
I{|x| < h} (23)

along with its corresponding Fourier transform κ̂h(j). As h decreases, κ̂h(·) concentrates more
of its energy in the higher-frequency regime.

Remark 5.1. The basic idea is to modify the kernel so that its eigenvalue spectrum places
greater weight on high-frequency components. Analogously, in neural networks one can choose
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Figure 3: For smaller h, the Fourier transform κ̂h(k) allocates a larger portion of its energy to
higher frequencies.
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Figure 4: The example that demonstrates how we can alliciate the curse of frequency by modifying the
spectrum of kernel functions. The model is linear regression with Gaussian kernel e−(x−x′)2/(2h2) with
h = 0.2. The four plots correspond to the function ft at t = 0, 10, 100, 1000, compared to the target
function.

activation functions that emphasize high frequencies, e.g., σ(z) = sin(kz) with large k, or a
compactly supported bump function with small support, thereby skewing the network’s spectral
bias toward high-frequency directions.

In Figure 2, we illustrate learning with a Gaussian kernel of reduced bandwidth. Compared
to Figure 4, the high-frequency components are learned significantly faster.

5.1 Link between KRR and numerical method of PDE

At first glance, the spectral bias phenomenon appears to contradict the observation that high-
frequency components often converge first in numerical solutions of PDEs. To illustrate this,
consider the 1D Poisson equation

u′′ = f with u(0) = u(1) = 0,

and let us solve it by the finite element method. We partition the interval [0, 1] into N sub-
intervals of equal length h = 1/N , yielding grid points xi = ih where h = 1/N for i =
0, 1, · · · , N . We then define a family of piecewise linear basis functions

ϕi(x) =
|x− h|
h

I{|x− xi| ≤ h}, i = 1, · · · , N − 1

13



and seek an approximate solution

uh(x) =

N−1∑
j=1

ujϕj(x),

where uj are the undetermined coefficients. Obviously, uh(0) = uh(1) = 0. For any test
function v(x) satisfying v(0) = v(1) = 0, we have

−
∫ 1

0
f(x)v(x)dx = −

∫ 1

0
u′′(x)v(x)dx

= −[u′(x)v(x)] |10 +

∫ 1

0
u′(x)v′(x)dx

=

∫ 1

0
u′(x)v′(x)dx.

Substituting the finite element approximation u = uh and choosing test function v = ϕi(x) into
the above expression yields

N−1∑
j=1

uj

∫ 1

0
ϕ′j(x)ϕ′i(x)dx = −

∫ 1

0
f(x)ϕi(x)dx.

This can be compactly written in matrix form as

Au = f. (24)

Here, A = [aij ] ∈ R(N−1)×(N−1) is the stiffness matrix with aij =
∫ 1

0 ϕ
′
j(x)ϕ′i(x)dx, f = [fi]

is the load vector with fi = −
∫ 1

0 f(x)ϕi(x)dx, and u = [u1, · · · , uN−1] is the solution vector.
Since each ϕi(x) is piecewise linear, entries of A follow the standard finite element pattern:

aii =
2

h
, ai,i+1 = ai+1,i = −1

h
, aij = 0 if |i− j| ≥ 2. (25)

We can construct a kernel kh(x, x′) for which aij = kh(xi, xj). A straightforward choice is
kh(x, x′) = κh(x− x′) where

κh(x) =

(
2− 3

h
|x|
)
I{0 ≤ |x| < h}+

(
−2 +

|x|
h

)
I{h ≤ |x| ≤ 2h}.

Figure 5 displays κh(x) along with its Fourier transform for h = 0.5, 0.2, 0.1. As shown, κ̂(ω)
initially grows with |ω| and then decreases. Moreover, as h becomes smaller, the location of the
maximal amplitude in the frequency domain shifts to larger |ω|. Consequently, high-frequency
components converge more rapidly, and diminishing h accelerates the convergence of these
higher-frequency components.

There is a contrast between the finite element method and KRR. Generally speaking, in
KRR where the kernel is global, the eigenfunctions corresponding to larger eigenvalues tend
to be lower-frequency compared to those associated with smaller eigenvalues. However, the
analysis above seems to show a contrary result, that higher-frequency components converge
faster. The reason is that, as h→ 0, the kernel kh becomes more localized.
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Figure 5: Plots of the piecewise function κh(x) (left) and and its Fourier transform κ̂h(ω) (right)
for h = 0.5, 0.2, 0.1. The peak of κ̂h(ω) moves to higher frequencies as h decreases.
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