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Abstract

In this lecture, we discuss the approximation and statistical properties of random feature
models (RFMs). Originally introduced to accelerate kernel methods, RFMs have since
revealed deep connections with neural networks. Understanding RFMs is therefore crucial
for bridging the gap between kernel methods and neural network models.

1 Introduction

Kernel ridge regression (KRR). Given training data {(xi, yi)}ni=1 ⊂ X×R and a positive-definite
kernel k : X×X → R with reproducing-kernel Hilbert space (RKHS)Hk, KRR fitting the train-
ing data via

f̂λ = argmin
f∈Hk

{ 1

n

n∑
i=1

(
f(xi)− yi

)2
+ λ‖f‖2Hk

}
,

where λ > 0 is the regularisation parameter. By the representer theorem,

f̂λ(x) =

n∑
i=1

(α̂λ)i k(xi, x), α̂λ = (K + λIn)−1y,

with kernel matrix K = (k(xi, xj))1≤i,j≤n ∈ Rn×n. Naı̈vely computing α̂λ costs Ω(n3) com-
pute and Ω(n2) memory—prohibitive when n is, for example, 106.

In the literature, there are many approximation methods to speed up the computation of (K+
λIn)−1, such as sketching techniques and Nystrom sampling. Among them, random feature ap-
proximation has emerged as one of the most popular ones in practice [Rahimi and Recht, 2007].

Specifically, assume the kernel k admits a random-feature representation

k(x, x′) = Ew∼π
[
ϕ(x,w)ϕ(x′, w)

]
,

for some feature map ϕ : X × Ω → R and distribution π on Ω. Drawing m i.i.d. samples
{wj}mj=1 ∼ π yields the Monte-Carlo approximation

k(x, x′) ≈ k̂m(x, x′) =
1

m

m∑
j=1

ϕ(x,wj)ϕ(x′, wj).

Define the feature matrix by

Φm =
(
m−1/2ϕ(xi, wj)

)
1≤i≤n,1≤j≤m

∈ Rn×m.

Then, applying the Sherman–Morrison–Woodbury identity gives

(K + λIn)−1 ≈ (ΦmΦ>m + λIn)−1

1



= λ−1In − λ−1Φm

(
Φ>mΦm + λIm

)−1
Φ>m, (1)

reducing the computational complexity to Ω(m3+m2n) and the memory toO(mn). Obviously,
the improvement is substantial if we can choose m� n.

Random feature models (RFMs). It is easy to show that the above approximation procedure
is equivalent to fit the following random feature model (RFM)

fm(x; a) =
1

m

m∑
j=1

aj ϕ(x,wj), (2)

by solving the ridge-regularised least-squares problem

aλ = argmin
a∈Rm

{ 1

n

n∑
i=1

(
fm(xi; a)− yi

)2
+

λ

m
‖a‖22

}
. (3)

Thus RFMs provide a scalable surrogate for KRR.
Note that RFM (2) has a natural connection with neural networks: if {wj}mj=1 are also

learnable, then it recovers two-layer neural network.

Two core questions.

Q1: Can the random feature approximation retain KRR’s statistical guarantees, while allowing
m� n without sacrificing accuracy?

Q2: In what sense do RFMs bridge kernel methods and neural networks?

In this lecture, we focus on addressing Q1 by studying the sample and parameter complexities
required for RFMs to learn functions in Hk. Question Q2 will be the discussed in the next
lecture.

2 Capacity-Controlled Approximation

We introduce the following natural approximation space for the RFM (2). As m→∞, we have

lim
m→∞

1

m

m∑
j=1

ajϕ(x,wj)→
∫
a(w)ϕ(x,w) dπ(w) =: fa(x).

Definition 2.1 (Fp,π space). For p ∈ [1,+∞), define

Fp,π :=

{
fa : inf

a∈Af
‖a‖Lp(π) <∞

}
,

where Af =
{
a : f =

∫
a(w)ϕ(·;w)dπ(w)

}
. The associated norm ‖ · ‖Fp,π is given by

‖f‖Fp,π := inf
a∈Af

‖a‖Lp(π).
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Intuitively, Fp,π is the approximation space of fm(x; θ) with the `p norm of parameters
uniformly bounded. In this lecture, we restrict our attention to the case p = 2, namely F2,π,
which coincides with the RKHSHkπ .

Lemma 2.2. F2 = Hkπ .

Note that this is a straightforward conclusion of the feature perspective of RKHS discussed
in Lecture 3. Here, we still provide a proof for completeness.

Proof. First, kπ(·, x) =
∫
ϕ(·, w)ϕ(x,w)dπ(w). Thus, by definition, we have

‖k(·, x)‖F2 ≤
∫

Ω
ϕ2(x,w)dπ(w) <∞,

implying k(·, x) ∈ F2.
Second, for f ∈ F2, assume af ∈ L2(π) such that f =

∫
a(w)ϕ(·;w)dπ(w), we have

〈f, k(·, x)〉F2 =

∫
af (w)ϕ(·, x)dπ(w) = f(x).

Thus, by the uniqueness of RKHS, we must have F2 = Hkπ .

By Holder inequality, it holds trivially that

F∞,π ⊂ Fp,π ⊂ Fq,π ⊂ F1,π for 1 ≤ q ≤ p ≤ ∞.

We impose the following assumption for the feature ϕ(·, w).

Assumption 2.3. supx∈X ,w∈Ω ϕ(x;w) ≤ 1

Under Assumption 2.3, it follows that |kπ(x, x′)| ≤
∫
|ϕ(x,w)ϕ(x′, w)|dπ(w) ≤ 1, and an

analogous bound holds for k̂m(x, x′).
Throughout this lecture, we make the following assumption on the target function:

Assumption 2.4. Assume f∗(x) = Ew∼π[a(w)ϕ(x;w)] with Q = ‖f∗‖F∞,π
<∞.

Note that the F∞,π is a subset of the RKHS F2,π = Hk. All subsequent results can be
extended to the RKHS F2,π by invoking either the duality framework of [Chen et al., 2023]
or the integral-operator techniques of [Bach, 2017]. We work with Assumption 2.4 purely for
expositional clarity, sidestepping those additional technical complications while keeping the
main ideas transparent.

Theorem 2.5 (Norm-controlled approximation). Suppose Assumption 2.4 hold. Let W =

(w1, . . . , wm) with wj
iid∼ π, and a(W ) = (a (w1) , . . . , a (wm))> . Then, for any δ ∈ (0, 1) ,

with probability 1− δ over the sampling of W , we have

‖fm(·; a(W ))− f∗‖L2(ρ) .
Q√
m

(1 +
√

log(2/δ))

Moreover, maxj∈[m] |aj | ≤ Q .
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Proof. (1) Let W = (w1, . . . , wm), and Sm (w1, . . . , wm) = ‖fm(·; a(W ))− f∗‖L2(ρ) Let W̃
be a copy of W but with i -th element different. Then,∣∣∣Sm(W )− Sm(W̃ )

∣∣∣ ≤ ∥∥∥fm(·; a(W ))− fm(·; a(W̃ ))
∥∥∥
L2(ρ)

=

∥∥∥∥ 1

m
a (wi)ϕ (·;wi)−

1

m
a (w̃i)ϕ (·; w̃i)

∥∥∥∥
L2(ρ)

≤ 2Q

m
.

(2) By McDiarmid’s inequality, with probability 1− δ, we have

Sm(W ) . EW [Sm(W )] +

√
log(2/δ)

m
Q

(3) Next, we evaluate ESm(W ). Since

EW [
1

m

m∑
j=1

a(wi)ϕ(x;wi)] = f∗(x)

we obtain

EW [S2
m(W )] = EWEx

∣∣∣∣∣∣ 1

m

m∑
j=1

a (wj)ϕ (x;wj)− f∗(x)

∣∣∣∣∣∣
2

= ExVar

 1

m

m∑
j=1

a (wj)ϕ (x;wj)


(i)
=

1

m
ExEw(a(w)ϕ(x,w)− Ew[a(w)ϕ(x,w)])2

(ii)

≤ 1

m
ExEw[a2(w)ϕ2(x;w)]

(iii)

≤ 1

m
Ew∼π[a2(w)] ≤ Q2

m
.

where (i) uses the independence of w1, · · · , wm, (ii) uses Var[X] ≤ E(X − c)2, (iii) follows
from Assumption 2.3. By Jensen’s inequality,

EW [Sm(W )] ≤
√
EW [Sm(W )2] .

Q√
m

(4) Combining the above, we conclude

Sm(W ) .
Q√
m

+

√
log(2/δ)

m
Q,

as stated.

3 Generalization Analysis

We express the training error and generalization error in terms of R̂(a) andR(a) as follows:

R̂(a) =
1

n

n∑
i=1

(fm(xi; a)− f∗(x))2 R(a) = Ex∼ρ(fm(x; a)− f∗(x))2.
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For the simplicity of analysis, we assume â is the solution of the following optimization problem

â = argmin
a∈Rm

(
R̂(a) +

1√
nm
‖a‖
)
.

In contrast with (3), we regularise using the linear seminorm ‖a‖ rather than the quadratic
term ‖a‖2. For clarity of exposition we also fix the regularisation parameter to λ = (nm)−1/2.
These particular choices merely streamline the analysis; every result extends verbatim to the
original setting of (3), with a squared-norm penalty and an arbitrary λ > 0.

Theorem 3.1. Suppose Assumption 2.4 hold with ‖f∗‖F∞,π = Q ≥ 1. Then, for any δ1, δ2 ∈
(0, 1) , with probability 1− δ1 − δ2 , we have

R(â) .
Q

m

(
1 +

√
log (1/δ1)

)
+
Q2

√
n

+
Q2√n
m2

log(1/δ1) +

√
log (1/δ2)

n

Proof. (1) By Theorem 2.5, for any δ1 ∈ (0, 1), with probability 1 − δ1 over the sampling of
random feature, there exists ã ∈ Rm such that

R̂(ã) ≤
Q
(

1 +
√

log (1/δ1

))
m

,
‖ã‖√
m
≤ Q.

(2) By the definition of â, we have

R̂(â) +
1√
nm
‖â‖ ≤ R̂(ã) +

1√
nm
‖ã‖ ≤ Q

m

(
1 +

√
log (1/δ1)

)
+

Q√
n
.

Hence, 1√
m
‖â‖ ≤ Q

(
1 +

√
n
(

1+
√

log(1/δ1)
)

m

)
=: C(m,n,Q).

(3) Let HC =
{
fm(·; a) : ‖a‖√

m
≤ C

}
and let FC =

{
x 7→ (f(x)− f∗(x))2 | f ∈ HC

}
, then

similar to the calculation of Rademacher complexity in the empirical process analysis, we obtain

R̂adn(FC) ≤ 4C2

√
n

(4) By the Rademacher complexity-based generalization bound, for any δ2 ∈ (0, 1), with prob-
ability 1− δ2 over the sampling of training set, we have

R(â) ≤ R̂(â) + 2R̂adn
(
FC(m,n,Q)

)
+

√
log (1/δ2)

n

.
Q

m

(
1 +

√
log (1/δ1)

)
+

Q√
n

+
C2(m,n,Q)√

n
+

√
log (1/δ2)

n
.

Inserting the expression of C(m,n,Q), we completes the proof.

Remark 3.2. The log(1/δ1) term comes from the random sampling of features. The log(1/δ2)
term comes from the random sampling of training set.

According to Theorem 3.1, when m >
√
n, the RFM preserves the classical convergence

rate O(n−1/2). This shows that random feature approximation can preserve the statistical effi-
ciency while reducing the computational cost from O(n3) to O(n2).
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4 Summary

The foregoing analysis is based on [Rahimi and Recht, 2008], which provides a clear illustra-
tion of how random feature approximations can accelerate kernel methods without compromis-
ing statistical efficiency. More recent work leverages the integral-operator technique to sharpen
these guarantees. In particular, [Bach, 2017] and [Carratino et al., 2018] employ source and ca-
pacity conditions to obtain excess-risk bounds that depend explicitly on the kernel’s eigenvalue
decay and the relative smoothness of the target function, thereby providing a fine-grained char-
acterisation of how much acceleration random feature approximation can deliver in different
spectral regimes.
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