
Topics in Deep Learning Theory (Spring 2025)

Lecture 7: Two-Layer Neural Networks

Instructor: Lei Wu Date: April 21, 2025

The set of functions that can be represented by two-layer neural nets is given by

Fσ,d =
{
x 7→ a>σ(Wx+ b) : a ∈ Rm, b ∈ Rm,W ∈ Rm×d,m ∈ N

}
.

Next, we study the approximation power of two-layer neural nets.

1 Universal approximation properties

Definition 1.1 (UAP). Let X be a compact set. A function class F is said to be universal
approximator if F is dense in C(X) with respect to the uniform metric. This is equivalent to
say that for any f ∈ C(X) and ε > 0, there exists f ∈ F such that

sup
x∈X
|f(x)− h(x)| ≤ ε.

Theorem 1.2 ([Siegel and Xu, 2020]). Assume σ such that Fσ,1 is dense in C([0, 1]). Then,
Fσ,d is dense in C([0, 1]d).

Proof. First, we assume that σ ∈ C∞(R). Then, for any w ∈ Rd and b ∈ R,

∂

∂wi
σ(w>x+ b) = lim

ε→0

σ(w>x+ εe>i x+ b)− σ(w>x+ b)

ε
∈ Fσ,d

for i = 1, . . . , d. Similarly, for any α = (α1, . . . , αd) ∈ Nd,

∂

∂wα
σ(w>x+ b) = xασ|α|(w>x+ b) ∈ Fσ,d.

Since Fσ,1 is dense in C([0, 1]), σ cannot be a polynomial. Hence, we can choose w = 0 and
b ∈ R such that σk(b) 6= 0 for any k ∈ N. Therefore, all the polynomials of the form xα1

1 · · ·x
αd
d

are in F̄σ,d. This implies that F̄σ,d contains all the polynomials. By Weierstrass-Stone theorem,
F̄σ,d is dense in C(Ω).

For non-smooth σ, since Fσ,1 is dense in C([0, 1]), we can use a two-layer neural net to
approximate a smooth one. Then, the same results follow.

• The above proof implies that Fσ,d has UAP if σ is smooth and non-polynomial.

• For non-smooth networks, we only need to consider the one-dimensional case, where
explicitly constructive proof is often doable. The following lemma concerns the ReLU
activation function.

Lemma 1.3. Assume σ(z) = max(0, z). For any Lipschitz continuous function f , there exits a
two-layer neural network fm(·; θ) such that

sup
x∈[0,1]

|fm(x; θ)− f(x)| . Lip(f)

m
.

1

Proof. Let h = 1
m and {xj = jh}mj=0 be the uniform grids in [0, 1]. Let t(x) = max(1− |x|, 0)

be the triangular function. Then, the piecewise linear interpolator can be written as

f̃m(x) =

m∑
j=0

f(xi)t

(
x− xi
h

)
. (1)

Consider the approximation error in the interval [xj , xj + h]: for t ∈ [0, h],

|f(xj + t)− f̃(xj + t)| = |f(xj + t)− f(xj)−
f(xj + h)− f(xj)

h
t|

= |f ′(ξ1)t− f ′(ξ2)t| . Lip(f)h.

Hence,

sup
x∈[0,1]

|f̃m(x)− f(x)| = max
j∈[m−1]

sup
t∈[0,h]

|f(xj + t)− f̃(xj + t)| . Lip(f)h.

Notice that the triangular function can exactly represented with 3 ReLU neurons:

t(x) = σ(x+ 1) + σ(x− 1)− 2σ(x).

Plugging it into (1), it shows that f̃m can be represented with a two-layer neural net with 3m
neurons.

Since the Lipschitz class is dense in C([0, 1]), we thus prove the UAP for the ReLU activa-
tion function. For other activation functions, one can use other constructive proofs.

We remark that the seminal work [Cybenko, 1989] proved UAP only for networks activated
by sigmoidal functions 1. The function σ : R 7→ R is said to be sigmoidal if

lim
z→−∞

σ(z) = 0, lim
z→∞

σ(z) = 1. (2)

A fast proof of [Cybenko, 1989] in our framework. Denote by H the Heaviside step func-
tion, which is a special sigmoidal function. Similar to the proof of Lemma 1.3, one can show
that the two-layer neural network activated by H can mimic any piecewise constant function.
Hence, FH,1 has UAP. Noticing that σ(βz)→ H(z) as β →∞ if σ is sigmoidal, we have Fσ,1
has also UAP. Applying Theorem 1.2 leads to that Fσ,d has UAP for any d ≥ 1.

2 Approximation with rates

UAP does not provide any quantitative information about the approximation process. In partic-
ular, it cannot explain the superiority of neural nets over the classical methods, such as polyno-
mials, spline, finite element methods, since all these methods also have UAP.

We first review some classical results of approximation rates.

• Approximating functions in C(X) does not have rate. Why?

1The proof in [Cybenko, 1989] is quite elegant by utilizing the Hahn-Banach separation theorem.

2

• Lemma 1.3 can be extended to d > 1, where the rate isO(1
m1/d). This means that to reach

the accuracy ε, the number of parameters needed is ε−d, which depends on the input
dimension exponentially. For instance, taking ε = 0.1, d = 20, the number of parameters
needed is 1020. The issue is referred to as the curse of dimensionality (CoD).

• High-order smoothness. To obtain a faster approximation rate, we need to consider
a smaller target function space. The classical approach in applied math is to impose
stronger smoothness by assuming the high-order differentiability. For example, consider
the Sobolev space defined by the Sobolev norm:

‖f‖Hs
d

=

∑
|α|≤s

|Dαf |2 dx

1/2

<∞.

ForHs
d , it has been shown that the minimax rate of approximating this space isO(m−s/d)

regardless what model is utilized. This rate suffers from the CoD unless s & d.

The above approximation rates obtained by assuming certain (classical) smoothness on tar-
get functions all suffer from the CoD. They are quantitative but not useful in high dimensions.
The successs of ML in solving high-dimensional functions implies that ML models must be able
to overcome CoD for certain class of functions. Therefore, the most fundamental problem in
ML is to understand:

What kind of functions can be approximated/learned by a particular ML model without CoD.

We already proved that functions in RKHS can be learned without CoD. The question in this
lecture is what kind of functions can be learned efficiently by two-layer neural networks?

Avoid CoD via Monte-Carlo approximation. The Monte-Carlo method for high-dimensional
integration is only example in applied math that we can avoid CoD (do we have other exam-
ples?). Hence, we anticipate similar cases also happen to the approximating high-dimensional
functions.

Consider the taking limit for the scaled two-layer neural networks:

fm(x; θ) =
1

m

m∑
j=1

ajϕ(x; vj)→ E(a,v)∼ρ[aϕ(x; v)] = fρ(x), (3)

where ϕ(x; v) = σ(w>x + b) but can also take general feature functions. In this way, the
two-layer network fm(·; θ) is a Monte-Carlo approximation of fρ with the approximation error
satisfying

fm(x; θ)− fρ(x) ∼
Var(a,v)∼ρ[a

2ϕ(x, v)2]
√
m

This suggests that if a function f has the probabilistic representation f(x) = E(a,v)∼ρ[aϕ(x; v)],
then it can be approximated by Monte-Carlo discretization and the resulting model is exactly a
two-layer neural network. What remains is to identify what kind of functions admit this proba-
bilistic representation.

3

2.1 The Jones’ trick: probabilistic representation via Fourier transform

The following procedure was first developed in [Jones, 1992]. Let f̂ be the Fourier transform of
f :

f̂(ω) =
1

(2π)d

∫
Rd

f(x)e−iω
>x dx.

The Fourier inversion theorem says

f(x) =

∫
f̂(ω)eiωx dω. (4)

This gives a integral representation of f and we will impose some conditions such that it can be
converted into a probabilistic representation.

Let f̂(ω) = |f̂(ω)|eib(ω) be the polar decomposition of f̂(ω). Then, we can rewrite (4) as
follows

f(x) =

∫
|f̂(ω)|ei(b(ω)+ω>x) dω =

∫
|f̂(ω)| cos(b(ω) + ω>x) dω. (5)

Assume γ0(f) =
∫
|f̂(ω)|dω and let dπ(ω) = |f̂(ω)|

γ0(f) dω. Then,

f(x) = γ0(f)Eω∼π[cos(ω>x+ b(ω))]. (6)

Thus, we represent the function as an expectation. Recall that the property of Monte-Carlo
integration:

Ex∼ρ[h(x)]− 1

m

m∑
j=1

h(xj) ∼
Var(h)

m
,

where x1, . . . , xm are i.i.d. sampled from ρ. The following theorem shows that the similar result
also hold for function approximation.

Theorem 2.1. Let ρ be any probability distribution over Rd. Assume γ0(f) =
∫
|f̂(ω)|dω <

∞, then there exists a two-layer neural net fm(·; θ) activated by the cosine function such that

‖fm(·; θ)− f‖2L2(Px) .
γ0(f)2

m
.

Proof. Let W = (ω1, . . . , ωm) with {ωj} being i.i.d. random variable sampled from π. Let

fm(x; θ̃) =
1

m

m∑
j=1

γ0(f) cos(w>j x+ b(wj)) =:
1

m

m∑
j=1

Zj .

Moreover,
EW [Zj − f(x)] = 0

EW [(Zj − f(x))2] ≤ EW Z2
j ≤ γ0(f)2.

(7)

Then, using the independence of Zj , we have

EW [‖fm(·; θ̃)− f‖2L2(Px)] = Ex EW |
1

m

m∑
j=1

(Zj − f(x))|2

= Ex
1

m2

m∑
j=1

E |Zj − f(x)|2 ≤ γ0(f)2

m
,

where the last inequality follows from (7).

4

The preceding rate is a standard Monte-Carlo rate, which is independent of d. This explains
the superiority of neural networks for approximating functions with Cf < ∞. Note that Cf
may depend on d, althoutgh the rate is not.

Unfortunately, there are still two issues.

• The cosine activation function is not often used in practice, though it is recently found
effective in solving some scientific computing problems [Sitzmann et al., 2020].

• The input domain is Rd. In practice, it is more often to consider a compact domain, e.g.,
the image where the pixel value lies in [0, 1].

2.2 The Barron’s trick

Andrew R. Barron developed some tricks in [Barron, 1993] to resolve these issues. Let Ω be a
compact domain and define the dual norm

‖w‖Ω = sup
x∈Ω
|w>x|. (8)

Let ŵ = w/‖w‖Ω. A particular example is that Ω is the `p ball, for which ‖ · ‖Ω corresponds
to the `q norm with q be the Holder conjugate of p, i.e., 1/p + 1/q = 1. In the following,
the dependence of Ω will be omitted for simplicity, but we will frequently use the property that
|ŵ>x| ≤ 1,∀x ∈ Ω.

Consider f ∈ C(Ω) and let fe be a L1(R) extension of f . Since, f(0) =
∫
f̂e(ω) dω, we

can express f as follows

f(x)− f(0) =

∫
(eiω

>x − 1)f̂e(ω) dω

=

∫
eiω

>x − 1

‖ω‖
‖ω‖f̂e(ω) dω

=

∫
cos(ω>x+ b(ω))− cos(b(ω))

‖ω‖
‖ω‖|f̂e(ω)|dω

=

∫
g(ω, x)‖ω‖|f̂e(ω)|dω, (9)

where

g(x,w) =
cos(ω>x+ b(ω))− cos(b(ω))

‖ω‖
.

Assume that
γ̃1(f) :=

∫
‖ω‖|f̂(ω)| dω <∞.

Then,
f(x)− f(0) = γ̃1(f)Eω∼π[g(x, ω)] = γ1(f)Eω∼π[h(ŵ>x, ω)], (10)

where h(t, ω) = (cos(‖ω‖t+ b(ω))− cos(b(ω)))/‖ω‖ is Lipschitz with respect to t.
Thus, we express f as an expectation and for a fixed ω, g(x, ω) only depends on ω>x. In

other words, it is essentially an one-dimensional function. Different from the Jones’ expression,
here h(·;ω) is a nicely behaved function. What remains is to show that h(·, ω) can be further
expressed in an expectation form, or approximated by two-layer neural networks.

5

Theorem 2.2. Assume

γ1(f) = inf
fe|Ω=f

∫
(1 + ‖ω‖)|f̂e(ω)| <∞,

where the infimum is taken over all theL1(R) extensions of f . Consider the sigmoidal activation
function (2). Then, there exits a two-layer neural nets such that

‖fm(·; θ)− f‖2L2(ρ) .
γ1(f)2

m
.

Proof. First, write g(x, ω) = h(ω̂>x;w) with h(·;w) : [−1, 1] 7→ R given by

h(t;w) =
cos(‖w‖t+ b(w))− cos(b(w))

‖w‖
,

for which supt∈[−1,1] max{|h(t;w)|, |h′(t;w)|} ≤ 1. Let H(t) = 1(t ≥ 1) be the Heaviside
step function. Then,

h(t;w) = h(−1) +

∫ >
−1
h′(s;w) ds

= h(−1) +

∫ 1

−1
h′(s;w)H(t− s;w) ds,

which means h can be represented by a two-layer neural nets activated by the step function.
Plugging it into (10) yields

f(x) = f(0) + γ̃1(f)Eω∼π[h(−1;ω)] + 2γ̃1(f)Eω∼π Es∼Unif[−1,1][h
′(s;ω)H(ω̂>x− s)],

(11)

where γ̃1(f) =
∫
‖ω‖|f̂e(ω)|dω. Thus, we write f in an expectation form. Using the fact that

max{h(−1;ω), h′(s;ω)} ≤ 1 and |H(ŵ>x− s)| ≤ 1. The approximation error is bounded by

app-err .
γ̃1(f)2 + f2(0)

m
.

1

m

(
(

∫
|f̂e(ω)| dω)2 + (

∫
‖ω‖|f̂e(ω)| dω)2

)
.

1

m

(∫
(1 + ‖ω‖)|f̂e(ω)| dω

)2

=
γ2

1(f)

m
.

Taking over all the L1(R) extension fe, we complete the proof for the Heaviside activation
function.

For general sigmoidal activation functions, the result follows from the fact that σ(βz) 7→
H(z) as β → ∞. Moreover, noticing that the above derivation holds for any extension fe.
Hence, it must hold for the one with the smallest moment.

2.3 An alternative Fourier analysis

2.4 Step functions

Lemma 2.3. Suppose h ∈ C2([−1, 1]). Then, we have

h(t) = h(0) +

∫ 1

0
h′(s)H(t− s) ds+

∫ −1

0
h′(s)H(−t+ s) ds.

6

Proof. When t ≥ 0, we have

h(t) = h(0) +

∫ t

0
h′(s) ds = h(0) +

∫ 1

0
h′(s)H(t− s) ds.

If t < 0, the proof is similar.

Applying this lemma to eict, we discover

eict = 0 + ic

∫ 1

0
eisH(t− s) ds+ ic

∫ −1

0
eisH(s− t) ds. (12)

Using this identity, we have

f(x) =

∫
eiω

>xf̂e(ω) dω =

∫
ei‖ω‖ω̂

>xf̂e(ω) dω

=

∫
f̂e(ω) dω +

∫ (
i‖ω‖

∫ 1

0
ei‖ω‖sH(ω̂>x− s) ds

)
f̂e(ω) dω + I2,

where I2 accounts for the negative part. Hence,

f(x)− f(0) = i

∫
Rd

∫ 1

0
ei‖ω‖sH(ω>x− s) dsf̂e(ω) dω + I2

= i

∫
R

∫ 1

0
ei‖ω‖t+b(ω)H(ω̂>x− t)‖ω‖|f̂e(ω)|dtdω + I2

= −
∫
R

∫ 1

0
sin(‖ω‖t+ b(ω))H(ω̂>x− t)‖ω‖|f̂e(ω)| dt dω︸ ︷︷ ︸

I1

+I2.

Hence, if
∫
‖ω‖|f̂e(ω)| dω < ∞, the I1 as well as f(x) can be written as an expectation

form by applying the Jones’ trick.

2.5 ReLU activations

Lemma 2.4. Suppose h ∈ C2([−1, 1]). Then, we have

h(t) = h(0) + h′(0)t+

∫ 1

0
h′′(s)σ(t− s) ds+

∫ −1

0
h′′(s)σ(−t+ s) ds

where σ is the ReLU function.

Proof. When t ≥ 0, we have

h(t) = h(0) +

∫ t

0
h′(τ) dτ

= h(0) +

∫ t

0

(
h′(0) +

∫ s

0
h′′(s) ds

)
dτ

= h(0) + h′(0)t+

∫ t

0

∫ s

0
h′′(s) ds dτ

7

= h(0) + h′(0)t+

∫ t

0

∫ t

s
h′′(s) dsdτ

= h(0) + h′(0)t+

∫ t

0
h′′(s)(t− s) ds

= h(0) + h′(0)t+

∫ 1

0
h′′(s)(t− s)H(t− s) ds

= h(0) + h′(0)t+

∫ 1

0
h′′(s)σ(t− s) ds.

If t < 0, the proof is similar.

Theorem 2.5. Suppose γ2(f) = inffe|Ω=f

∫
(1 + ‖ω‖)2|f̂e(ω)|dω < ∞. Then, there exists a

two-layer ReLU network fm(x; θ) such that

Ex[|
m∑
j=1

aj ReLU(w>j x+ bj)− f(x)|2] .
γ2(f)2

m
.

Moreover, for any j ∈ [m], we have

|aj | .
γ2(f)

m
, ‖wj‖Ω ≤ 1, |bj | ≤ 1. (13)

Proof. Applying the above lemma to eict, we discover the following identity

eict − ict− 1 = −c2

∫ 1

0
eicsσ(t− s) ds− c2

∫ −1

0
eicsσ(−t+ s) ds. (14)

Then,

f(x)−∇f(0)>x− f(0) =

∫
Rd

(eiω
>x − iω>x− 1)f̂e(ω) dω

= −
∫
Rd

∫ 1

0
‖ω‖2σ(ω̂>x− s)ei‖ω‖s dsf̂e(ω) dω + I2

= −
∫
Rd

∫ 1

0
cos(‖ω‖t+ b(ω))σ(ω̂>x− t)‖ω‖2|f̂(ω)| dt dω︸ ︷︷ ︸

I1

+I2,

(15)

where the I2 is similar to I1, accounting for the case ω>x ≤ 0. The explicit form of I2 is omitted
for notation simplicity. Hence, if

∫
‖ω‖2|f̂(ω)|dω <∞, by using the Jones’ trick, we can write

(15) in an expectation form.
In addition, the linear part can be expressed with two ReLU neurons: ∇f(0)>x = ReLU(w>x)−

ReLU(−w>x) with w = ∇f(0).

3 Generalization analysis

In this section, we assume Ω = Sd−1 for simplicity. In Lecture 12, we derive the Rademacher
complexity of neural networks of the following class:fm(x; θ) :

m∑
j=1

|aj | ≤ A, ‖wj‖2 + |bj | ≤ B

 ,

8

where the inner-layer and outer-layer weights are controlled independently. However, for ReLU
networks, we only need to control the path norm

‖θ‖P :=

m∑
j=1

|aj |(‖wj‖2 + |bj |) (16)

because of the positive homogeneity of ReLU. Specifically, we have

FQ = {fm(x; θ) : ‖θ‖P ≤ Q}

=

fm(·; θ) :
m∑
j=1

|aj | ≤ Q, ‖wj‖+ |bj | = 1 for j = 1, 2, . . . ,m

 . (17)

Proposition 3.1. R̂adn(FQ) . Q/
√
n

Proof. Follow exactly the proof of Lemma 4.9 in Lecture 12.

The regularized estimator. Let the empirical risk

R̂n(θ) =
1

2

n∑
i=1

(fm(xi; θ)− f∗(xi))2.

Consider the path norm-regularized estimator:

θ̂n = argmin
θ
R̂n(θ) +

λ√
n
‖θ‖P . (18)

For technical simplicity, assume supx∈X |f∗(x)| ≤ 1 and use the truncated network:

f̃m(x; θ) = min(max(fm(x; θ),−1), 1).

Theorem 3.2. Assume λ ≥ C, where C is an absolute constant. For any δ ∈ (0, 1), with
probability 1− δ over the choice of training samples, we have

R(θ̂n) .
γ2

2(f∗)

m
+
γ2(f∗)√

n
+

√
log(1/δ)

n
.

• The three terms of the RHS denote the approximation error, estimation error, and error
caused by the exception set, respectively.

• The estimate does not suffer from the curse of dimensionality (CoD), and works well in
the over-parameterized regime, i.e., m > n.

Proof. Let Q = γ2(f∗).

(1) By Theorem 2.5, there exits θ̃ such that

R̂n(θ̃) ≤ 3Q2

m
, ‖θ̃‖P ≤ 2Q.

9

By definition,

R̂n(θ̂n) +
λ√
n
‖θ̂n‖P ≤ R̂n(θ̃) +

λ√
n
‖θ̃‖P ≤

3Q2

m
+ 2

λ√
n
Q.

Hence,

‖θ̂n‖P ≤ 2Q+
3Q2√n
λm

=: C(m,λ,Q)

R̂n(θ̂n) ≤ 3Q2

m
+

2λ√
n
Q. (19)

(2) Let HC = {(f̃m(x; θ) − f∗(x))2 : ‖θ‖P ≤ C}. Since t2 is 2-Lipschitz continuous for
t ∈ [−1, 1]. By the contraction lemma,

R̂adn(HC) ≤ 2R̂adn(FC). (20)

By (32), f̂m(·; θ̂n) ∈ FC(m,λ,Q).

(3) Using the Rademacher complexity-based generalization bound, we have

R(θ̂n) ≤ R̂(θ̂n) + 2R̂adn(HC(m,λ,Q)) +

√
log(2/δ)

n

≤ R̂(θ̂n) + 4R̂adn(FC(m,λ,Q)) +

√
log(2/δ)

n
(Use Eq.(33))

. R̂(θ̂n) +
C(m,λ,Q)√

n
+

√
log(2/δ)

n
(Use Prop.7.1 and Eq.(32))

≤ 3Q2

m
+

2λ√
n
Q+

1√
n

(
2Q+

3Q2√n
λm

)
+

√
log(2/δ)

n
(Use Eq.(32))

.
Q2

m
+

Q√
n

+

√
log(2/δ)

n
.

4 A brief overview

Let X ⊂ Rd be a compact set. For f : X 7→ R, define

‖f‖F2 = inf
fe|X =f

∫
Rd

(1 + ‖ω‖2X)|f̂e(ω)|dω, (21)

where ‖ω‖X = supx∈X |ω>x|.

Assumption 4.1. Throughout this lecture, we let X = [0, 1]d and ‖ · ‖X = ‖ · ‖1.

We have proved that if ‖f‖F2 <∞, then f can be expressed in an expectation form:

f(x)− f(0)−∇f(0) · x = E(a,w,b)∼ρ[aσ(w>x+ b)], x ∈ X , (22)

with |a|(‖w‖1 + |b|) . ‖f‖F2 for any (a,w, b) ∈ Rd+2. Here σ is the ReLU activation function.
A direct consequence of this expectation-form expression is that f can be approximated by
two-layer ReLU nets without CoD.

10

Theorem 4.2. Suppose ‖f‖F2 < ∞ and f(0) = 0,∇f(0) = 0. Then, there exists a two-layer
ReLU nets f(x; θ) = 1

m

∑m
j=1 ajσ(w>j x+ bj) such that

‖f(·; θ)− f‖L2(µ) .
‖f‖F2√
m

(23)

‖θ‖2P :=
1

m

m∑
j=1

|aj |2(‖wj‖X + |bj |)2 . ‖f‖2F2
. (24)

Here ‖ · ‖P is known as the path norm of the network, which is the sum of norms of all
paths.

• It is worth noting that the control of path norm of that approximator is important for
obtaining the estimation error, as shown later.

5 The Barron space

We ask the question: Is the spectral Barron norm (21) tight in characterizing the “efficient”
approximation of two-layer neural nets? Unfortunately, it is not. A counter example is given by
the triangular function

Lemma 5.1. Let f : [−2, 2] 7→ R be given by f(x) = max(1− |x|, 1). Then, ‖f‖F2 =∞ and
f(x) = σ(x+ 1) + σ(x− 1)− 2σ(x).

Proof. Let fe be the zero extension of f , which is the triangular function in the whole space. Its
Fourier transform is

f̂e(ω) =
sin2(ω)

ω2
,

which leads to ∫
R
|ω|2|f̂e(ω)| dω =

∫
R

sin2(ω) dω =∞.

Then, we still need to show that over all the extension, we still have
∫
R |ω|

2|f̂e(ω)|dω = ∞.
We omit this part for simplicity.

The previous study motivate us to consider all the functions that admit the following repre-
sentation:

fπ(x) = E(a,w)∼π[aσ(w>x)]. (25)

Here we omit the bias term for brevity. This can be viewed as an infinitely-wide two-layer net.
It is the continuum limit of the scaled two-layer neural net:

fm(x; θ) =
1

m

m∑
j=1

ajσ(w>j x). (26)

For any f that admit the representation (25), the representation π is usually not not unique.
Define

Rf =
{
π ∈ P(R1 ⊗ Rd) : fπ(x) = E(a,w)∼π[aσ(w>x)]

}
. (27)

11

Definition 5.2 (The Barron space). Assume that σ is ReLU. Let

‖f‖2B := inf
π∈Rf

E(a,w)∼π[|a|2‖w‖21]. (28)

The Barron space B := {f : ‖f‖B <∞}.

• For a function f , one can think of π as the representation. Hence, the proceeding definition
means that we use the moments of π to quantify the complexity of fπ.

• The taking-infimum step in (28) is essential. First, it makes the function norm well-
defined in the sense that ‖ · ‖Bp is independent of the choice of representations. Sec-
ond, it means that the complexity of f is measured by choosing the best representation π
(adaptivity). For instance, a single neuron, we can have two representations:

σ(x1) = σ(x1) + rσ(x2)− rσ(x2). (29)

The according distributions π’s are given by

π1(a,w) = δ(a− 1)δ(w − e1)

π2(a,w) = δ(a− 1)δ(w − e1) + rδ(a− 1)δ(w − e2) + rδ(a+ 1)δ(w − e2),

respectively. For the former, the moment is 1; for the latter, the moment is (1 + 2r2)1/2.
The latter can be much larger than the former. This justifies why we must take the in-
fimum. As shown latter, it is also the key to separate neural nets and random feature
models.

Examples of Barron functions.

• We have shown that ‖f‖B . ‖f‖F2 . This contains a lot of functions.

• General functions with a linear low-dimensional structure: f(x) = g(W>x) with g :
Rk 7→ R. Obviously,

‖f‖B ≤ ‖W‖2‖g‖B.

This implies that ‖f‖B only depends on the intrinsic dimension k rather than the ambient
space dimension d.

6 Capacity-Controlled Approximation

For a two-layer neural network fm(·; θ), define the path norm

‖θ‖P :=
1

m

m∑
j=1

|aj |2‖wj‖21. (30)

The path norm is a discrete analog of the B1 norm. It is very useful in analyzing two-layer neural
networks.

12

Theorem 6.1 (Direct Approximation Theorem, L2-version). For any f ∈ B and m ∈ N, there
exists a two-layer neural network fm(·; θ) such that

‖f − fm(·; θ)‖2L2(ρ) .
‖f‖2B
m

‖θ‖P ≤ 2‖f‖B.

Proof. For f ∈ B, there exists a ρ such that f(x) = Eπ[aσ(w · x)] and E[a2‖w‖2] ≤ 2‖f‖2B.
Consider {(aj , wj)}j i.i.d. drawn from ρ. Then,

E(aj ,wj) Ex|
1

m

m∑
j=1

ajσ(wj · x)− f(x)|2 = Ex E(aj ,wj) |
1

m

m∑
j=1

ajσ(wj · x)− f(x)|2

= Ex
1

m

m∑
j=1

E(aj ,wj) |ajσ(wj · x)− f(x)|2 (Use the independence of (aj , wj))

≤ Ex
1

m

m∑
j=1

E(aj ,wj) a
2
jσ(wj · x)2 ≤ 1

m

m∑
j=1

E(aj ,wj) a
2
j‖wj‖21

≤
2‖f‖2B
m

.

Then, there must exist {(aj , wj)} such that the theorem holds.

Note that the control of path norm for the approximator is important for our later analysis of
the generalization performance.

7 Generalization analysis

Proposition 7.1. Let FQ = {f ∈ B : ‖f‖B ≤ Q}. Then,

R̂adn(FQ) . Q

√
log(d)

n

Proof. By definition, there exist ρ such that f(x) = Eρ[aσ(w>x)] for all x ∈ X and Eρ[|a|2‖w‖21] <
‖f‖2B. By Cauchy-Schwart inequality, we have Eρ[|a|‖w‖1] ≤

√
Eρ[|a|2‖w‖2] ≤ ‖f‖B.

Let ξ = (ξ1, . . . , ξn). By definition, we have

nR̂adn(FQ) = Eξ[sup
f∈FQ

n∑
i=1

ξi Eρ[aσ(w>xi)]] = Eξ[sup
f∈FQ

Eρ[|a|‖w‖1
n∑
i=1

ξiσ(ŵ>xi)]]

≤ Eξ[sup
f∈FQ

Eρ[|a|‖w‖1 sup
‖w‖1≤1

|
n∑
i=1

ξiσ(w>xi)|]

≤ QEξ[sup
‖w‖1≤1

|
n∑
i=1

ξiσ(w>xi)|]

≤ QEξ[sup
‖w‖1≤1

n∑
i=1

ξiσ(w>xi)] +QEξ[sup
‖w‖1≤1

−
n∑
i=1

ξiσ(w>xi)]

13

= 2QEξ[sup
‖w‖1≤1

n∑
i=1

ξiσ(w>xi)] (Use the symmetry of ξ)

≤ 2QEξ[sup
‖w‖1≤1

n∑
i=1

ξiw
>xi] (Use the contraction lemma).

Hence, the problem is reduced to bound the Rademacher complexity of linear class.

The regularized estimator. Consider the path norm-regularized estimator:

θ̂n = argmin
θ

R̂n(θ) +
λ√
n
‖θ‖P . (31)

For technical simplicity, assume supx∈X |f∗(x)| ≤ 1 and use the truncated network:

f̃m(x; θ) = min(max(fm(x; θ),−1), 1).

Theorem 7.2. Assume λ ≥ C, where C is an absolute constant. For any δ ∈ (0, 1), with
probability 1− δ over the choice of training samples, we have

R(θ̂n) .
‖f∗‖2B
m

+
‖f∗‖B√

n
+

√
log(1/δ)

n
.

• The three terms of the RHS denote the approximation error, estimation error, and error
caused by the exception set, respectively.

• The estimate does not suffer from the curse of dimensionality (CoD), and works well in
the over-parameterized regime, i.e., m > n.

Proof. Let Q = ‖f∗‖B.

(1) By the direct approximation theorem, there exits θ̃ such that

R̂n(θ̃) ≤ 3Q2

m
, ‖θ̃‖P ≤ 2Q.

By definition,

R̂n(θ̂n) +
λ√
n
‖θ̂n‖P ≤ R̂n(θ̃) +

λ√
n
‖θ̃‖P ≤

3Q2

m
+ 2

λ√
n
Q.

Hence,

‖θ̂n‖P ≤ 2Q+
3Q2√n
λm

=: C(m,λ,Q)

R̂n(θ̂n) ≤ 3Q2

m
+

2λ√
n
Q. (32)

(2) Let HC = {(f̃m(x; θ) − f∗(x))2 : ‖θ‖P ≤ C}. Since t2 is 2-Lipschitz continuous for
t ∈ [−1, 1]. By the contraction lemma,

R̂adn(HC) ≤ 2R̂adn(FC). (33)

By (32), f̂m(·; θ̂n) ∈ FC(m,λ,Q).

14

(3) Using the Rademacher complexity-based generalization bound, we have

R(θ̂n) ≤ R̂(θ̂n) + 2R̂adn(HC(m,λ,Q)) +

√
log(2/δ)

n

≤ R̂(θ̂n) + 4R̂adn(FC(m,λ,Q)) +

√
log(2/δ)

n
(Use Eq.(33))

. R̂(θ̂n) +
C(m,λ,Q)√

n
+

√
log(2/δ)

n
(Use Prop.7.1 and Eq.(32))

≤ 3Q2

m
+

2λ√
n
Q+

1√
n

(
2Q+

3Q2√n
λm

)
+

√
log(2/δ)

n
(Use Eq.(32))

.
Q2

m
+

Q√
n

+

√
log(2/δ)

n
.

8 Final remarks

We present a function space viewpoint for understanding two-layer neural networks. Similar
approaches can be extended to many other neural network models. We refer interested read-
ers to https://leiwu0.github.io/teach/pku-summer2021/lecture-note/
lec-7.pdf for more details.

References

[Barron, 1993] Barron, A. R. (1993). Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Transactions on Information theory, 39(3):930–945.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal func-
tion. Mathematics of control, signals and systems, 2(4):303–314.

[Jones, 1992] Jones, L. K. (1992). A simple lemma on greedy approximation in Hilbert space
and convergence rates for projection pursuit regression and neural network training. The
annals of Statistics, pages 608–613.

[Siegel and Xu, 2020] Siegel, J. W. and Xu, J. (2020). Approximation rates for neural networks
with general activation functions. Neural Networks, 128:313–321.

[Sitzmann et al., 2020] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wetzstein, G.
(2020). Implicit neural representations with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473.

15

https://leiwu0.github.io/teach/pku-summer2021/lecture-note/lec-7.pdf
https://leiwu0.github.io/teach/pku-summer2021/lecture-note/lec-7.pdf

	Universal approximation properties
	Approximation with rates
	The Jones' trick: probabilistic representation via Fourier transform
	The Barron's trick
	An alternative Fourier analysis
	Step functions
	ReLU activations

	Generalization analysis
	A brief overview
	The Barron space
	Capacity-Controlled Approximation
	Generalization analysis
	Final remarks

