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Outline

@ Harndess of Optimizing Two-layer Nets (i.e., Learning Barron Functions)

@ Trainability in Neural Tangent Kernel Regime (i.e., Learning RKHS functions)
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Motivating Questions

e Different from traditional ML, NNs are non-convex even for two-layer ones.
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Motivating Questions

e Different from traditional ML, NNs are non-convex even for two-layer ones.

® The trainability of NNs highly depend on the target function f*. Therefore, we
need to carefully specify target functions when studying the trainability.

® We already show Barron functions can be learned efficiently in terms of
approximation and estimation. Then, a very nature questions is:

Can Barron functions be learned in terms of optimization 7

Keep in mind that we in fact have two subproblems:
® How do commonly-used algorithms, e.g., 2LNNs+SGD, perform?

® We can also design new algorithm! This addresses the question: if there exists an
algorithm such that 2LNNs can be learned efficiently?
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Main result

Definition 1
We say an algorithm A is efficient in learning a function class F, if for every ¢ > 0,
f* € F, the time complexity for A returning an solution f such that ||f — f*[| < e

satisfies:

Time complexity = poly(1/e,d).

Otherwise, we say A suffers the curse of dimensionality (CoD).
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Main result

Definition 1
We say an algorithm A is efficient in learning a function class F, if for every ¢ > 0,
f* € F, the time complexity for A returning an solution f such that ||f — f*[| < e
satisfies:

Time complexity = poly(1/e,d).

Otherwise, we say A suffers the curse of dimensionality (CoD).

® The “Barron structure” is insufficient to ensure an efficient learning no matter
which algorithm is used.

® We need to identify more refined structures that can guarantee an efficient
learning. We will discuss this later.
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* The cryptographic perspective.
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Learning the intersection of halfspaces

® Let X = {—1,1}¢ be the Hamming cube and consider the binary classification
problem, i.e., f*: X — {—1,1}.

® Let ogep be the Heaviside step function.
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Learning the intersection of halfspaces

® Let X = {—1,1}¢ be the Hamming cube and consider the binary classification
problem, i.e., f*: X — {—1,1}.

® Let ogep be the Heaviside step function.

We will need the following hardness result for learning the intersection of halfspaces
(LIH).

Theorem 2 (Theorem 1.2, )
Let H={z > ogep(w'x —b—1/2) : b€ N,w € N || + ||w||]; < poly(d)}. Define
Hi ={x— hi(x) ANha(x) A--- ANhg(z) @ hi € H}.

Assume K > dP with p > 0. Then, under a certain cryptographic assumption, Hy is
not efficiently learnable.
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Learning the intersection of halfspaces (cont’d)

® The proof essentially reduces the LIH problem to some classical hard problems,
e.g., k-coloring.
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Learning the intersection of halfspaces (cont’d)

® The proof essentially reduces the LIH problem to some classical hard problems,
e.g., k-coloring.

® The cryptographic assumption means that we assume that these hard problems
are indeed hard in certain sense. If this assumption does not hold, then the
modern cryptosystem can be broken in a polynomial time.
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Learning the intersection of halfspaces (cont’d)

® The proof essentially reduces the LIH problem to some classical hard problems,
e.g., k-coloring.

® The cryptographic assumption means that we assume that these hard problems
are indeed hard in certain sense. If this assumption does not hold, then the
modern cryptosystem can be broken in a polynomial time.

® We shall show two-layer neural nets can simulate the functions in H.
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Hardness of learning two-layer ReLU nets

Theorem 3 ( )

Let X = {-1,1}, and G = {f € B : ||fllz < poly(d)}. Then, G is not efficiently
learnable.
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Hardness of learning two-layer ReLU nets

Theorem 3 ( )
Let X = {-1,1}, and G = {f € B : ||fllz < poly(d)}. Then, G is not efficiently
learnable.

® The intuition is that 2-layer neural network can simulate the intersection of
hyperspaces.

® The step function can be approximated by two RelLU functions very well:

Ostep(t) = lim (ReLU(at) — ReLU(at — 1)) .

a—00
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Hardness of learning two-layer neural nets

Proof:
e letc(z)=w'x—b—1/2. Sincew € N: z € {-1,1}9,b € N, we have
le(x)] > 1/2. Assume ||w]||1 + |b] < poly(d).
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Hardness of learning two-layer neural nets

Proof:
e letc(z)=w'x—b—1/2. Sincew € N: z € {-1,1}9,b € N, we have
le(x)| > 1/2. Assume ||w]|1 + [b] < poly(d).
® Consider k hyperplanes {c;}¥_;. Let hi(z) = ostep(ci(z)) € H.
® Let

1 (& 1
9(@) = 3 Z;omm(x)) ~k+g

1 (& :
=5 (Z (ReLU(2¢;i(x)) — ReLU(2¢i(x) — 1)) — k + 3) _

i=1
Obviously, g is a 2-layer ReLU network with the path norm bounded by
1 1<
o (k +3+ ;(2(2Hwi’1 +[bi] +1/2) + 1) = poly(d).
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® The blue part is equal to ogtep(ci(z)) due to ogtep(2) = ReLU(22) — ReLU(2z — 1)
for |z| > 1/2.

1.0

—step
== ReLU(2x)-ReLU(2x-1)
0.8

0.6

0.4

0.2

0.0

® We can verify that

sign(g(x)) = h1(z) A ha(z) A--- A hg(z), Vo € {~1,1}%
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Remarks

® Note that similar results also hold for two-layer nets with the sigmoid activation
function, since the sigmoid function can approximate the step function as well.
See [Livni, et al, 2014] for more details.

2We use it in establishing a lower bound of the linear approximation of Barron spaces.
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Remarks

® Note that similar results also hold for two-layer nets with the sigmoid activation
function, since the sigmoid function can approximate the step function as well.
See [Livni, et al, 2014] for more details.
® The above results rely on the hardness of certain classical hard problems.
® Pros: It implies that the hardness holds for any algorithms.
® Cons: This perspective is too abstract. It does not provide any concrete examples
and intuitions behind the hardness of training.
® In the following, we will provide a more intutive understanding from the
orthogonal function perspective 2.)

2We use it in establishing a lower bound of the linear approximation of Barron spaces.
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Orthonormal classes

Let p € P(X). Forany fi, f2 € L*(p), let (f1, fa) = Exnp[f1(2) fo()].

Definition 4 (Orthonormal class)

Let F be a function class. We say that it is an orthonormal class, if (f;, f;) = d; ; for
any fi, f; € F.
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Orthonormal classes

Let p € P(X). Forany fi, f2 € L*(p), let (f1, fa) = Exnp[f1(2) fo()].

Definition 4 (Orthonormal class)
Let F be a function class. We say that it is an orthonormal class, if (f;, f;) = d; ; for
any fi, f; € F.

° Let By={f €B:|fllz < d?}. We will show that B, contains an orthonormal
subset F = {f1,..., fm} with m = exp(d).

® We will show that learning the orthonormal class F is hard if |F| = exp(d).
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Parity functions

o Fi = {fuo(x) = (=) : v € {0,1}}, where = € {0,1}<.
e Consider p = Unif({0,1}%). Then, we have

d

(fon fir) = Ea[(=1) T #] = By [ J (-1t
i=1
d
= [[Eal(-D)® 0] = 6,0
i=1

Hence, J; is an orthonormal class with || = 2.
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Parity functions as two-layer neural nets

o(2x+1)—20(2x) + o(2x—1)

1.0

0.8

0.6

0.4

0.2

0.0

-15 -1.0 -0.5 00 05 1.0 15

® QObservation:
® The function (—1)° for s € N can be implemented using the triangle wave.
® The triangle wave can be written as a linear combination of the hat function, which
is a linear combination of ReLU function (left figure).
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Parity functions as two-layer neural nets

o(2x+1)—20(2x) + o(2x—1)

1.0

1.0
0.8 0.5
0.6
0.0
0.4

-0.5
0.2

0.0 -1.0
-15 -1.0 -0.5 00 05 1.0 15 0 2 4 6 8 10

® QObservation:
® The function (—1)° for s € N can be implemented using the triangle wave.
® The triangle wave can be written as a linear combination of the hat function, which
is a linear combination of ReLU function (left figure).

* Note that v'2 € {0,1,...,d}. Let o be the ReLU function. Then,

d
(~1)" ¥ = oui(v @) = Y (~Diona(v @ i)
=0
d
=3 (-1 ( 20Tz — 20+ 1) — 20(20T & — 2) + o(20T & — 2 — 1))

=0
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Parity functions as two-layer neural nets (Cont’d)

® |t is easy to show that the path norm of this network is bounded by Cd?.
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Cosine neurons

Consider the domain X = [0, 2]<.
e Let Sy = {x > cos(w'z) : we N, Zle w; < d}.

® |n the previous lecture, we have shown that

|Sa] 2 27 (3)
Iflls < d?  VfeSa. (4)

® Hence, for this continuous case, S; contains exponential many orthonormal
functions.

16 /47



Remark

o Fyi={p(w'z): ||lw| =Vd}. D=N(0,1). [Shamir, 2017] shows that as long
as ¢ is periodic, under some mild condition, F contains an orthonormal subset
Fr=A{f1,--, fm} with m = exp(d).
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Gradients for an orthonormal class

Let h(-;0) be any parametric model. Denote by Rf () = E,[(h(x;0) — f(z))?] the
risk. Then, we have the following theorem.

Theorem 5

Let F be an orthonormal class. Let P denote the uniform distribution over the space
of F and g(0) = E;p[VR/(0)]. We have

Eo[[|Voh(z: )]

7 ©

E;p[(VRI(0) — g(0))%] <
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risk. Then, we have the following theorem.

Theorem 5

Let F be an orthonormal class. Let P denote the uniform distribution over the space
of F and g(0) = E;p[VR/(0)]. We have

By p (VR (8) — g(6))?] < el Vb OIF)

=T ©

e If | F| is exponentially in d, e.g., the parity functions. The variance of gradients is
exponentially small.
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Gradients for an orthonormal class

Let h(-;0) be any parametric model. Denote by Rf () = E,[(h(x;0) — f(z))?] the
risk. Then, we have the following theorem.

Theorem 5

Let F be an orthonormal class. Let P denote the uniform distribution over the space
of F and g(0) = E;p[VR/(0)]. We have

E.[IVoh(z;6)|%]

7] ©)

E;p[(VR!(0) - 9(6))% <

e If | F| is exponentially in d, e.g., the parity functions. The variance of gradients is
exponentially small.

® This theorem implies that the “information” about the target function contained
in the gradient is exponentially small.

® Therefore, one would expect that gradient-based methods will be unlikely to learn
the function class F. For instance, this information might be distroyed by the
rounding error of a finite-precision machine.
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Proof:

® First, the gradient can be written as follows
VoR! = Ey[(h(x;0) — f)Veh(x;0)] = Co — (f, Voh(x;0)),

where Cj is independent of the target function f.
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Proof:

® First, the gradient can be written as follows
VoR! = Ey[(h(x;0) — f)Veh(x;0)] = Co — (f, Voh(x;0)),

where Cj is independent of the target function f.

® Hence,
Ef[(VoR/ — g(0))* < Ef[<f, Voh(w;0))?] (6)
<E Z £, Voh(;0))? (7)
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Hardness of learning with GD: Setup

Setup:

® Assume F to be an orthonormal class with |F| = 2¢. Consider the binary
classification with the hinge loss. The risk is given by

RY(0) := E[max(0,1 — h(z;0) f(x))]. 9)
e Assume |h(x;6)| <1 and |f(x)| <1 for any z € X'. Then we have

Ef[|VoR! (O)|°] = Ef (Eolf () Voh(;0)])*

1 [Veh|* _ Gy
- P ;h 70 2 < < .
| F| Zﬁ {f (50))" < |F|  — 2d

Remark: the above assumption holds for parity functions.
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Hardness of learning with GD

Theorem 6

Assume the model satisfies that sup,cx |h(z;6)| <1 and
E.[|Voh(z;61) — Voh(z;602)||%] < L||61 — 02]|%. Let 00,{91{r be the GD solution at time
0 and time t, respectively. Then, there exist C1,Cy such that

Cot

Ef[)16] — 8ol|?] < C1(e272 — 1), (10)

where C, Cy only depend on L and 6.
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Hardness of learning with GD

Theorem 6

Assume the model satisfies that sup,cx |h(z;6)| <1 and
E.[|Voh(z;61) — Voh(z;602)||%] < L||61 — 02]|%. Let 00,{91{r be the GD solution at time
0 and time t, respectively. Then, there exist C1,Cy such that

Cot

Ef[16f — 60l’] < Ci(e>7? — 1), (10)
where C, Cy only depend on L and 6.

The above theorem implies that GD solution is exponentially close to the initialization
in polynomial time.
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Hardness of learning with GD (Cont’d)

More rigorously, we have the following corollary.

Corollary 7
For any T = poly(d), there exists a f € F such that

poly(d)

I6f — 6ol < 22

, Vt €[0,T]

where C' only depends on L and 6.
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Hardness of learning with GD

Proof:
* G(0) = E,[||Voh(z;0)||?] satisfies

G(0) < G(0y) + 2L||6 — 6>
® Therefore,

dE;[|6] — bol|?]
dt

= 2E[(0 — 60, —VoR (6]))]

= VESIe] - 00l E e

<

<

(11)

(12)

(13)

1
V18] — B0 E5(G(60) + 2L16] — ol). (19
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Hardness of learning with GD

Proof: Let §; = Ef[Hﬁf — 6o||?]. Then, we have

5i < 2278 (V2L5, + v/G(00)). (15)

By Gronwall’s inequality, we obtain
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Numerical evidence

Consider learning parity functions with online SGD. Fig. 1 shows the convergence of
SGD. Here, the model is two-layer neural nets with width being 2000. The hinge loss
L(y,y") = max(0,1 — yy') is used, batch size is 2000 and learning rate is 0.002. We
see clearly that when d = 20, the training process does not show any improvement in a
reasonable time.

Learn parity functions with SGD

100 A

1071
" — d=5
8 102 d=10
)

— d=20
1073
1074
0 10000 20000 30000 40000

Number of steps

Figure 1: Learning party functions with SGD and two-layer neural nets.
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Summary

® Learning a subset of two-layer neural nets, whose path norms are bounded by
poly(d), can be reduced to certain classical hard problems, whose hardness is
assumed to be true. Otherwise, the modern cryptosystem can be broken in
polynomial time. This type of hardness results hold for any algorithms.
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Summary

® Learning a subset of two-layer neural nets, whose path norms are bounded by
poly(d), can be reduced to certain classical hard problems, whose hardness is
assumed to be true. Otherwise, the modern cryptosystem can be broken in
polynomial time. This type of hardness results hold for any algorithms.

® For orthonormal classes, we show that the gradient variance (wrt the target
function) is exponentially small. Hence, gradient-based algorithms are unlikely to
succeed. This observation hold for any parametric model as long as they satisfy
certain Lipschitz condition.

® Typical examples include the parity function and the cosine neuron:
f(x) = cos(w'x). The Barron norms of these functions are not greater than
O(d?).

® These hardness results suggest that the Barron space is very likely too large to
study the training of two-layer neural nets.
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More Remarks

T

More intuitions behind the hardess of learning f(z) = ¢(w
“randomized function”.

x) with ¢ being a

The analogy with cryptography system?
® Frequency perspective?

Symmetry perspective?
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Convergence of GD in NTK regime
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Setup

e Consider the two-layer neural network (2LNN):
fol2:0) = ajo(b] ), (16)
j=1

where 6 = (a, B) be the parameters, and o(z) = max(0, z). The results can be
extended to general Lipschitz activation functions with small modifications.
® The empirical risk with the square loss is given by
. 1 &
R(0) = o Z(fm(l’i; 0) — yi)°. (17)
i=1

® Let e; = fin(wi;0) — y;. The GD flow is given by

n
(ij = — Z ela(b;racz)
=1

i)j = - Z 61‘0,]‘0'/(1);.%'1')(131‘. (18)
=1
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Setup (Cont’d)

* Let mo = Unif(S?=1). We will mainly focus on the initialization:

aj =0, bj~my, forj=1,...,m. (19)
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Convergence results

Define an associate kernel
k(z,2') = Eyor[o(b z)a (b 2)).

Let K = (k(z,z;)) € R™" be the kernel matrix, and A\, (K) be the smallest
eigenvalue of K.

Theorem 8

Let 6(t) be the GD solution at time t. For any 6 € (0, 1), assume that

2
W. Then, w.p. 1 — & over the initialization, we have

m >

A~

RO(1)) < e~ ™R ().
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A general observation: Neural tangent kernel

The proof relies on the following observation.
® The GD flow can be written as

1) = = D2 (7l 600)) — 90) Vo i (1)
=1
o Let e;(t) = f(x4;0(t)) — yi. Then, we have
T — (9 5360),606)) = — 3 (V1o 06)), ¥ s 6(0) e ().
=1

® Let G = (G;r) € R™™ with G; ;v = (Vf(24;0),V f(xi;0)) be the Gram matrix,
and e = (e1,...,e,) € R™. Then,
de(t)
dt
® If \,,(G(6;)) is bounded away from zero for any t > 0, then the empirical risk
converges to zero exponentially fast, since

= —GO(1))e(t). (20)

dll Cgtﬂl? —2e(t) TG(O)e(t) < ~20u(G(0) e ()] (21)
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The Gram matrix for a 2LNN

* In this case, G(0) = mK ()

ZO‘ Ti)o b xy) —I—a ‘o (b x;)o '(b;xi/)aczxi/.
7j=1

_1
m
® As m — oo, we have R
Ki,i’ — Km‘/ = k:(a:i, {/CZ'/).
where

k(z,2') =Euplo(d 2)o(d' ') + a?d’ (b 2)o’ (b 2")a " ). (22)

® For the initialization considered here,
k(z,2") = Bporo [0 (b 2)o (b 2")]. (23)

Here, only the gradients wrt a contribute to the kernel.
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Positivity of the Gram matrix at initialization

Assume \,(K) > 0. For any § € (0,1), if m > %, with probability 1 — ¢ over
the random initialization, we have

M(G) > A (K).

m
2
Remark:

® The condition: A, (/) > 0 does not allow two samples z; and z; to align with
each other for i # j.

® If {x;}7, are independently drawn from Unif(S¢!), [Braun, 2006] proved that
with high probability, A,,(K) > nA, /2, where )\, is the n-th largest eigenvalue of
the kernel function k(-, ).

® For the ReLU activation function, one can show that \,, > %. So,
A (K) > Cy/n'/¢ (see the appendix of (Ma et al, MSML2020)).

® We will leave \,,(K) > 0 as a basic assumption.
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Positivity of the Gram matrix at initialization

Proof:

® By Hoeffding's inequality, we have for any i, j € [n]

% S o(bT 20)o (0] 2) — Elo(b] )0 (6] ;)]

s=1

P{|K; ;—Ki;| > e} = IP’{

> 5} < 6—2m&
® Taking the union bound leads to
n

P{HK - KHF < 5} >1- Z P{|KZJ — Ki,j’ > 5} >1-— n2€_2m52.
i,j=1

® Using the Weyl's inequality, we have
M(K) 2 Ma(K) = |IK = K| = A(K) —e.

o Take € = A\, (K)/2 and let the failure prob. n2e=2m=* < §. This leads to

log(n2/6§
m > S
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Gradient descent near the initialization

® Define a neighbor of the initialization by
5 - An (K
7(00) = {0 1K) - Kol < >4}

e Using Lemma 9, for any ¢ € (0, 1) with probability 1 — 0, we have for any
0 € Z(0y) that

M(K () > Ma(K (60)) — | K (60) — K(8)||F > An<2K> _a(B) _ Aa(K)

Let to =inf {t : 0(t) ¢ I(0y)}. For any d € (0,1), assume m > 13%\(5(2[435)- For any
t € [0, o],

A~ _ mAn(K)

RO®) <e 2 'R(f).

Proof:
d 1Ldle®)]?* —-m 1~ —m A\ (K) 5 —mA(K) A
LR(0) = 5 DO = T e < T 2 - Tz,
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Long-time convergence of GD

Proof of Theorem 8:
® We only need to prove that tg = co. Otherwise, assume that ¢y < co.
® First, the empirical risk is smooth in the sense that

IVR(O)[]* < [|0]*R(6).
® Then,

to to
16(t) — 6oll < /0 VROt < max [0(0)] / VROt
to mAn(K) max teOt]He( )
o(t t o)dt < 0 i
< e o)) [ /R REs

Let v = max(o 40 [|0(t) — bo||. Using the fact that
160]l = /S Tbs ()% = /i, we have

catvm
~ mA\(K)’

which leads to

P
~ oK) 5747



Long-time convergence of GD (Cont’d)

Proof of Theorem 8:
® Since o is 1-Lipschitz continuous, we have for any ¢ € [0, t¢],

IR (0(t)) - K (6) ||F—Z|*Z ()20 (0s(1) a5) — — >~ (b0
s=1 s=1
2
< 25 (10(t) = Boll + 16(2) = 662
n2
57(7‘1'7)

® By the assumption, v < 1. Hence, m > 20n/\,(K) leads to

1K) - K@)l < 22,

which contradicts the definition of ty. Therefore, tg = oco.

o (bs(0)
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Remarks

® In the above analysis, the main ingredient is the positivity of the Gram matrix G,
which relies on the positivity of the tangent kernel:

k(z,a') = lim m~*(Vf(x;0), Vf(a';0)),

where « is a specific factor related to the initialization such that the limit exists.
® The key observation is that b;(t) — b;(0) ~ . The parameters of the convergent
solution is close to the initialization.
® The results can be extended to general initializations. For instance, consider the
balanced initialization: a; ~ N(0,1/m),b; ~ N (0, I5/(md)), for which the Gram
matrix
m
Gm‘/ = Z U(b]TmZ)U(b]TxZ/) + a?a’(b;xi)a/(bjxi/)mjxi/
j=1

= k(i ) = Byupnr0,1,/d) [o(b )b zy) + o' (b x)o’ (b )z x4] as m — o
We only need to show that smallest eigenvalue of the kernel matrix:

K = (k(z;,zy)) € R™™™ is away from zero.
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Characterization of the whole GD trajectory

The following theorem concerns the function class that the GD solutions can represent.
Let fm(25a, By) = >, a;o(bj(0)"x) be the random feature model (RFM).

Theorem 11 (E, Ma, Wu, 2019)

Let 6, = {a(t), B(t)} be the GD solution at time t, and a(t) be the GD solution of

RFM with zero initialization. For any 6 € (0,1), assume that m = % log(%z).

Then, with probability 1 — § over the random initialization, we have

;a — x:a(t): H— W
s | fm (25 a(t), B(t)) = fm(z;a(t); Bo)| < WO A

Remark:

® The theorem implies that the GD trajectory of a wide 2LNN is uniformly close to
that of the associate RFM.

® The result is implicit in the proof of convergence result: 6(t) — 6y < 1.
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Proof sketch

|[fm(z; a(t), B(t)) = fm(x;a(t), Bo)| as(t)|o(bs(t) ") — o (b5(0) )]

NE

1

V)
I

Ms

as(1)]|bs(t) — bs(0)]]

Vo)
Il

1 m
< 52 )+ 1bs(t) = b5 (0)]%)
s=1
1 ) 1
= — — <

The closeness of a(t) and a(t) is a consequence of the closeness of B(t) and By. The
proof is lengthy but straightforward.

41 /47



Compare the NN and RFM under GD dynamics

04 I~ | BMesmm=mmm==mmmmmmmmmmr | ] M e
nn: train
104
9 ©nn: test
3 .
— 1os rf: train
©orfe test
o o \
1076
0 10000 20000 30000 40000 0 5000 10000 15000 20000 0 500 1000 1500 2000
Number of iterations Number of iterations Number of iterations

Figure 2: GD dynamics for fitting a single neuron f*(z) = o(z;) where x € S¥~1. Here
d =20,n = 50. Left: m = 4; Middle: m = 50; Right: m = 1000.
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Comparison between the implicit and explicit regularization

Consider the explicit regularization:

s [log(d)
min R(0) + A/ —~ > laglllb; Iz
j=1

—— Reg
—— un-Reg

0.020

0.015

Test Loss

0.005

0.000

10° 10t 10? 10°

Width: m

Figure 3: Fitting a single neuron f*(x) = o(x1) where x € S¥~1. Here d = 20,n = 50. The
nn-Reg solution is the GD solution without any regularization.
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Lazy training

® In the previous analysis, the main insight is that for the highly over-parameterized
setting, the perturbation satisfies |6 — 6| < 1.

® Why is a small deviation enough? Consider the expansion around the initialization:
Jm(30) = fm(2;600) + (0 — 00,V frn (25 60)) + o(]|0 — bol))- (24)

® Note that the each entry of § — 6 is in the order of O(1/m) is enough to ensure
the change of output: f,,(z;0) — fi(2;600) ~ 1. Meanwhile,
16— boll = O(1/v/m) < 1.

® So essentially, only the linear part contributes to the final model. In our case, the
linear part is a RFM.

® |n the literature, training methods that essentially only explore the linear part of a
nonlinear model to fit data are called lazy training (Chizat, Oyallon, Bach, 2018).
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Neural tangent kernel

® |n the lazy training regime, the model essentially performs kernel method with the
kernel given by:

(2, 2") = (V fm(;600), V f (23 60)),
which is called tangent kernel.

e Large width limit: For neural network models fy,(+;6), ky, often has a limit with
a proper rescaling:

k(xz,2') = lim m™ %k, (z,2).
m—00

k(-,-) is called the neural tangent kernel (NTK) (Jacot, Gabriel and Hongler,
2018).
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Multi-layer fully-connected nets

The observation that GD only performs lazy training can be extended to general wide
neural nets. The proof is similar to the case of 2LNN and can be summarized as
follows.
® Recall that
el _
dt
e First show that if m is sufficiently large, at initialization A, (G(6p)) > mA,(K),
where K is the kernel matrix of NTK. Assume that A\, (K) > 0 (Justify it).
® Let I(6p) be the ball around the initialization such that the
A (G(0)) > mA,(K)/2. Let ty be the time that 6(¢) first leaves the ball. Then,
for any t € [0, o], we have R, (8(t)) < e~ (F)tR, (gy) for a constant ¢ > 0.
® The combination of exponential convergence and continuity of R implies
poly(n, Ap(K))
— .

—2e(t)TG(O(t))e(t). (25)

16 — ol S/OO!\Vﬁ(@’:)\ldt’S/OOC(H@(t)H) R(6(t))dt’ <

® When m is sufficiently large, we must have 6, € Z(6y) for any ¢ > 0.

We refer to (Arora et al, 2019) for a detailed proof for multi-layer fully-connected nets.
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Summary

® Under conventional setting, neural nets trained by GD converges to kernel
method. Moreover, the convergence is uniform in time. It means only when f*
lies in the appropriate RKHS, the GD solution can generalize well.

® What happens when the network is less over-parameterized?

® Can we still learn larger class of target functions in the over-parameterized regime?
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