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® Deep Nets Have Stronger Adaptivity to (Anisotropic) Smoothness .

® Depth Separation via Dimension.
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Piecewise Linear Approximation

Let t(x) = max(0,1 — |z|) be the triangular function. |
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Theorem 1

Let f:]0,1] = R with sup,e(o 1 | f"()| < M. Foranyn €N, let h = Land z; =t
the grid points. Consider the piecewise linear interpolation:

Pnfzg;f(xi)t(gc;xi).

Then, we have v
1Pnf = fll2 S —
n
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Triangular map

¢ Consider the shift triangular map given by g(z) = ¢(2z — 1) which ¢ : [0,1] — R.

gi(xr) =gogo---og(x).
L —
l

® An illustration of g (i.e, g1) and g; is provided in Figure 1.

Figure 1:
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Illustration of the shift triangular function and the triangular wave.
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Key Observations:

e g has 2/ linear pieces but can be implemented with a MLP using only [ layers.

First, g(z) = ReLU(2z) + ReLU(2z — 2) — 2ReLU(2z — 1), i.e., g can be exactly
represented as three neurons. Hence, g; can be represented as 2[-layer neural net
with the width less than or equal to 3.

® Two-layer ReLU nets of width m have at most m pieces.

® In summary, for multilayer ReLU nets, the number of pieces grows with the width
polynomially but grows with depth exponentially.

This observation already gives us separation between deep and shallow RelLU nets?
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A Quantitative Result

Theorem 2 (Telgarsky, 2016)

Consider the target function f* = g;. Then, g; can be implemented as a cyl-layer
neural nets with the width less than ca. For any 2-layer ReLU net f,,(-;6) with the

width m = poly(l), we have

1
/0 (@3 6) — (@) dz > cs.

Here c1, co, c3 are absolute constants.
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Proof

® For a two-layer neural network of width m, let M denote its number of linear

pieces. Obviously,
M ~m.

® The proof of the lower bound proceeds by counting triangles as illustrated in
Figure 2. Draw the horizontal line y = 1/2. Then, there are 2! (half) triangles.

1
/ | fm(2;0) — gi(x)| dx > [number of surviving triangles] - [area of the triangle]
0

1 1 1 1

> _oany (2. — . 2

z 5t ) (3 5mg)

1/1 M 1

> (-] > —. 1
~2 <4 2l+2> = 16 (1)
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Remark

Why is it good to choose L' norm to measure the approximaiton error?
e Can you establish a similar separation result for L> norm?
What is the implication?

® Deep nets are good at approximating high-frequency functions?
® Deep nets are good at approximating non-smooth function?

Can we claim we establish establish a separation between deep and shallow nets
from a frequency perspective?
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Approximating 2> with Shallow Nets

Let G,, denote the set of piecewise linear functions with the number of linear pieces
less than or equal to m. Then, for any g € G,,,, we have
1

sup |g(z) — a?| ~ —;.
z€[0,1] m?
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Proof of Lemma 3

¢ Note that considering one piece is enough. For any [a,b] C [0,1], let

I p = min max Fa

—cx —d|.
c,deR t€]a,b]

e Simplification:
I, = min max |(z — a)® + 2ax + a® — cx — d
c,deR tea,b]

= min max |z? - 2cz — d|
c.deR t€[0,b—a]

= min max |(z—c)?—d
c,deR t€[0,b—al

= midnmax{|(b —a—c)?—d|, | —dl|d}.
® We must have I, > (b —a)?.
° If[c2—d| 2 (b—a)?or|d Z (b—a)? Then, I,;, > (b—a)*
® Otherwise, we must have ¢ = o(|b — a|),d = o(|b — a|?), under which
(b—a+c)?—d=|b—al?
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Proof of Lemma 3 (Cont’d)

® Since g € G, the number of piecewise linear parts of g is at most m. There must
exist a piece [a, b] such that |b —a| 2 1/m. Then,
1

sup |g(z) — 2% > sup |22 —cx—d| > |b—al* > —-
z€[0,1] z€la,b] m
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What about the square loss?

Let f(z) = ax® + bx + c. If g is at most m pieces. Then
a

_ >
f 9||L2([o,1}) )

Proof: First, consider the one-piece case:

B B
I, 5(f) ::inf/ (az® + bz + ¢ — (um+w))2d$:inf/ (az® + bz + ¢)? dx
[0} o

u,w b,c

= inf/1 (B—a)(az? + bz +¢)?dz = Qu(f — ),

be J_1

where Q, = inf}, . fil(aZQ +bz +c)?dz.
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What about the square loss?

Let f(x) = ax® + bz + c. If g is at most m pieces. Then

a
If— g||L2([0,1}) 2 me

Proof: First, consider the one-piece case:

B B
I, 5(f) ::inf/ (afn2+ba:+c—(u:z:—l—w))de:iglf/ (az® + bz + ¢)? dx

= inf/1 (B—a)*(az® + bz +¢)?dz = Qu(B — a)®,

be J_1

where @, = infy . fil(azQ + bz + ¢)?dz. For the general case, denote by
0=20< 21 <---< zn =1 the knots. Then,

- - Qa
If - 9”%2([071]) = Zfzj,l,zj(f) > Qq Z(Zj - Zj—l)5 2 A
j=1 j=1

12/38



Compute Q,

This can be done by using orthogonal polynomials. Let {5}, be the Legendre
polynomials, which are orthonormal wrt in L?([—1,1]):

322 —1
ho(x) = 17h1(37) = x,hg(x) = 5 .
For any f € L?([-1,1]), we have
Ciol}fl | f — cihy — coholl3 = ;;(f, hj)?.

Let f, = azr?. Then,

Qa = inf |lfa = erhy = cohol3 = (fu h2)? ~
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Approximating 2> with Deep Nets

For any £ > 0, there exits a neural net f, whose depth and width is O(log(1/¢)) and
O(1), respectively, such that

sup |f(z) —a?| <e.
z€[0,1]

An illustration of the approximation scheme:
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Proof

® First, we can show that [ = 2,3,...,

Py f*(z) — Puf*(z) = Va € [0, 1]. (2)
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Proof

® First, we can show that [ = 2,3,...,

Pyr f'(2) — Py f*(a) = 28 wp 0,1, (2)

® Construct a neural net as follows

Yy =
y = 9(yi-1)
OEDIE
=1

15/38



Proof

® First, we can show that [ = 2,3,...,

Pyr f'(2) — Py f*(a) = 28 wp 0,1, (2)

® Construct a neural net as follows

Yy =
y = 9(yi-1)
OEDIE
=1
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Proof

® First, we can show that [ = 2,3,...,

Pyr f'(2) — Py f*(a) = 28 wp 0,1, (2)

® Construct a neural net as follows

Yy =
y = 9(yi-1)
OEDIE
=1

® The last step introduces skip connections from each layer to the output layer. So,
the depth and width of this net is O(L) and O(1), respectively.
By Lemma 1,
1

sup |f — f(z)| = sup |Puf(z) — f(2)| S na
z€0,1] z€[0,1]

Taking 1/(4") = ¢, we complete the proof.
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Why is approximating 2” interesting?

2

From the approximation of f(x) = x*, we can get many other results.

® Fast approximation of the multiplication (z,y) — xy using

(z+y)? —a? —y?
> .

Ty =

e Fast approximation of any monomials: z*.

* Fast approximation of polynomials: ag + aiz + - - - + aga*.

® Fast approximation of functions that can be efficiently approximated by
polynomials, e.g., Sobolev spaces.

Remark: The above argument implies that for achieving precison ¢, deep ReLU nets
with L = log(1/¢) performs as well as polynomials.
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Approximating Sobolev Spaces with Deep ReLU Nets

Theorem 6 (Yarotsky (2017))

Assume that || f|lyyk.co := maxq<k €88 SUP,cp 1¢ [DVf(2)| < 1. Then, there exists a

RelLU f of depth at most O(log(1/¢) + 1) and width at most O(s~%/*(log(1/e) + 1))
such that

sup |f(z) — f(z)| <e.

z€[0,1]¢

Here, the constant C depends on d, k.

Remark:

® The result only separates deep and shallow nets for the non-smooth RelLU
activation.

® |f considering smooth activation function, no such separation exists.
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More Thoughts

® Can we separate deep nets from shallow nets by expoliting “smoothness”?

® Can deep nets learn less-smooth functions ? See (Bresler and Nagaraj, 2020).

Can deep nets adapt to anisotropic smoothness? See (Suzuki and Nitanda, 2021)
® How about target functions defined over a compact manifold with dimX < d?
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https://proceedings.neurips.cc/paper/2020/file/78f7d96ea21ccae89a7b581295f34135-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1dacb10f0623c67cb7dbb37587d8b38a-Paper.pdf

Depth Separation in High Dimension
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Depth Separation via Dimension

There exist functions f; : R¢ — R such that approximating with deep nets require only
poly(d) parameters but shallow networks require at least exp(d) parameters.
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Depth Separation via Dimension

There exist functions f; : R¢ — R such that approximating with deep nets require only
poly(d) parameters but shallow networks require at least exp(d) parameters.

Relevant works:
¢ [Daniely, 2017] Depth separation for neural networks, COLT 2017 (only 6 pages).

e [Eldan and Shamir, 2016] The power of depth for feedforward neural network,
COLT 2016.

¢ [Luca et al., 2021] Depth separation beyond radial functions, JMLR 2021.
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The Daniely’s Result

Theorem 7 (Daniely 2017)
Let X = S9! @ ST1 and input distribition p = Unif(S?~1). Consider target function
f(z,y) = h(z"y) for h(z) := sin (rd3z). Then, we have

e e-approximable by depth-3 ReLU network of poly (d, 1/¢) width and weight sizes

® Not (1)-approximable by any depth-2 ReLU network of exp(o(dlogd)) width
and O(exp(d))-sized weights.

More generally: the separation holds for any h : [—1, 1] — R which is inapproximable
with O (d*¢)-degree polynomial
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Proof idea

® 2LNN implements the sum of m separable functions:

m m
Z aja(w;x + vay +0b5) = Z a;p; (ija:, v;y)
=1 i=1
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Proof idea

® 2LNN implements the sum of m separable functions:

m m
Z aja(ijx + vay +0b5) = Z a;p; (ija:, v;y)
=1 i=1

e (z,y) — h(zy) are nearly orthogonal to any separable function
Yy Y y

(z,y) = Y(w'z, 0 y).
® What is the intuition behind?
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Harmonic Analysis on S9!

® A multivariate polynomial p is said to be harmonic if Ap = 0. For instance, the
harmonic polynomials up to degree 3 is given

1, =y, uwy, 552 - y2, y3 - 33323/, -’133 — 3.’Ey2
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Harmonic Analysis on S9!

® A multivariate polynomial p is said to be harmonic if Ap = 0. For instance, the
harmonic polynomials up to degree 3 is given
L xy, aya®—y? y°—3a’y,2° - 3wy’

o Let S9! = {z € R?: ||z||o = 1} and 74—, = Unif(S*1).
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Harmonic Analysis on S9!

® A multivariate polynomial p is said to be harmonic if Ap = 0. For instance, the
harmonic polynomials up to degree 3 is given

17 z,Y, xy, '1"2 - y2’ y3 - 33323/7 IE3 - 3%?/2
o Let S9! = {z € R?: ||z||o = 1} and 74—, = Unif(S*1).
® Spherical harmonics: Let y;j be the space of all homogeneous harmonic
polynomials of degree k in d dimensions restricted on S?~!; the dimension of the
space y;j is

N(d, k) =

2k+d—-2(k+d—3
k d—2 )’
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Harmonic Analysis on S7!

A multivariate polynomial p is said to be harmonic if Ap = 0. For instance, the
harmonic polynomials up to degree 3 is given

17 z,y, Y, '1"2 - 3/2, y3 - 33323/, -’E3 — 3%?/2

Let S¥1 = {z e R?: ||z|]y = 1} and 74_; = Unif(S?1).
Spherical harmonics: Let y;j be the space of all homogeneous harmonic

polynomials of degree k in d dimensions restricted on S?~!; the dimension of the
space y;j is

N(d, k) =

2k+d—-2(k+d—3
k d—2 )’

Let {Yx}1<j<n(ak) be an orthogonal basis of Vdin L2 (74-1).

23/38



Harmonic Analysis on S9!

A multivariate polynomial p is said to be harmonic if Ap = 0. For instance, the
harmonic polynomials up to degree 3 is given

17 z,y, Y, '1"2 - 3/2, y3 - 33323/, -T3 — 3%?/2

Let S¥1 = {z e R?: ||z|]y = 1} and 74_; = Unif(S?1).

Spherical harmonics: Let y;j be the space of all homogeneous harmonic
polynomials of degree k in d dimensions restricted on S?~!; the dimension of the
space y;j is

N(d, k) =

2k+d—-2(k+d—3
k d—2 )’

Let {Yx}1<j<n(ak) be an orthogonal basis of Vdin L2 (74-1).

Then {Yj 1 }ren,1<j<n(ak) forms an orthogonal basis of L?(74_1).
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Legendre Polynomials

e Let 7y € P([—1,1]) be the distribution of 1 for z = (z1,...,24) ~ T4—1, whose
support is [—1, 1] with density given by

d—

(1-2%)7

ma(2) = 71 d-iv

B (3, %)

w

2P, should depends on d. We omit this dependence for notation brevity.
24 /38



Legendre Polynomials

e Let 7y € P([—1,1]) be the distribution of 1 for z = (z1,...,24) ~ T4—1, whose
support is [—1, 1] with density given by

® Legendre poynomials {P}}7° jare the orthogonal polynomials 2 with respect to
L?(7q):
Ji
. 3
(%) ©

We shall use py = \/N(d, k) Py to denote the normalized Legendre polynomial.

<Pk7 ‘Pj>77d = N

2P, should depends on d. We omit this dependence for notation brevity.
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Properties of Legendre poynomials

® P, satisfies the following recursive formula

PO(t) =0, Pl(t) =,

2% +d—4 E—1 (4)

® The Rodrigues’s formula gives a closed-form expression of Pj:

1\ n(d-1)/2) G-ay2 [(d\" kt-(d—3) /2
n0=(3) masaonm 00" (G) 0-me
(5)

The polynomial Py, is even (resp. odd) when k is even (resp. odd).
e Additionally, |Py(z)| < P(0) = 1.
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A Visualization of Legendre Polynomials

-B —-P -—P
—-P —P =P

—1.00 4

—1.000 —0.75 —0.50 —0.25  0.00 0.25 0.50 0.75 1.00

Figure 3: The Legendre polynomials with respect 4y = Unif([—1,1]), i.e., d = 3. This figure is
taken from wikipedia.
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Important Facts

® The spherical harmonics is related to the Legendre polynomials:

. N(d.k)
N(d, k)12 D Yi(@)Yi(y) = pr(ay). (6)
, o
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Important Facts

® The spherical harmonics is related to the Legendre polynomials:

. N(d,k)
- - )f7<(x)}f74( )= (a;r ). (6)
]\f(al,k)l/2 jz::l k.j kj\Y) =Dr\Z Y

® The Hecke-Funk formula: For any h: [-1,1] = R, x € S41 and Y3, € y;j, we

have
By (e y)Yi0)) = 57 g PR o) (7

This implies that spherical harmonics are the eigenfunctions of integral operators
induced by inner-product functions.

27/38



Important Facts

® The spherical harmonics is related to the Legendre polynomials:

1 N(d,k)
— T
N(d, k)2 Zl Yo (@)Y (y) = pr(a ' y). (6)
]:
* The Hecke-Funk formula: For any h: [-1,1] = R, z € S%! and Y}, € V¢, we
have 1
T J—
Eulhle y)lw)] = 56(8725175<h7pk>ﬂdy%($). (7)

This implies that spherical harmonics are the eigenfunctions of integral operators
induced by inner-product functions.

* Let p¥(z) :== p;i(ux). Then, (6) and (7) gives

) T
N

(P, pY) = Egrory_, [pi(u 2)pj (v 2)] =

27/38



Inner-product Functions

o Let f(x,y) = h(z"y) with 2,y € S4~! and h € L?(my).
o Let h(z) = 3502 hupr(2) with hy = (B, pi)n,-

® Then, we can decompose an inner-product function via spherical harmonics 3
thpk (z'y) ZNd BUE Z Vi (@)Y ;(y)
k=0 k=0

3This decomposition implies an inner-product kernel is positive definite iff the “Fourier coefficient”

{izk }r are non-negative.
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The Separable Function

® Let (p; ®@pj)(s,t) = pi(s)p;(t). Then, {p; ®pj}§’3-:0 form an orthonormal basis of
L2(7Td X 7Td) .
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The Separable Function

* Let (p; ®p;)(s,t) = pi(s)p;(t). Then, {p; ® p;}75_, form an orthonormal basis of
L2(7Td X 7Td> .
® The expansion of a separable function is given by

(o.9]
pu'z,vTy) = Z igpi(u’ 2)pi(v'y),
ij=0

where sz,] = Es,twﬂd [90(37 t)pl(s)p] (t)]
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The Separable Function

* Let (p; ®p;)(s,t) = pi(s)p;(t). Then, {p; ® p;}75_, form an orthonormal basis of
L2(7Td X 7Td> .
® The expansion of a separable function is given by

(o.9]
p(u'z,0"y) =Y ipiu’z)p;(vTy),
i,j=0
where @; j = Eq i, [0(s, t)pi(s)p; ()]
® The key observation: Let px(z,y) := pr(z "y), pi(x) = pr(u'z) for any
u € S 1. Then,
mpk(uﬂ}) ifi=j5=k

~ U U
ko Di ® ) =
(P pi Pi ) {0 otherwise .
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The Separable Function

Let (p; @ p;)(s,t) = pi(s)p;(t). Then, {p; ® p;}75_, form an orthonormal basis of

L2(7Td X 7Td> .
The expansion of a separable function is given by

(o.9]
pu'z,vTy) = Z igpi(u’ 2)pi(v'y),
i,j=0
where @i j = Estom,[@(s, O)pi(s)p; (t)]-
The key observation: Let px(z,y) := pr(z'y), pi(z) = pi(u' x) for any
u € S 1. Then,

mpk(uﬂ}) ifi=j5=k

~ U U
k’ . ® . pr—
(P pi Pi ) {0 otherwise .

This leads to

_ P,k
<Pk,99(UT‘aUT‘)> = ka(uﬂ}).

This justifies why inner-product functions are nearly orthogonal to any separable
functions.
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The Main Result
Given h: [-1,1] — R, let

Apa(h) = inf g = PllL2(ry)-

q is a n-order polynomial
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The Main Result

Given h: [-1,1] — R, let

Apa(h) = inf g = PllL2(ry)-

q is a n-order polynomial

Let g1,...,9m ber arbitrary separable functions. Then, for any n € N, it holds that

2
N 23 gl
Hf ;gr > Ay.a(h) <An,d(h) Nd.n) ) )
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The Main Result

Given h: [-1,1] — R, let

Apa(h) = inf g = PllL2(ry)-

q is a n-order polynomial

Theorem 8
Let g1,...,9m ber arbitrary separable functions. Then, for any n € N, it holds that

m 2 -
Hf - Zgr > An’d(h) (An,d(h) _ M) .
=l

N(d,n)

It recovers Theorem 7 by
e taking n = ng = Q(d) and thus N(d,n) = exp(d);
e taking h such that A, 4(h) = Q(1).

This explains why we can take h(z) = sin(d®rz).
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Proof of Theorem 8

® Recall f(z,y) => 12, ﬁkﬁk(w,w and
NC A (t
gi(,y) = O () 2,0 y) = 355 Wg,g)‘Pi(UtTﬁ)pj(vtTy) = ij=0 wgya)pqi“ ® Py’
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Proof of Theorem 8

® Recall f(z,y) => 12, ﬁkﬁk(w,w and
NC A (t
gi(,y) = O () 2,0 y) = 355 Wg,g)‘Pi(utT@pj(vtTy) = ij=0 Soz(u)‘p?t ® Py’
® Then, we have

T
IF =D al*=
t=1
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Proof of Theorem 8

® Recall f(z,y) => 12, ﬁkﬁk(x y) and
0o t t VUt
gr(x,y) = O] 2,0 y) = 3250 o pi(u] 2)p; (v y) = Y55 GLpt @ p!
® Then, we have

= th||2 = thpk = Z Z P pit @ ptt |2

t=1 4,j=0
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Proof of Theorem 8

® Recall f(z,y) => 12, ﬁkﬁk(x y) and
0o t t VUt
gr(x,y) = O] 2,0 y) = 3250 o pi(u] 2)p; (v y) = Y55 GLpt @ p!
® Then, we have

|U§}M—Q}m—22m%%ww

t=1 4,j=0
o0
T~ ~(t
MM—Z%mew
k=0 t=1

All the cross terms disappear!!!
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Proof of Theorem 8 (Cont’d)

T o0 T
A ~(t
1F =S gl =3 i — S ek @ 2
t=1 k=0 t=1

oo i‘l
2 A(t)
(h —2w§2 WPe( vt>>

k=0
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Proof of Theorem 8 (Cont’d)

T o0 T
A ~(t
1F =S gl =3 i — S ek @ 2
t=1 k=0 t=1

k=0 ) =
>§: B2 o lhxl Z‘A(t)
- P k N(d, k)1/2 — k,k
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Proof of Theorem 8 (Cont’d)

T
IF=> all* = Zl\hkpk—ZsokkpZtéﬁp [&
t=1

> 30 - S il

k=n r=1k=n

B 2An,d(h) 2= llgr |
N(n,d)'/? '
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The Eland and Shamir’s Result

® Result assume that weights are not too large. Really necessary?

¢ (Eldan and Shamir, 2016) shows that the weight restriction is not necessary.
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® Result assume that weights are not too large. Really necessary?

¢ (Eldan and Shamir, 2016) shows that the weight restriction is not necessary.

Theorem 9

Assume o is measuable and satisfies |o(t)| < C(1 + |t|) for all t € R and some
constants C,« > 0. Then, there exists a radial function

f(@) = g([[x[l2)

such that
® 3-layer MLPs can approximate with poly(d, 1/¢) parameter.
® Not o(1) approximate by any 2-layer MLP with exp(o(d))-wide.
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f(@) = g([[x[l2)

such that
® 3-layer MLPs can approximate with poly(d, 1/¢) parameter.
® Not o(1) approximate by any 2-layer MLP with exp(o(d))-wide.
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Remark

® Theorem 9 needs impose restriction on the activation functions. Can be obtain
separation without any restriction on the weight size and activation functions?

The answer is NO, per the Kolmogorov-Arnold representation theorem, which solved
the Hilbert's 13th problem.

Theorem 10
For any f € C([0,1]%), there exists ®; : R+ R and v; ; : R — R such that

2d d
Flon,za, . mg) =Y 0 | Y (x;)
i=0 =1

Moreover, it can be further simplied as

2
fen, e, ma) =Y @ [ D Np(y +mi) + i
=0 \j=1
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The Intuition via Fourier Analysis

e Consider the Fourier transform f(g) = ff(x)e*%”@z dz.
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where V; € R?(4=1) denotes the orthogonal complement of w;.
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The Intuition via Fourier Analysis

Consider the Fourier transform f(f) = ff(q:)e*%i{f” dz.

A 2-layer MLP takes the form Ny, (z) = > 7, nj(ijx) and thus

Nm(€) = j(w] & T]o(V;T¢ =),

j=1 i=2

where V; € R?(4=1) denotes the orthogonal complement of w;.
Thus,

supp(Npp,) = UL {y = w, € : € € RY}.

If f* is radial, then f* is still radial.
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The Intuition via Fourier Analysis (Cont’d)
* Let p € P(R?) be the input distribution. Let p(z) = ¢(z)?. Then,

[ @nta) = $a) @) d = [N = Pl

m
= | Zﬁj,wj *p— fx 85”%2(]1{11)
j=1

® Taking f and ¢ to be radiallll and f or ¢ to be highly oscillated!!

Aiw; (€) * (€) F(€) = ¢(€)

Figure 4: Intuition: Can't approximate “fat” function with few “thin” functions in high

dimension. This figure is taken from Shamir's slide.
36/38



Summary

Depth separations for approximating some functions.

® gg=gogo---og: highly-oscillating
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Summary

Depth separations for approximating some functions.
® gg=gogo---og: highly-oscillating
e x> 22: bit-extraction (highly-oscillating )
* (z,y) + sin(rd*{x,y)): highly-oscillating
e i+ f(||z|l2): f highly-oscillating

Other results:
® There are some depth separation result from circuit complexity perspective.
(Venturi et al., JMLR 2021) provides an example “slightly” beyond radial
functions.
® We refer interested readers to Shamir’s slide https://users.cs.duke.edu/
~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf.
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Open Questions

® What is the ‘big picture” beyond some specific examples?
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Open Questions

® What is the ‘big picture” beyond some specific examples?
® Depth separation in dimension for depths > 37

® Depth separation for estimation and optimization?
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