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Outline

• Deep Nets Have Stronger Adaptivity to (Anisotropic) Smoothness .

• Depth Separation via Dimension.
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Piecewise Linear Approximation

Let t(x) = max(0, 1− |x|) be the triangular function.
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Theorem 1

Let f : [0, 1] 7→ R with supx∈[0,1] |f ′′(x)| ≤M . For any n ∈ N, let h = 1
n and xi = ih

n
the grid points. Consider the piecewise linear interpolation:

Pnf =

n∑
i=1

f(xi)t

(
x− xi
h

)
.

Then, we have

‖Pnf − f‖2 .
M

n2
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Triangular map

• Consider the shift triangular map given by g(x) = t(2x− 1) which g : [0, 1] 7→ R.

•
gl(x) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸

l

(x).

• An illustration of g (i.e, g1) and gl is provided in Figure 1.
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Figure 1: Illustration of the shift triangular function and the triangular wave.
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Key Observations:

• gl has 2l+1 linear pieces but can be implemented with a MLP using only l layers.

First, g(x) = ReLU(2x) + ReLU(2x− 2)− 2 ReLU(2x− 1), i.e., g can be exactly
represented as three neurons. Hence, gl can be represented as 2l-layer neural net
with the width less than or equal to 3.

• Two-layer ReLU nets of width m have at most m pieces.

• In summary, for multilayer ReLU nets, the number of pieces grows with the width
polynomially but grows with depth exponentially.

This observation already gives us separation between deep and shallow ReLU nets?
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A Quantitative Result

Theorem 2 (Telgarsky, 2016)

Consider the target function f∗ = gl. Then, gl can be implemented as a c1l-layer
neural nets with the width less than c2. For any 2-layer ReLU net fm(·; θ) with the
width m = poly(l), we have∫ 1

0
|fm(x; θ)− gl(x)| dx ≥ c3.

Here c1, c2, c3 are absolute constants.

Figure 2: Illustration for the proof of Theorem 2
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Proof

• For a two-layer neural network of width m, let M denote its number of linear
pieces. Obviously,

M ∼ m.

• The proof of the lower bound proceeds by counting triangles as illustrated in
Figure 2. Draw the horizontal line y = 1/2. Then, there are 2l+1 (half) triangles.∫ 1

0
|fm(x; θ)− gl(x)|dx ≥ [number of surviving triangles] · [area of the triangle]

≥ 1

2
(2l+1 − 2M) · (1

2
· 1

2l+1
· 1

2
)

≥ 1

2

(
1

4
− M

2l+2

)
≥ 1

16
. (1)
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Remark

• Why is it good to choose L1 norm to measure the approximaiton error?

• Can you establish a similar separation result for L∞ norm?
• What is the implication?

• Deep nets are good at approximating high-frequency functions?
• Deep nets are good at approximating non-smooth function?

• Can we claim we establish establish a separation between deep and shallow nets
from a frequency perspective?
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Approximating x2 with Shallow Nets

Lemma 3

Let Gm denote the set of piecewise linear functions with the number of linear pieces
less than or equal to m. Then, for any g ∈ Gm, we have

sup
x∈[0,1]

|g(x)− x2| ∼ 1

m2
.
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Proof of Lemma 3

• Note that considering one piece is enough. For any [a, b] ⊂ [0, 1], let

Ia,b := min
c,d∈R

max
t∈[a,b]

|x2 − cx− d|.

• Simplification:

Ia,b = min
c,d∈R

max
t∈[a,b]

|(x− a)2 + 2ax+ a2 − cx− d|

= min
c,d∈R

max
t∈[0,b−a]

|x2 − 2cx− d|

= min
c,d∈R

max
t∈[0,b−a]

|(x− c)2 − d|

= min
c,d

max{|(b− a− c)2 − d|, |c2 − d|, |d|}.

• We must have Ib,a & (b− a)2.
• If |c2 − d| & (b− a)2 or |d| & (b− a)2. Then, Ia,b & (b− a)2.
• Otherwise, we must have c = o(|b− a|), d = o(|b− a|2), under which

(b− a+ c)2 − d & |b− a|2
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Proof of Lemma 3 (Cont’d)

• Since g ∈ Gm, the number of piecewise linear parts of g is at most m. There must
exist a piece [a, b] such that |b− a| & 1/m. Then,

sup
x∈[0,1]

|g(x)− x2| ≥ sup
x∈[a,b]

|x2 − cx− d| & |b− a|2 & 1

m2
.
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What about the square loss?

Lemma 4

Let f(x) = ax2 + bx+ c. If g is at most m pieces. Then

‖f − g‖L2([0,1]) &
a

m2

Proof: First, consider the one-piece case:

Iα,β(f) := inf
u,w

∫ β

α
(ax2 + bx+ c− (ux+ w))2 dx = inf

b,c

∫ β

α
(ax2 + bx+ c)2 dx

= inf
b,c

∫ 1

−1
(β − α)4(az2 + bz + c)2 dz = Qa(β − α)5,

where Qa = infb,c
∫ 1
−1(az

2 + bz + c)2 dz.

For the general case, denote by
0 = z0 < z1 < · · · < zm = 1 the knots. Then,

‖f − g‖2L2([0,1]) =
m∑
j=1

Izj−1,zj (f) ≥ Qa
m∑
j=1

(zj − zj−1)5 &
Qa
m4

.
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Compute Qa

This can be done by using orthogonal polynomials. Let {hn}∞n=0 be the Legendre
polynomials, which are orthonormal wrt in L2([−1, 1]):

h0(x) = 1, h1(x) = x, h2(x) =
3x2 − 1

2
, · · · .

For any f ∈ L2([−1, 1]), we have

inf
c0,c1
‖f − c1h1 − c0h0‖22 =

∞∑
j=2

〈f, hj〉2.

Let fa = ax2. Then,

Qa = inf
c0,c1
‖fa − c1h1 − c0h0‖22 = 〈fa, h2〉2 ∼ a2.
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Approximating x2 with Deep Nets

Proposition 5

For any ε > 0, there exits a neural net f̃ , whose depth and width is O(log(1/ε)) and
O(1), respectively, such that

sup
x∈[0,1]

|f̃(x)− x2| ≤ ε.

An illustration of the approximation scheme:
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Proof

• First, we can show that l = 2, 3, . . . ,

P2l−1f∗(x)− P2lf
∗(x) =

gl(x)

22l
, ∀x ∈ [0, 1]. (2)

• Construct a neural net as follows

y0 = x

yl = g(yl−1)

f̃(x) =
L∑
l=1

yl
2l
.

• The last step introduces skip connections from each layer to the output layer. So,
the depth and width of this net is O(L) and O(1), respectively.

By Lemma 1,

sup
x∈[0,1]

|f̃ − f(x)| = sup
x∈[0,1]

|P2Lf(x)− f(x)| . 1

4L
.

Taking 1/(4L) = ε, we complete the proof.
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Why is approximating x2 interesting?

From the approximation of f(x) = x2, we can get many other results.

• Fast approximation of the multiplication (x, y) 7→ xy using

xy =
(x+ y)2 − x2 − y2

2
.

• Fast approximation of any monomials: xk.

• Fast approximation of polynomials: a0 + a1x+ · · ·+ akx
k.

• Fast approximation of functions that can be efficiently approximated by
polynomials, e.g., Sobolev spaces.

Remark: The above argument implies that for achieving precison ε, deep ReLU nets
with L = log(1/ε) performs as well as polynomials.
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Approximating Sobolev Spaces with Deep ReLU Nets

Theorem 6 (Yarotsky (2017))

Assume that ‖f‖Wk,∞ := max|α|≤k ess supx∈[0,1]d |Dαf(x)| ≤ 1. Then, there exists a

ReLU f̃ of depth at most O(log(1/ε) + 1) and width at most O(ε−d/k(log(1/ε) + 1))
such that

sup
x∈[0,1]d

|f̃(x)− f(x)| ≤ ε.

Here, the constant C depends on d, k.

Remark:

• The result only separates deep and shallow nets for the non-smooth ReLU
activation.

• If considering smooth activation function, no such separation exists.
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More Thoughts

• Can we separate deep nets from shallow nets by expoliting “smoothness”?

• Can deep nets learn less-smooth functions ? See (Bresler and Nagaraj, 2020).

• Can deep nets adapt to anisotropic smoothness? See (Suzuki and Nitanda, 2021)

• How about target functions defined over a compact manifold with dimX � d?
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https://proceedings.neurips.cc/paper/2020/file/78f7d96ea21ccae89a7b581295f34135-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1dacb10f0623c67cb7dbb37587d8b38a-Paper.pdf


Depth Separation in High Dimension
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Depth Separation via Dimension

There exist functions fd : Rd 7→ R such that approximating with deep nets require only
poly(d) parameters but shallow networks require at least exp(d) parameters.

Relevant works:

• [Daniely, 2017] Depth separation for neural networks, COLT 2017 (only 6 pages).

• [Eldan and Shamir, 2016] The power of depth for feedforward neural network,
COLT 2016.

• [Luca et al., 2021] Depth separation beyond radial functions, JMLR 2021.
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The Daniely’s Result

Theorem 7 (Daniely 2017)

Let X = Sd−1 ⊗ Sd−1 and input distribition ρ = Unif(Sd−1). Consider target function
f (x, y) = h(x>y) for h(z) := sin

(
πd3z

)
. Then, we have

• ε-approximable by depth-3 ReLU network of poly (d, 1/ε) width and weight sizes

• Not Ω(1)-approximable by any depth-2 ReLU network of exp(o(d log d)) width
and O(exp(d))-sized weights.

More generally: the separation holds for any h : [−1, 1] 7→ R which is inapproximable
with O

(
d1+ε

)
-degree polynomial
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Proof idea

• 2LNN implements the sum of m separable functions:

m∑
j=1

ajσ(w>j x+ v>j y + bj) =

m∑
j=1

ajϕj(w
>
j x, v

>
j y).

• (x, y) 7→ h(x>y) are nearly orthogonal to any separable function
(x, y) 7→ ψ(w>x, v>y).

• What is the intuition behind?
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Harmonic Analysis on Sd−1

• A multivariate polynomial p is said to be harmonic if ∆p = 0. For instance, the
harmonic polynomials up to degree 3 is given

1, x, y, xy, x2 − y2, y3 − 3x2y, x3 − 3xy2.

• Let Sd−1 = {x ∈ Rd : ‖x‖2 = 1} and τd−1 = Unif(Sd−1).

• Spherical harmonics: Let Ydk be the space of all homogeneous harmonic
polynomials of degree k in d dimensions restricted on Sd−1; the dimension of the
space Ydk is

N(d, k) =
2k + d− 2

k

(
k + d− 3

d− 2

)
.

• Let {Yj,k}1≤j≤N(d,k) be an orthogonal basis of Ydk in L2(τd−1).

• Then {Yj,k}k∈N,1≤j≤N(d,k) forms an orthogonal basis of L2(τd−1).
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Legendre Polynomials

• Let πd ∈ P([−1, 1]) be the distribution of x1 for x = (x1, . . . , xd) ∼ τd−1, whose
support is [−1, 1] with density given by

πd(z) =
(1− z2)

d−3
2

B
(
1
2 ,

d−1
2

)

• Legendre poynomials {Pk}∞k=0are the orthogonal polynomials 2 with respect to
L2(πd):

〈Pk, Pj〉πd =
δjk

N(d, k)
. (3)

We shall use pk =
√
N(d, k)Pk to denote the normalized Legendre polynomial.

2Pk should depends on d. We omit this dependence for notation brevity.
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Properties of Legendre poynomials

• Pk satisfies the following recursive formula

P0(t) = 0, P1(t) = t,

Pk(t) =
2k + d− 4

k + d− 3
tPk−1(t)−

k − 1

k + d− 3
Pk−2(t), k ≥ 2.

(4)

• The Rodrigues’s formula gives a closed-form expression of Pk:

Pk(t) =

(
−1

2

)k Γ((d− 1)/2)

Γ(k + (d− 1)/2)

(
1− t2

)(3−d)/2( d

dt

)k (
1− t2

)k+(d−3)/2
.

(5)

The polynomial Pk is even (resp. odd) when k is even (resp. odd).

• Additionally, |Pk(z)| ≤ P (0) = 1.
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A Visualization of Legendre Polynomials

Figure 3: The Legendre polynomials with respect πd = Unif([−1, 1]), i.e., d = 3. This figure is
taken from wikipedia.
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Important Facts

• The spherical harmonics is related to the Legendre polynomials:

1

N(d, k)1/2

N(d,k)∑
j=1

Yk,j(x)Yk,j(y) = pk(x
>y). (6)

• The Hecke-Funk formula: For any h : [−1, 1] 7→ R, x ∈ Sd−1 and Yk ∈ Ydk , we
have

Ey[h(x>y)Yk(y)] =
1

N(d, k)1/2
〈h, pk〉πdYk(x). (7)

This implies that spherical harmonics are the eigenfunctions of integral operators
induced by inner-product functions.

• Let pui (x) := pi(u
>x). Then, (6) and (7) gives

〈pui , pvj 〉 = Ex∼τd−1
[pi(u

>x)pj(v
>x)] =

δi,j

N(d, j)1/2
pj(u

>v)
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This implies that spherical harmonics are the eigenfunctions of integral operators
induced by inner-product functions.

• Let pui (x) := pi(u
>x). Then, (6) and (7) gives

〈pui , pvj 〉 = Ex∼τd−1
[pi(u

>x)pj(v
>x)] =

δi,j

N(d, j)1/2
pj(u

>v)
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Inner-product Functions

• Let f(x, y) = h(x>y) with x, y ∈ Sd−1 and h ∈ L2(πd).

• Let h(z) =
∑∞

k=0 ĥkpk(z) with ĥk = 〈h, pk〉πd .

• Then, we can decompose an inner-product function via spherical harmonics 3

h(x>y) =

∞∑
k=0

ĥkpk(x
>y) =

∞∑
k=0

ĥk
N(d, k)1/2

N(d,k)∑
j=1

Yk,j(x)Yk,j(y)

3This decomposition implies an inner-product kernel is positive definite iff the “Fourier coefficient”
{ĥk}k are non-negative.
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The Separable Function

• Let (pi ⊗ pj)(s, t) = pi(s)pj(t). Then, {pi ⊗ pj}∞i,j=0 form an orthonormal basis of

L2(πd ⊗ πd) .

• The expansion of a separable function is given by

ϕ(u>x, v>y) =

∞∑
i,j=0

ϕ̂i,jpi(u
>x)pj(v

>y),

where ϕ̂i,j = Es,t∼πd [ϕ(s, t)pi(s)pj(t)].
• The key observation: Let p̃k(x, y) := pk(x

>y), puk(x) = pk(u
>x) for any

u ∈ Sd−1. Then,

〈p̃k, pui ⊗ pvj 〉 =

{
1

N(d,k)pk(u
>v) if i = j = k

0 otherwise .

• This leads to

〈p̃k, ϕ(u>·, v>·)〉 =
ϕ̂k,k

N(d, k)1/2
Pk(u

>v).

This justifies why inner-product functions are nearly orthogonal to any separable
functions.

29 / 38



The Separable Function

• Let (pi ⊗ pj)(s, t) = pi(s)pj(t). Then, {pi ⊗ pj}∞i,j=0 form an orthonormal basis of

L2(πd ⊗ πd) .
• The expansion of a separable function is given by

ϕ(u>x, v>y) =

∞∑
i,j=0

ϕ̂i,jpi(u
>x)pj(v

>y),

where ϕ̂i,j = Es,t∼πd [ϕ(s, t)pi(s)pj(t)].

• The key observation: Let p̃k(x, y) := pk(x
>y), puk(x) = pk(u

>x) for any
u ∈ Sd−1. Then,

〈p̃k, pui ⊗ pvj 〉 =

{
1

N(d,k)pk(u
>v) if i = j = k

0 otherwise .

• This leads to

〈p̃k, ϕ(u>·, v>·)〉 =
ϕ̂k,k

N(d, k)1/2
Pk(u

>v).

This justifies why inner-product functions are nearly orthogonal to any separable
functions.

29 / 38



The Separable Function

• Let (pi ⊗ pj)(s, t) = pi(s)pj(t). Then, {pi ⊗ pj}∞i,j=0 form an orthonormal basis of

L2(πd ⊗ πd) .
• The expansion of a separable function is given by

ϕ(u>x, v>y) =

∞∑
i,j=0

ϕ̂i,jpi(u
>x)pj(v

>y),

where ϕ̂i,j = Es,t∼πd [ϕ(s, t)pi(s)pj(t)].
• The key observation: Let p̃k(x, y) := pk(x

>y), puk(x) = pk(u
>x) for any

u ∈ Sd−1. Then,

〈p̃k, pui ⊗ pvj 〉 =

{
1

N(d,k)pk(u
>v) if i = j = k

0 otherwise .

• This leads to

〈p̃k, ϕ(u>·, v>·)〉 =
ϕ̂k,k

N(d, k)1/2
Pk(u

>v).

This justifies why inner-product functions are nearly orthogonal to any separable
functions.

29 / 38



The Separable Function

• Let (pi ⊗ pj)(s, t) = pi(s)pj(t). Then, {pi ⊗ pj}∞i,j=0 form an orthonormal basis of

L2(πd ⊗ πd) .
• The expansion of a separable function is given by

ϕ(u>x, v>y) =

∞∑
i,j=0

ϕ̂i,jpi(u
>x)pj(v

>y),

where ϕ̂i,j = Es,t∼πd [ϕ(s, t)pi(s)pj(t)].
• The key observation: Let p̃k(x, y) := pk(x

>y), puk(x) = pk(u
>x) for any

u ∈ Sd−1. Then,

〈p̃k, pui ⊗ pvj 〉 =

{
1

N(d,k)pk(u
>v) if i = j = k

0 otherwise .

• This leads to

〈p̃k, ϕ(u>·, v>·)〉 =
ϕ̂k,k

N(d, k)1/2
Pk(u

>v).

This justifies why inner-product functions are nearly orthogonal to any separable
functions.

29 / 38



The Main Result

Given h : [−1, 1] 7→ R, let

An,d(h) = inf
q is a n-order polynomial

‖q − h‖L2(πd).

Theorem 8

Let g1, . . . , gm be r arbitrary separable functions. Then, for any n ∈ N, it holds that∥∥∥∥∥f −
m∑
r=1

gr

∥∥∥∥∥
2

≥ An,d(h)

(
An,d(h)−

2
∑m

r=1 ‖gr‖√
N(d, n)

)
.

It recovers Theorem 7 by

• taking n = nd = Ω(d) and thus N(d, n) = exp(d);

• taking h such that And,d(h) = Ω(1).

This explains why we can take h(z) = sin(d3πz).
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Proof of Theorem 8

• Recall f(x, y) =
∑∞

k=0 ĥkp̃k(x, y) and

gt(x, y) = ϕ(t)(u>t x, v
>
t y) =

∑∞
i,j=0 ϕ̂

(t)
i,jpi(u

>
t x)pj(v

>
t y) =

∑∞
i,j=0 ϕ̂

(t)
i,jp

ut
i ⊗ p

vt
j

• Then, we have

‖f −
r∑
t=1

gt‖2 =

‖
∞∑
k=0

ĥkp̃k −
r∑
t=1

∞∑
i,j=0

ϕ̂
(t)
i,jp

ut
i ⊗ p

vt
j ‖

2

=

∞∑
k=0

‖ĥkp̃k −
r∑
t=1

ϕ̂
(t)
k,kp

ut
k ⊗ p

vt
k ‖

2

All the cross terms disappear!!!
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Proof of Theorem 8 (Cont’d)

‖f −
r∑
t=1

gt‖2 =

∞∑
k=0

‖ĥkp̃k −
r∑
t=1

ϕ̂
(t)
k,kp

ut
k ⊗ p

vt
k ‖

2

≥
∞∑
k=0

(
ĥ2k − 2

ĥk
N(d, k)1/2

r∑
t=1

ϕ̂
(t)
k,kPk(u

>
t vt)

)

≥
∞∑
k=0

(
ĥ2k − 2

|ĥk|
N(d, k)1/2

r∑
t=1

|ϕ̂(t)
k,k|

)

≥
∞∑
k=n

ĥ2k −
1

N(d, n)1/2

m∑
r=1

∞∑
k=n

|ĥk||ϕ̂
(t)
k,k|

≥ An,d(h)2 −
2An,d(h)

∑m
r=1 ‖gr‖

N(n, d)1/2
.
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‖ĥkp̃k −
r∑
t=1

ϕ̂
(t)
k,kp

ut
k ⊗ p

vt
k ‖

2

≥
∞∑
k=0

(
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ĥ2k −
1

N(d, n)1/2

m∑
r=1

∞∑
k=n
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The Eland and Shamir’s Result

• Result assume that weights are not too large. Really necessary?

• (Eldan and Shamir, 2016) shows that the weight restriction is not necessary.

Theorem 9

Assume σ is measuable and satisfies |σ(t)| ≤ C(1 + |t|α) for all t ∈ R and some
constants C,α > 0. Then, there exists a radial function

f(x) = g(‖x‖2)

such that

• 3-layer MLPs can approximate with poly(d, 1/ε) parameter.

• Not o(1) approximate by any 2-layer MLP with exp(o(d))-wide.
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Remark

• Theorem 9 needs impose restriction on the activation functions. Can be obtain
separation without any restriction on the weight size and activation functions?

The answer is NO, per the Kolmogorov-Arnold representation theorem, which solved
the Hilbert’s 13th problem.

Theorem 10

For any f ∈ C([0, 1]d), there exists Φj : R 7→ R and ψi,j : R 7→ R such that

f(x1, x2, . . . , xd) =

2d∑
i=0

Φi

 d∑
j=1

ψi,j(xj)


Moreover, it can be further simplied as

f(x1, x2, . . . , xd) =

2d∑
i=0

Φ

 d∑
j=1

λiψ(xj + ηi) + i


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The Intuition via Fourier Analysis

• Consider the Fourier transform f̂(ξ) =
∫
f(x)e−2πiξ

>x dx.

• A 2-layer MLP takes the form Nm(x) =
∑m

j=1 nj(w
>
j x) and thus

N̂m(ξ) =

m∑
j=1

n̂j(w
>
j ξ)

d∏
i=2

δ(V >j ξ − ·),

where Vj ∈ Rd×(d−1) denotes the orthogonal complement of wj .

• Thus,
supp(N̂m) = ∪mj=1{y = w>j ξ : ξ ∈ Rd}.

• If f∗ is radial, then f̂∗ is still radial.
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The Intuition via Fourier Analysis (Cont’d)

• Let ρ ∈ P(Rd) be the input distribution. Let ρ(x) = ϕ(x)2. Then,∫
(Nm(x)− f(x))2ρ(x) dx = ‖Nmϕ− fϕ‖2L2(Rd)

= ‖
m∑
j=1

n̂j,wj ∗ ϕ̂− f̂ ∗ ϕ̂‖2L2(Rd)

• Taking f and ϕ to be radial!!! and f or ϕ to be highly oscillated!!

Figure 4: Intuition: Can’t approximate “fat” function with few “thin” functions in high
dimension. This figure is taken from Shamir’s slide.
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Summary

Depth separations for approximating some functions.

• gl = g ◦ g ◦ · · · ◦ g: highly-oscillating

• x 7→ x2: bit-extraction (highly-oscillating )

• (x, y) 7→ sin(πd3〈x, y〉): highly-oscillating

• x 7→ f(‖x‖2): f highly-oscillating

Other results:

• There are some depth separation result from circuit complexity perspective.
(Venturi et al., JMLR 2021) provides an example “slightly” beyond radial
functions.

• We refer interested readers to Shamir’s slide https://users.cs.duke.edu/

~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf.

37 / 38

https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf
https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf


Summary

Depth separations for approximating some functions.

• gl = g ◦ g ◦ · · · ◦ g: highly-oscillating

• x 7→ x2: bit-extraction (highly-oscillating )

• (x, y) 7→ sin(πd3〈x, y〉): highly-oscillating

• x 7→ f(‖x‖2): f highly-oscillating

Other results:

• There are some depth separation result from circuit complexity perspective.
(Venturi et al., JMLR 2021) provides an example “slightly” beyond radial
functions.

• We refer interested readers to Shamir’s slide https://users.cs.duke.edu/

~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf.

37 / 38

https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf
https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf


Summary

Depth separations for approximating some functions.

• gl = g ◦ g ◦ · · · ◦ g: highly-oscillating

• x 7→ x2: bit-extraction (highly-oscillating )

• (x, y) 7→ sin(πd3〈x, y〉): highly-oscillating

• x 7→ f(‖x‖2): f highly-oscillating

Other results:

• There are some depth separation result from circuit complexity perspective.
(Venturi et al., JMLR 2021) provides an example “slightly” beyond radial
functions.

• We refer interested readers to Shamir’s slide https://users.cs.duke.edu/

~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf.

37 / 38

https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf
https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf


Summary

Depth separations for approximating some functions.

• gl = g ◦ g ◦ · · · ◦ g: highly-oscillating

• x 7→ x2: bit-extraction (highly-oscillating )

• (x, y) 7→ sin(πd3〈x, y〉): highly-oscillating

• x 7→ f(‖x‖2): f highly-oscillating

Other results:

• There are some depth separation result from circuit complexity perspective.
(Venturi et al., JMLR 2021) provides an example “slightly” beyond radial
functions.

• We refer interested readers to Shamir’s slide https://users.cs.duke.edu/

~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf.

37 / 38

https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf
https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf


Summary

Depth separations for approximating some functions.

• gl = g ◦ g ◦ · · · ◦ g: highly-oscillating

• x 7→ x2: bit-extraction (highly-oscillating )

• (x, y) 7→ sin(πd3〈x, y〉): highly-oscillating

• x 7→ f(‖x‖2): f highly-oscillating

Other results:

• There are some depth separation result from circuit complexity perspective.
(Venturi et al., JMLR 2021) provides an example “slightly” beyond radial
functions.

• We refer interested readers to Shamir’s slide https://users.cs.duke.edu/

~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf.

37 / 38

https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf
https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf


Summary

Depth separations for approximating some functions.

• gl = g ◦ g ◦ · · · ◦ g: highly-oscillating

• x 7→ x2: bit-extraction (highly-oscillating )

• (x, y) 7→ sin(πd3〈x, y〉): highly-oscillating

• x 7→ f(‖x‖2): f highly-oscillating

Other results:

• There are some depth separation result from circuit complexity perspective.
(Venturi et al., JMLR 2021) provides an example “slightly” beyond radial
functions.

• We refer interested readers to Shamir’s slide https://users.cs.duke.edu/

~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf.

37 / 38

https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf
https://users.cs.duke.edu/~rongge/stoc2018ml/Shamir_depthfordeep_STOC.pdf


Open Questions

• What is the ‘big picture” beyond some specific examples?

• Depth separation in dimension for depths > 3?

• Depth separation for estimation and optimization?
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