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“Modern” ML models are over-parameterized

Neural networks often work in the over-parameterized regime, i.e.,

# of parameters � # of training samples.

Figure 1: Different image classification models.

3 / 72



“Modern” ML models are over-parameterized

Neural networks often work in the over-parameterized regime, i.e.,

# of parameters � # of training samples.

Figure 1: Different image classification models.

3 / 72



How to avoid overfitting?

• Traditional-style ML: Add explicit regulatizations, e.g., weight decay, batch/layer
normalization, dropout, data argumentation.

• Modern ML: A specific algorithm (with a specific initialization) only converges to certain
solutions—A phenomenon referred to as implicit regularization/bias.

Understanding implicit regularization is one of the most fundamental and mysterious
problems in deep learning.

Key factors:

• Model

• Optimizer

• Initialization
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Stochastic gradient descent

• Consider the empirical risk: L̂(θ) = 1
n

∑n
i=1 `(f(xi; θ), yi). Let gi(θ) = ∇`(f(xi; θ), yi)

and g(θ) = 1
n

∑
i gi(θ).

• Gradient descent (GD): θt+1 = θt − ηg(θt).

• Stochastic gradient descent (SGD):

θt+1 = θt − η
1

B

∑

j∈It

gj(θt)

︸ ︷︷ ︸
Stochastic grad.

.

The SGD hyperparameters: learning rate (LR) η and batch size B.

• SGD = GD + noise:

θt+1 = θt − η
(
g(θt) +

1√
B
ξt

)
,

where

E[ξt] = 0, E[ξtξ
T
t ] =

1

n

n∑

i=1

(gi(θt)− g(θt))(gi(θt)− g(θt))
T .

The noise is state-dependent!
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Implicit regularization of SGD

• SGD often converge to solutions that generalize well without needing any explicit
regularization.

• Implicit regularization are even more important than explicit regularization (in deep
learning).

Figure 2: Classifying CIFAR-10 with Inception networks (Taken from [Chiyuan Zhang, et al, ICLR2017])

6 / 72



GD

GD can converge to good solutions.
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Figure 3: Taken from [Wu et al., 2018]. The dashed curve corresponds to bad solutions found by
certain approach.
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SGD performs better than GD

• SGD often generalizes better than GD although it is originally proposed to speed up
training.

Figure 4: Taken from (Geiping et al., ICLR 2022)
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The ICLR 2017 Best Paper

• Understanding deep learning requires rethinking generalization by Chiyuan Zhang et al.
Won the Best Paper Award of ICLR 2017.
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A Loss landscape Perspective

• The optimization of neural networks is highly non-convex. The loss landscape is usually
full of global minima, bad local minima and saddle points.
• Different minima have different local geometry.
• The connectivity among different minima.
• Many other topology and geometric structures.

Figure 5: The loss surfaces of ResNet-56 without/with skip connections. [1]
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Flat minima hypothesis (FMH)

The famous flat minima hypothesis (FMH):

1 SGD converges to flatter minima (Keskar et al., 2016).

2 Flatter minima generalize better (Hochreiter and Schmidhuber, 1995).

Figure 6: The landscape for θ(α) := (1− α)θSGD + αθGD. Taken from (Keskar et al., 2016).

11 / 72



Flat minima hypothesis (FMH)

The famous flat minima hypothesis (FMH):

1 SGD converges to flatter minima (Keskar et al., 2016).

2 Flatter minima generalize better (Hochreiter and Schmidhuber, 1995).

Figure 6: The landscape for θ(α) := (1− α)θSGD + αθGD. Taken from (Keskar et al., 2016).

11 / 72



Experiments in [2]
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Experiments in [2] (Cont’d)
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Remarks on Flat Minima Hypothesis

• In practice, FMH is very successful in guiding hyperparameter tuning and designing new
optimizer for better generalization, e.g., the sharpness-aware minimization (Foret et al.,
2021).

• However, FMH is only empirically validated. Theoretical understandings of the underlying
mechanism is still limited.

Theoretical Questions:

• What is the appropriate metric of measuring “flatness”?

• Why does SGD prefer flat minima?

• Why does flat minima generalize well?
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Sharpness Metrics

• Sharpness characterizes how the loss function (model prediction) changes under small
perturbation in the parameter space. A sharp minimum corresponds to model, whose
prediction is sensitive to the change of the parameters.

• The specific sharpness metric depends on what do we mean by “small perturbation”:

• At a minimum θ∗, we have

λmax(∇2L(θ∗)) = max
‖ε‖2≤ρ

2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

Tr(∇2L(θ∗)) = Eε∼N (0,ρ2I)
2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

‖∇2L(θ∗)‖2F = Eε∼N (0,ρ2∇2L(θ∗))
2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

• What happens if the perturbation is not very small? Does high-order gradient matter?

• Any connection with model’s adversarial/random robustness?

15 / 72



Sharpness Metrics

• Sharpness characterizes how the loss function (model prediction) changes under small
perturbation in the parameter space. A sharp minimum corresponds to model, whose
prediction is sensitive to the change of the parameters.

• The specific sharpness metric depends on what do we mean by “small perturbation”:

• At a minimum θ∗, we have

λmax(∇2L(θ∗)) = max
‖ε‖2≤ρ

2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

Tr(∇2L(θ∗)) = Eε∼N (0,ρ2I)
2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

‖∇2L(θ∗)‖2F = Eε∼N (0,ρ2∇2L(θ∗))
2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

• What happens if the perturbation is not very small? Does high-order gradient matter?

• Any connection with model’s adversarial/random robustness?

15 / 72



Sharpness Metrics

• Sharpness characterizes how the loss function (model prediction) changes under small
perturbation in the parameter space. A sharp minimum corresponds to model, whose
prediction is sensitive to the change of the parameters.

• The specific sharpness metric depends on what do we mean by “small perturbation”:

• At a minimum θ∗, we have

λmax(∇2L(θ∗)) = max
‖ε‖2≤ρ

2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

Tr(∇2L(θ∗)) = Eε∼N (0,ρ2I)
2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

‖∇2L(θ∗)‖2F = Eε∼N (0,ρ2∇2L(θ∗))
2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

• What happens if the perturbation is not very small? Does high-order gradient matter?

• Any connection with model’s adversarial/random robustness?

15 / 72



Sharpness Metrics

• Sharpness characterizes how the loss function (model prediction) changes under small
perturbation in the parameter space. A sharp minimum corresponds to model, whose
prediction is sensitive to the change of the parameters.

• The specific sharpness metric depends on what do we mean by “small perturbation”:

• At a minimum θ∗, we have

λmax(∇2L(θ∗)) = max
‖ε‖2≤ρ

2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

Tr(∇2L(θ∗)) = Eε∼N (0,ρ2I)
2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

‖∇2L(θ∗)‖2F = Eε∼N (0,ρ2∇2L(θ∗))
2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

• What happens if the perturbation is not very small? Does high-order gradient matter?

• Any connection with model’s adversarial/random robustness?

15 / 72



Sharpness Metrics

• Sharpness characterizes how the loss function (model prediction) changes under small
perturbation in the parameter space. A sharp minimum corresponds to model, whose
prediction is sensitive to the change of the parameters.

• The specific sharpness metric depends on what do we mean by “small perturbation”:

• At a minimum θ∗, we have

λmax(∇2L(θ∗)) = max
‖ε‖2≤ρ

2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

Tr(∇2L(θ∗)) = Eε∼N (0,ρ2I)
2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

‖∇2L(θ∗)‖2F = Eε∼N (0,ρ2∇2L(θ∗))
2(L(θ∗ + ε)− L(θ∗))

ρ2
+O(ρ)

• What happens if the perturbation is not very small? Does high-order gradient matter?

• Any connection with model’s adversarial/random robustness?

15 / 72



Why Do Flat Minima Generalize Well?

Figure 7: The most popular intuitive explanation of why flat minima generalize well provided in [2].

Remark:

• This illustration is “misleading” as it essentially suggests that sharp minima cannot
generalize well! But this is wrong!

• This is due to in high dimensions, the testing landscape deviates the training landscape
along flat directions .
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Sharp Minima Can Generalize well

• ReLU networks are invariant under neural-wise rescaling:

aσReLU(w>x) =
a

λ
σReLU((λw)>x).

• The rescaling operation (a,w)→ (a/λ, λw) does not change the function implemented
by the model, but can significantly change the sharpness.

• Consider a toy landscape L(a,w) = 1
2 (aw − 1)2. At global {(a,w) : aw = 1}, we have

∇2L(a,w) =

(
w2 1
1 a2

)
.

Thus, rescaling can make a solution arbitrarily sharp.

• This implies that we can only expect flatness to be a sufficient condition for
generalization.
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A PAC-Bayesian Perspective of FMH

• We will introduce the PAC-Bayesian explanation of FMH, which is the most popular
theory in the community (Neyshabur et al., NIPS 2017).

• However, we will clarify that this explanation is very misleading.

• But PAC-Bayes Theory itself is very useful.

18 / 72

https://proceedings.neurips.cc/paper/2017/hash/10ce03a1ed01077e3e289f3e53c72813-Abstract.html


PAC-Bayes Theory: Setup

• Let X and Y denote the input and output space, respectively. For brevity, denote by
Z = X ⊗ Y the joint space.

• Let H be the hypothesis/model space and D ∈ P(Z) be the data distribution.

• Let ` : H×Z 7→ R be the loss function. Then, `(h, z) denotes the model h’s prediction
loss at z.

• Let S = {z1, z2, . . . , zn} be the training set. Assume zi
i.i.d.∼ D and denote by

D̂n = 1
n

∑n
i=1 δ(· − zi).

• Then, we denote by

L(h) = Ez∼D[`(h, z)], L̂(h) = Ez∼D̂n [`(h, z)],

the population and empirical loss, respectively.

• Consider a posterior distribution Q ∈ P(H) over the model space H. Then, we can define
generalization of Q by

L(Q) = Eh∼Q[L(h)], L̂(Q) = Eh∼Q[L̂(h)].
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PAC-Bayesian Generalization Bound

Theorem 1 (McAllester (1998, 1999a))

Let ` : H×Z 7→ [0, 1] be a loss function and P be a prior distribution over H. Then, for any
δ ∈ (0, 1), with probability at least 1− δ over the sampling of S, we have for any Q ∈ P(H), it
holds that

L(Q) ≤ L̂(Q) +

√
DKL(Q||P ) + log(1/δ)

2n

Remark:

• The posterior distribution can Q can depend on the training set S but P cannot.

• One often takes P,Q as certain Gaussian distributions since which the KL divergence
between two Gaussian has an explicit form.

• PAC-Bayes theory has many application in machine learning theory. In this lecture, we will
focus its application in explaining FMH.

• We refer interested readers to [3, Chapter 31] and [4] for more materials about PAC-Bayes
theory.
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Donsker and Varadhan’s Variational Principle

• Let X be general domain. Let V : X 7→ R be an (negative) energy function and
π ∈ P(X ) be an arbitrary underling distribution. Denote by πV the corresponding Gibbs
distribution given by

dπV
dπ

(x) =
eV (x)

Ex∼π[eV (x)]
.

Theorem 2 (Donsker and Varadhan, 1976)

The Gibbs distribution satisfies

πV = argmax
p∈P(X )

(Ex∼p[V (x)]−DKL(p||π))

and moreover
logEx∼π[eV (x)] = sup

p∈P(X )

(Ex∼p[V (x)]−DKL(p||π)) .

It is implied that for a given p ∈ P(X ), it holds for any π ∈ P(X ), λ > 0 that

Ep[V ] ≤ logEπ[eV ] +DKL(p||π) =⇒ eEp[V ] ≤ Eπ[eV ]eDKL(p||π).

The blue one can be viewed as a generalized Jensen inequality.
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Donsker and Varadhan’s Variational Formula (Cont’d)

Proof:

DKL(p||πV ) =

∫
log

(
dp

dπV

)
dp

=

∫
log

(
dp

dπ

dπ

dπV

)
dp

= DKL(p||π) + Ex∼p
[
log

(
E[eV ]

eV (x)

)]

= DKL(p||π)− Ex∼p[V (x)] + logE[eV ].

Then, the proof is completed by noticing DKL(p||πV ) ≥ 0 and the equality is achieved when
p = πV .
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Proof of the PAC-Bayesian Bound 2

• Let ∆̂n(h) = L(h)− L̂(h) (generalization gap). Then, we need to bound Eh∼Q[∆̂n(h)].

• Recall Hoeffding’s inequality: For any λ > 0,

ES [eλ∆̂n(h)] ≤ eλ
2

8n .

• By the Chernoff-Cramer approach, we have

PS
(
Eh∼Q[∆̂n(h)] ≥ t

)
≥ ES [eλEh∼Q[∆̂n(h)]]

eλt

• By Donsker and Varadhan’s variational principle,

eλEh∼Q[∆̂n(h)] ≤ Eh∼P [eλ∆̂n(h)]eDKL(Q||P )

2A proof for bounding the expected generalization gap is more intuitive.
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Proof of the PAC-Bayesian Bound (Cont’d)

• Taking expectation wrt S gives

ES [eλEh∼Q[∆̂n(h)]] ≤ ES Eh∼P [eλ∆̂n(h)]eDKL(Q||P )

≤ Eh∼P ES [eλ∆̂n(h)]eDKL(Q||P )

≤ eλ
2

8n+DKL(Q||P ).

• Therefore, we have

PS
(
Eh∼Q[∆̂n(h)] ≥ t

)
≤ e−λt+λ2

8n+DKL(Q||P )

• This yield with probability at least 1− δ, we have

Eh∼Q[∆̂n(h)] ≤ λ

8n
+
DKL(Q||P ) + log(1/δ)

λ
.

• Optimizing λ completes the proof.
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PAC-Bayesian Generalization Bound for Flat Minima

Theorem 1 (PAC-Bayesian bound for sharpness-generalization, [5])

Suppose ` : Θ×Z 7→ [0, 1]. For any ρ > 0, if we assume L(θ) ≤ Eε∼N (0,σ2I)[L(θ + ε)], then
w.p. at least 1− δ over the choice of S, we have

L(θ)− L̂(θ) ≤ max
‖ε‖2≤σ

L̂(θ + ε)− L̂(θ)

︸ ︷︷ ︸
Sharpness

+

√√√√√k log

(
1 +

‖θ‖22
ρ2

(
1 +

√
logn
k

))
+ 4 log n

δ + Õ(1)

n

where k is the number of parameter space.

• Let us criticize this “theorem”!
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Proof

• Let Q = N (θ, σ2Ik). Then, by PAC-Bayesian bound, we have

L(θ) ≤ Eθ∼Q[L(θ)] ≤ Eθ∼Q[L̂(θ)] +

√
DKL(Q‖P ) + log 1

δ

2n

• Recall that

DKL(N (µ1,Σ1)||N (µ2,Σ2)) =
1

2

(
log

( |Σ2|
|Σ1|

)
− k + (µ1 − µ2)Σ−1

2 (µ1 − µ2) + Tr(Σ−1
2 Σ1)

)

• Taking P = N (µP , σ
2
P I) gives,

DKL(Q‖P ) =
1

2

[
kσ2 + ‖µP − θ‖22

σ2
P

− k + k log

(
σ2
P

σ2

)]

• Taking µP = 0, σ2
P = σ2 + k−1‖θ‖22 nearly 3 completes the proof.

3This is not correct since σ2
P should not depend on the training set S. Fortunately, this issue can be fixed by

a standard union bound argument. We leave this to homework.
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Remarks

The lessons what we learn from the aforementioned analysis include

• Flatness can be only a sufficient condition for generalization.

• Whether flat minima generalize depends on
• Model architecture
• Flatness metric
• Data distribution.
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An Important Observation

Consider the regression problem

L̂(θ) =
1

2n

n∑

i=1

(f(xi; θ)− yi)2 =:
1

2n

n∑

i=1

e2
i .

• the Hessian

H(θ) := ∇2L̂(θ) =
1

n

n∑

i=1

∇f(xi; θ)∇f(xi; θ)
T

︸ ︷︷ ︸
G(θ)

+
1

n

n∑

i=1

ei∇2f(xi; θ),

where we refer to G(θ) as the empirical Fisher matrix.
• When L̂(θ) is small, we have H(θ) ≈ G(θ) and particularly, at an interpolation

minimum θ∗ where L̂(θ∗) = 0, we have

H(θ∗) = G(θ∗)

• We shall measure the “sharpness” by using G(θ) instead of H(θ), e.g.,

Tr[G(θ)] =
1

n

n∑

i=1

‖∇f(xi; θ)‖2.
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Two-layer Networks (Without Bias)

• Consider two-layer ReLU networks (without bias) given by

f(x, θ) =

m∑

j=1

ajσ(wj
Tx)

where aj ∈ R, wj ∈ Rd and σ(t) = max(t, 0).

• We assume x ∼ ρ = Unif(
√
dSd−1).

• A simple calculation:

Tr[G(θ)] = Ex[‖∇f(x; θ)‖2] =

m∑

j=1

(
E[σ(w>j x)2] + a2

j E[|σ′(w>j x)|2‖x‖2]
)

=

m∑

j=1

(γ1‖wj‖2 + γ2da
2
j ),

where γ1, γ2 are two absolute constants given by

γ1 = Ex[σ(x1)2], γ2 = Ex[σ′(x1)2].
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Two-layer Networks (Cont’d)

Define a weight `2 norm as follows

‖θ‖2,q :=

√√√√
m∑

j=1

(‖wj‖2 + qa2
j ).

Theorem 2 (Thm 4.1 in [6])

Let N(d, δ) = inf{n ∈ N : d log(n/δ)/n ≤ 1}.
• If n & N(d, δ), then it holds w.p. 1− δ that

Tr(G(θ)) ∼ ‖θ‖2,d ‖G(θ)‖F ∼ ‖θ‖2,√d.

• If n & dN(d, δ), then it holds w.p. at least 1− δ that

‖G(θ)‖2 ∼ ‖θ‖2,1.

Remark: It is worth noting that “sharpness” depends on the training data but the parameter
norms do not!
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How do we kill the data dependence?

Derivation on the backboard!
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Flatness Implies Generalization

For ReLU networks, the generalization gap can be controlled by the path norm

‖θ‖P :=

m∑

j=1

|aj |‖wj‖

, which can be further upper bounded by the weighted `2 norm:

‖θ‖2,q =

m∑

j=1

(‖wj‖2 + qa2
j ) ≥ 2

√
q

m∑

j=1

|aj |‖wj‖ = 2
√
q‖θ‖P .

Theorem 3 (Thm 4.3 in [6])

Suppose supx |f∗(x)| ≤ 1. For any δ ∈ (0, 1), if n & N(d, δ), then it holds w.p. at least 1− δ
for any interpolation minimum θ̂ that

Ex ‖f(x; θ̂)− f∗(x)‖2 .
Tr2(G(θ̂))

n
poly(n, 1/δ).

Remark:
• Similar results also hold for other metrics of sharpness. We show next that a slight

change of input distribution can cause that flat minima generalize poorly.
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Two-layer Networks With Bias

[7] shows that a slight modification of the input distribution causes that flat minima don’t
necessarily generalize.

• Data distribution: x ∼ Unif({±1}d) and y = x(1)x(2).

• Model: Two-layer ReLU network with bias: f(x, θ) =
∑m
j=1 ajσ(wT

j x+ bj).

Theorem 4 (Flat minima do not generalize, Theorem 4.1 in [7])

Under the setting above, if m ≥ n, there is a flattest global minimum that cannot
generalize at all. (“Flattest” is in the sense of Hessian trace, in terms of all global minima,
i.e. f(xi, θ) = yi,∀i.)

33 / 72



Two-layer Networks With Bias (Cont’d)

Proof: Step 1: Construct a so-called memorizing solution.

Definition 1 (Memorizing solution)

A 2-layer network is a memorizing solution if (1) it interpolates the training dataset, i.e. global
minimum, (2) any xi in the training activates only one neuron in the hidden layer, and different
xi’s activate different neurons.

• WLOG, assume m = n. For j = 1, 2, . . . ,m, let

wj = xj/‖xj‖, bj = −0.5
√
d aj = yj/(0.5

√
d).

• w.p. 1− δ, supi,j∈[n] |x̂Ti x̂j | ≤ log(n/δ)
n .

• By the above choice, w.p. 1− δ, each sample can only activate one neuron. Consequently,

f(xi; θ̃) =

n∑

j=1

ajσ(x̂>j xi − 0.5
√
d) = aiσ(x̂>i xi − 0.5

√
d) = yi.

• In this way we obtain a memorizing solution that predicts 0 anywhere outside the training
set, thus no generalization at all. Or, to be specific, the generalization error is 1− n/2d.
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Two-layer Networks With Bias (Cont’d)

Step 2: Show that the memorizing solution is the flattest among all global minima.
• We do this by lower bounding the sharpness. Note that we still have

Tr[G(θ)] =
1

n

n∑

i=1

‖∇θf(xi, θ)‖2

• For any xi, we have f(xi, θ) =
∑m
j=1 ajσ(wT

j xi + bj) = yi. For simplicity of writing we

introduce the new notations w′j = concat(wj , bj) ∈ Rd+1 and x′i = concat(xj , 1) ∈ Rd+1.
Then by Cauchy-Schwarz inequality,

‖∇θf(xi, θ)‖2 =

m∑

j=1

(
σ2(w′j

T
x′i) + ‖aj1(w′j

T
x′i ≥ 0)x′i‖2

)

≥
m∑

j=1

2σ(w′j
T
x′i)|aj |1(w′j

T
x′i ≥ 0)‖x′i‖

≥

∣∣∣∣∣∣

m∑

j=1

2ajσ(w′j
T
x′i)

∣∣∣∣∣∣
‖x′i‖ = 2‖x′i‖|yi|

We can choose an appropriate memorizing solution such that all equalities hold
simultaneously. Therefore it is the flattest.

35 / 72



Two-layer networks with bias (Cont’d)

Figure 8: FMH cannot explain the implicit regularization of SGD. The sharpness-aware minimization
(SAM) find flatter solutions but they generalize worse.
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Sharpness-Aware Minimization (SAM)

• Since we believe reducing sharpness can be helpful in generalization, can we use this
observation to design an algorithm with better generalization?

• [5] proposes a sharpness-aware minimization (SAM), which aims to minimize

LSAM(θ) := L(θ)︸︷︷︸
fitting loss

+ max
‖ε‖2≤ρ

L(θ + ε)− L(θ)

︸ ︷︷ ︸
sharpness
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The “Unreasonable” Simplification

• However, the new loss is hard to calculate. Fortunately, we have the following
approximation of the maximizer ε∗(θ):

ε∗(θ) = argmax
‖ε‖2≤ρ

L(θ + ε) ≈ argmax
‖ε‖2≤ρ

L(θ) + εT∇θL(θ) = ρ
∇θL(θ)

‖∇θL(θ)‖2
=: ε(θ)

• And the derivative

∇θLSAM (θ) ≈ ∇θL(θ + ε(θ)) =
d(θ + ε(θ))

dθ
∇θL(θ)|θ+ε(θ) ≈ ∇θL(θ)|θ+ε(θ)

in the last approximation we neglect the derivative of ε(θ).

• In a summary, one SAM step goes like

θt+1 = θt − η∇L
(
θt + ρ

∇L(θt)

‖∇L(θt)‖

)
(1)
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The Performance of SAM on Vision Tasks

Figure 9: Table 2 in Chen, et al., (2022).
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The Performance of SAM on NLP tasks

Figure 10: Table 1 in Bahri, et al., (2022).

Remark: Small (77M), Base (250M), Large (880M), and XL (3B).
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How SAM works?

• Let us take a look at the SAM update:

θt+1 = θt − η∇L
(
θt + ρ

∇L(θt)

‖∇L(θt)‖

)

• No explicit regularization at all. It should be certain implicit bias that improves the
performance.

• How to formulate the implicit bias of SAM?
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Why does SGD Prefer Flat Minima?

A Stability Perspective
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The Escape Phenomenon
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Figure 11: Fast escape phenomenon in fitting corrupted FashionMNIST.

Observation:

• This escape phenomenon indicates that GD solutions are dynamically unstable for SGD.

• The escape is unreasonably fast, providing a indicator of how much SGD dislikes sharp
minima.
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Stability of Gradient Flow

The gradient flow (GF) is GD with a infinite-small learning rate.

θ̇t = −∇L̂(θt).

• All critical points (∇L̂(θ) = 0) are the fixed points of GF.

• But GF only prefers minima which are the stable ones. Saddle points are unstable;
minima are stable.

Figure 12: GF only selects C and D. A and B are unstable for GF.
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Stability of Gradient Descent

Gradient descent (GD) updates as θt+1 = θt − η∇L̂(θt).

• GD with a large LR only converges to the minimum D.

• GD escape from the minimum C exponentially fast.

Figure 13: GD with a large LR only selects D. The minimum C is stable for GF but not for GD with a
relatively large LR.
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The Linear Stability Analysis

• Linearize the GD dynamics: Then, linearzing GD around θ∗ gives

θt+1 − θ∗ = θt − θ∗ − η(∇L(θt)−∇L(θ∗))

≈ (I − ηH(θ∗))(θt − θ∗)
= (I − ηH(θ∗))t(θ0 − θ∗).

• Stability condition: Stability ⇒ ‖I − ηH(θ∗)‖2 ≤ 1⇒

λ1(H(θ∗))︸ ︷︷ ︸
Sharpness

≤ 2

η
.

Otherwise, GD escapes from that minimum exponentially fast: (1− ηλ1(H(θ∗)))t.

• Implication: Stability can control the largest eigenvalue of Hessian.
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The Edge of Stability (EoS) Phenomenon

For training neural networks, we find that GD often occurs on the edge of stability (EoS)

Table 1: Sharpness ‖H(θ∗)‖2 of GD solutions vs. the learning rate η

η 0.01 0.05 0.1 0.5 1

FashionMNIST 53.5± 4.3 39.3± 0.5 19.6± 0.15 3.9± 0.0 1.9± 0.0

CIFAR10 198.9± 0.6 39.8± 0.2 19.8± 0.1 3.6± 0.4 -

upper bound: 2/η 200 40 20 4 2

See follow-up works (Cohen et al., ICLR 2021; Jastrzebski et al., ICLR 2020) on this striking
phenomenon.
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GD on Neural Networks Typically Occurs at EoS

Figure 14: Taken from Cohen et al., (2021).

Remark:
• EoS (Wu et al. (2018)), progressive sharpening (Jastrzebski et al. (2020)).
• Cohen et al., (2021) provides a systematical investigation of the EoS and progressive

sharpening phenomenon and highlight the importance of these phenomena.
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What affects the stability of SGD

• GD: Consider the optimization of f(x) = 1
2ax

2, GD will escape the minimum if the
learning rate η > 2/a.

• SGD:

f1(x) = min

{
1

2
x2,

0.1

2
(x− 1)2

}
, f2(x) = min

{
1

2
x2,

1.9

2
(x− 1)2

}

• Both x = 0 and x = 1 are global minima.
• The two functions correspond to different batches of data.. GD optimizes
f(x) = 1

2
(f1(x) + f2(x)).

• In each iteration, SGD randomly picks one function from f1 and f2 and applies gradient
descent to that function.

• SGD with the learning rate η = 0.7 is not stable around x = 1: stable for f1 but unstable for
f2.
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An illustrative example

Consider the target function f(x) = 1
2 (f1(x) + f2(x)) with

f1(x) = min(x2, 0.1(x− 1)2), f2(x) = min(x2, 1.9(x− 1)2)

−0.5 0.0 0.5 1.0 1.5
x

0.0
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f = 1

2(f1 + f2)

f1

f2

SGD trajectory

0 200 400
Number of iteration
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O
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Figure 15: SGD with η = 0.7, x0 = 1− ε with ε=1e-5.

Implication:

• Sharpness cannot fully characterize the difference between SGD and GD. The introduction
of non-uniformity is necessary.
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Linear stability of SGD

• Here we focus on the over-parameterized regime. Then, all global minima are fixed points
of SGD since at global minimum:

L(θ∗) =
1

n

n∑

i=1

`i(θ
∗) = 0⇒ `i(θ

∗) = 0⇒ ∇`i(θ∗) = 0,∀i = 1, . . . , n

• Consider an one-dimensional problem:

f(x) =
1

2n

n∑

i=1

aix
2, ai ≥ 0 ∀i ∈ [n] (2)

The SGD iteration is given by,

xt+1 = xt − ηaitxt = (1− ηait)xt, (3)
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Linear stability of SGD

• So after one step update, we have

Ext+1 = (1− ηa)Ext, (4)

Ex2
t+1 =

[
(1− ηa)2 + η2s2

]
Ex2

t , (5)

where a = 1
n

∑n
i=1 ai, s =

√
1
n

∑n
i=1 a

2
i − a2. We call a: sharpness s: non-uniformity.

• Global minimum x∗ = 0 is stable for SGD with batch size B, iff

(1− ηa)2 +
η2(n−B)

B(n− 1)
s2 ≤ 1, s ≥ 0. (6)

• Otherwise, a small perturbation will lead SGD to escape from 0.
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The Selection Diagram

The learning rate and batch size play different roles in the global minima selection.
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Extension to high dimensions

• Similar analyses can be extended for high-dimensional cases

λmax

{
(I − ηH)2 +

η2(n−B)

B(n− 1)
Σ

}
≤ 1.

Let a = λmax(H), s2 = λmax(Σ), then a necessary condition is

0 ≤ a ≤ 2

η
, 0 ≤ s ≤ 1

η

√
B(n− 1)

n−B ≈
√
B

η
.
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The selection mechanism
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Figure 16: The sharpness-non-uniformity diagram for the minima selected by SGD.

• SGD prefer uniform solutions.

• Non-uniformity is nearly proportional to the sharpness.

• Combining them together, SGD is biased towards flat minima.
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Non-uniformity is strongly correlated to sharpness
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Figure 17: Scatter plot of sharpness and non-uniformity. For each case, we trained about 500 models
with different initializations, learning rates, batch sizes, etc.

56 / 72



Towards A Necessary Stability Condition of SGD

• Consider
θt+1 = θt − η(∇L(xt) + ξt)

• Let Σ(θt) = E[ξtξ
>
t ]. When ∇L(θt) or η is small, we have

E[L(θt+1)] = E[L(θt − η∇L(xt)− ηξt)]

≈ E[L(θt − η∇L(xt))] +
η2

B
Tr[H(θt)Σ(θt)].

• The first term comes from the GD part, while the second term is determined by SGD noise.

• Obviously, how SGD noise contributes the stability depends on

how the noise covariance Σ(θt) aligns with the Hessian H(θt).
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The alignment property of SGD noise

• The decoupling approximation near global minima manifold:

Σ(θ) =
1

n

∑

i

ei∇f(xi; θ)ei∇f(xi; θ)
T −∇L(θ)∇L(θ)T

≈ 1

n

∑

i

e2
i∇f(xi; θ)∇f(xi; θ)

T

≈
(

1

n

∑

i

e2
i

)(
1

n

∑

i

∇f(xi; θ)∇f(xi; θ)
T

)
= 2L(θ)G(θ).

• Magnitude: The noise magnitude is proportional to the loss.

• Direction: That Σ(θ) aligns with G(θ) suggests

Near the global minima manifold, the noise concentrates in sharp directions of local
landscape.
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Quantify the alignment strength

α(θ) =
Tr(Σ(θ)G(θ))

‖G(θ)‖F ‖Σ(θ)‖F
(7)

β(θ) =
‖Σ(θ)‖F

2L(θ)‖G(θ)‖F
(8)

µ(θ) = α(θ)β(θ) (9)

• α(θ): standard cosine similarity to quantify the“direction” alignment.

• β(θ) quantifies the “magnitude”non-degeneracy of noise wrt the loss.

• µ(θ) is a loss-scaled alignment factor.

The key observation: There exists a positive constant µ0 such that

µ(θ) ≥ µ0,

(When the decoupling approximation holds, µ0 = 1.)
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Experiment results: MNIST
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Figure 18: (Up) The alignment factors during the training. (Bottom) How the alignment strength
changes with the over-parameterization. Here FCN=fully-connected networks.
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Experiment results: CIFAR-10
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Why is the alignment satisfied?

Tr(Σ(θ)G(θ)) =
1

n

n∑

i=1

e2
i gi(θ)

TG(θ)gi(θ) =
1

n

n∑

i=1

e2
i ‖gi(θ)‖2G

≈ (
1

n

n∑

i=1

e2
i )(

1

n

n∑

i=1

‖gi(θ)‖2G) = 2L(θ)‖G(θ)‖2F ,

the ≈ comes from the uniformity of {‖gi(θ)‖G}i are uniform. Let
γ(θ) = mini ‖gi(θ)‖2G/( 1

n

∑n
i=1 ‖gi‖2G).
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In the literature, many people attribute the validity of approximation to the uniformity of
fitting errors {e2

i }i, e.g., (Liu et al., iclr2022), which is unfortunately wrong.
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In the literature, many people attribute the validity of approximation to the uniformity of
fitting errors {e2

i }i, e.g., (Liu et al., iclr2022), which is unfortunately wrong.
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Provable alignments

Proposition 1: Linear networks

Let f(x; θ) be linear network. Let f(·; θ) be a deep linear net and x ∼ N (0, S). Consider the
online SGD setting, i.e., n =∞. Then, µ(θ) ≥ 1.

Proposition 2: Random feature models

Let f(x; θ) =
∑m
j=1 θjσ(wTj x), where {wj}j iid∼ Unif(

√
dSd−1). Suppose that x ∼ Unif(Sd−1).

For any δ ∈ (0, 1), assume n & d5 log(1/δ), then w.p. at least 1− δ, µ(θ) & d−1.

In these models, we prove that the alignment holds for the entire parameter space not only
around global minima.
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The linear stability condition

Theorem 3

Let θ∗ be a global minimum that is linearly stable. If the noise of linearized SGD satisfies
µ(θ) ≥ µ0, then

‖H(θ∗)‖F ≤
1

η

√
B

µ0
.

Proof: By the preceding lemma, we have

E[L̃(θ̃t+1)] ≥ η2

2B
E[Tr(H(θ∗)Σ(θ̃t))] =

η2‖H(θ∗)‖2F
B

E[µ(θt)L̃(θ̃t)]

≥ µ0η
2‖H(θ∗)‖2F
B

E[L̃(θ̃t)] (Using µ(θ) ≥ µ0).

The stability ensures
µ0η

2‖H(θ∗)‖2F
B ≤ 1. Hence, ‖H(θ∗)‖2F ≤ B/(µ0η

2).
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Implication: a size-independent flatness control

‖H(θ∗)‖F ≤
1

η

√
B

µ0
.

• This upper bound of flatness is independent of the sample and parameter size, no matter
how over-parameterized the model is.

• Large LR and small batch size lead to flatter minima.

• Comparison with GD.
• They control different “flatness”:

‖H(θ∗)‖F =

√√√√ m∑
j=1

λ2
j (H(θ∗)) ≤ 1

η

√
B

µ0︸ ︷︷ ︸
SGD

vs λ1(H(θ∗)) ≤ 2

η︸ ︷︷ ︸
GD

.

• A naive bound of Hessian’s Fro-norm for GD:

‖H(θ∗)‖F ≤
√

rank(H(θ∗))λ1(H(θ∗)) ≤ 2
√
n

η
.

This is size dependent.
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The importance of noise structure

Let m denote the parameter space dimension. Consider two types of SGDs:

Geometry-aware SGD: θt+1 = θt − η(∇L(θt) + ξ1,t)

Isotropic SGD: θt+1 = θt − η(∇L(θt) + ξ2,t),

where
E[ξ1,tξ

T
1,t] = 2L(θt)G(θt), E[ξ2,tξ

T
2,t] = 2σ2L(θt)Im,

where σ2 = Tr(G(θt))
m is chosen to ensure that two types of noises have the same total variance.

The stability of two SGDs:

Geometry-aware SGD: ‖H(θ∗)‖F ≤
√
B

η
(size-independent)

Isotropic SGD: Tr(H(θ∗)) ≤
√
mB

η
(size-dependent).
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CIFAR-10 experiments
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• The actual sharpness of SGD solutions is (nearly) independent of the model size.

• Our upper bound is close to the actual sharpness, suggesting a near EoS phenomenon
for SGD.
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The bound becomes tighter as decreasing batch size
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How much SGD dislikes sharp minima?

Theorem 4 (Escape from sharp minima)

If ‖H(θ∗)‖F > 1
η

√
B
µ0

, then we have

E[L̂(θt)] ≥ γt0 E[L̂(θ0)]

where γ0 = η2µ0

B ‖H(θ∗)‖2F > 1.

• The sharper the minimum is, the faster the escape is.

• The stronger the noise aligns with local geometry, the faster the escape is.
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Figure 19: The exponentially fast escape from sharp minima. The blue curves are 200 trajectories
of SGD; the red curve corresponds to the average. The sharp minimum is found by GD. When GD
nearly converge, we switch to SGD with the same learning rate. This choice ensures that the minimum
is stable for GD, and thus the escape is purely driven by SGD noise.
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