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“Modern” ML models are over-parameterized

Neural networks often work in the over-parameterized regime, i.e.,

# of parameters > # of training samples.
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Neural networks often work in the over-parameterized regime, i.e.,

# of parameters > # of training samples.

CIFAR-10 # train: 50,000
Inception 1,649,402
Alexnet 1,387,786
MLP Ix512 1,209,866
ImageNet # train: ~1,200,000
Inception V4 42,681,353
Alexnet 61,100,840
Resnet-{18;152} 11,689,512;60,192,808
VGG-{I11;19} 132,863,336; 143,667,240

Figure 1: Different image classification models.
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How to avoid overfitting?

® Traditional-style ML: Add explicit regulatizations, e.g., weight decay, batch/layer
normalization, dropout, data argumentation.
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How to avoid overfitting?

® Traditional-style ML: Add explicit regulatizations, e.g., weight decay, batch/layer
normalization, dropout, data argumentation.

® Modern ML: A specific algorithm (with a specific initialization) only converges to certain
solutions—A phenomenon referred to as implicit regularization/bias.

Understanding implicit regularization is one of the most fundamental and mysterious
problems in deep learning.

Key factors:
® Model
® Optimizer

® |nitialization
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Stochastic gradient descent

* Consider the empirical risk: L() = LS U f(2330), y:). Let gi(0) = VE(f (233 0), v:)
and g(0) = ;- 3=, 9i(0).
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* Consider the empirical risk: L() = LS U f(2330), y:). Let gi(0) = VE(f (233 0), v:)
and g(0) = %Zl 9:(0).

® Gradient descent (GD): 641 = 0; — ng(6;).

® Stochastic gradient descent (SGD):

1
Ory1 =0 “ng Zgj(et)-

JEL:

Stochastic grad.

The SGD hyperparameters: learning rate (LR) 7 and batch size B.
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Stochastic gradient descent

* Consider the empirical risk: L() = LS U f(2330), y:). Let gi(0) = VE(f (233 0), v:)
and g(0) = %Zl 9:(0).

® Gradient descent (GD): 641 = 0; — ng(6;).

® Stochastic gradient descent (SGD):

1
Ory1 =0 “ng Zgj(et)-

JEL:

Stochastic grad.

The SGD hyperparameters: learning rate (LR) 7 and batch size B.

e SGD = GD + noise:
1
Ory1 =0 —n (9(0t) + \/ng) )

n

B[] = 0, BI&eT] = = 3 (0:(60) — 9(60)(6:(61) — 9(0.)"-

n <
=1

where

The noise is state-dependent!
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Implicit regularization of SGD

® SGD often converge to solutions that generalize well without needing any explicit
regularization.

® Implicit regularization are even more important than explicit regularization (in deep
learning).
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accuracy

o=0 test(Inception)

e—o train(Inception)

== test(Inception w/o BN)
train(Inception w/o BN)

e
N

0.6
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thousand training steps
Figure 2: Classifying CIFAR-10 with Inception networks (Taken from [Chiyuan Zhang, et al, ICLR2017])
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GD

GD can converge to good solutions.
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Figure 3: Taken from [Wu et al., 2018]. The dashed curve corresponds to bad solutions found by
certain approach.
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SGD performs better than GD

® SGD often generalizes better than GD although it is originally proposed to speed up

training.

Experiment Mini-batching | Epochs | Steps Modifications Val. Accuracy %
Baseline SGD v 300 117,000 - 95.70(£0.11)
Baseline FB X 300 300 - 75.42(£0.13)
FB train longer X 3000 3000 - 87.36(+1.23
FB clipped X 3000 3000 clip 93.85: +0.10)
FB regularized X 3000 3000 clip+reg 95.36(40.07)
FB strong reg. X 3000 3000 clip+reg+bs32 95.67(+0.08)
FB in practice X 3000 3000 clip+reg+bs32+shuffle 95.91(+0.14)

Table 2: Summary of validation accuracies in percent on the CIFAR-10 validation dataset for each
of the experiments with data augmentations considered in Section 3. All validation accuracies are
averaged over 5 runs.

Figure 4: Taken from (Geiping et al., ICLR 2022)
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The ICLR 2017 Best Paper

® Understanding deep learning requires rethinking generalization by Chiyuan Zhang et al.
Won the Best Paper Award of ICLR 2017.

Tasks

penReview Search OpenReview.. Q Notifications (31

< Go to ICLR 2017 conference homepage

Understanding deep learning requires rethinking generalization (=}

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals

Published: 22 Jul 2022, Last Modified: 22 Oct 2023  ICLR2017 Oral  Readers: @ Everyone  Show Bibtex ~ Show Revisions

TL;DR: Through extensive systematic experiments, we show how the traditional approaches fail to explain why large neural networks generalize well in practice, and why understanding deep learn
requires rethinking generalization.

Abstract: Despite their massive size, successful deep artificial neural networks can

exhibit a remarkably small difference between training and test performance.

Conventional wisdom attributes small generalization error either to properties

of the model family, or to the regularization techniques used during training.

Through extensive systematic experiments, we show how these traditional
approaches fail to explain why large neural networks generalize well in

practice. Specifically, our experiments establish that state-of-the-art
convolutional networks for image dlassification trained with stochastic

gradient methods easily fit a random labeling of the training data. This
phenomenon is qualitatively unaffected by explicit regularization, and occurs
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A Loss landscape Perspective

® The optimization of neural networks is highly non-convex. The loss landscape is usually
full of global minima, bad local minima and saddle points.
® Different minima have different local geometry.
® The connectivity among different minima.
® Many other topology and geometric structures.

(a) without skip connections (b) with skip connections

Figure 5: The loss surfaces of ResNet-56 without/with skip connections. [1]
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Flat minima hypothesis (FMH)

The famous flat minima hypothesis (FMH):
@ SGD converges to flatter minima (Keskar et al., 2016).
@® Flatter minima generalize better (Hochreiter and Schmidhuber, 1995).
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Flat minima hypothesis (FMH)

The famous flat minima hypothesis (FMH):
@ SGD converges to flatter minima (Keskar et al., 2016).
@® Flatter minima generalize better (Hochreiter and Schmidhuber, 1995).
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Figure 6: The landscape for 6(a) := (1 — &)fsap + afap. Taken from (Keskar et al., 2016).
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Experiments in [2]

Name | Network Type

Table 1: Network Configurations

| Architecture | Data set

I Fully Connected Section|B. MNIST (LeCun et all,[19982)
Fy Fully Connected Section TIMIT (Garofolo et all,[1993)
(&) (Shallow) Convolutional | Section|B.3 CIFAR-10 (Krizhevsky & Hintonﬂ,@@')
Cy (Deep) Convolutional Section[B.4 | CIFAR-10
Cs (Shallow) Convolutional | Section[B.3 | CIFAR-100 (Krizhevsky & Hintor,[2009)
Cy (Deep) Convolutional Section CIFAR-100
Table 2: Performance of small-batch (SB) and large-batch (LB) variants of ADAM on the 6 networks
listed in Table[]
Training Accuracy Testing Accuracy
Name | SB | LB SB | LB
I 99.66% % 0.05% | 99.92% £ 0.01% | 98.03% £ 0.07% | 97.81% £ 0.07%
Fy 99.99% + 0.03% | 98.35% +2.08% | 64.02% £ 0.2% | 59.45% + 1.05%
Ch 99.89% 4 0.02% | 99.66% 4 0.2% | 80.04% 4 0.12% | 77.26% =+ 0.42%
Cy 99.99% + 0.04% | 99.99% + 0.01% | 89.24% + 0.12% | 87.26% + 0.07%
Cs 99.56% = 0.44% | 99.88% =+ 0.30% | 49.58% + 0.39% | 46.45% + 0.43%
Cy 99.10% + 1.23% | 99.57% + 1.84% | 63.08% + 0.5% | 57.81% + 0.17%
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Experiments in [2] (Cont’d)

Table 4: Sharpness of Minima in Random Subspaces of Dimension 100

e=10"3 e=5-10"4

SB LB SB LB

F; | 0.11 +0.00 9.22 + 0.56 0.05 + 0.00 9.17+0.14
Fy | 0.29+0.02 23.63 + 0.54 0.05 + 0.00 6.28 +0.19
Ci | 218+£0.23 | 137.25+21.60 | 0.71 £0.15 | 29.50 + 7.48
Cy | 0.95+0.34 25.09 4+ 2.61 0.31 +0.08 5.82 +0.52
Cs3 | 17.024+2.20 | 236.03 +=31.26 | 4.03 +1.45 | 86.96 + 27.39
Cy | 6.05+1.13 72.99 £10.96 | 1.894+0.33 | 19.85 +4.12
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Remarks on Flat Minima Hypothesis

® In practice, FMH is very successful in guiding hyperparameter tuning and designing new
optimizer for better generalization, e.g., the sharpness-aware minimization (Foret et al.,
2021).

14/72



Remarks on Flat Minima Hypothesis

® In practice, FMH is very successful in guiding hyperparameter tuning and designing new
optimizer for better generalization, e.g., the sharpness-aware minimization (Foret et al.,
2021).

® However, FMH is only empirically validated. Theoretical understandings of the underlying
mechanism is still limited.

14/72



Remarks on Flat Minima Hypothesis

® In practice, FMH is very successful in guiding hyperparameter tuning and designing new
optimizer for better generalization, e.g., the sharpness-aware minimization (Foret et al.,
2021).

® However, FMH is only empirically validated. Theoretical understandings of the underlying
mechanism is still limited.

14/72



Remarks on Flat Minima Hypothesis

® In practice, FMH is very successful in guiding hyperparameter tuning and designing new
optimizer for better generalization, e.g., the sharpness-aware minimization (Foret et al.,
2021).

® However, FMH is only empirically validated. Theoretical understandings of the underlying
mechanism is still limited.

Theoretical Questions:
® What is the appropriate metric of measuring “flatness”?

14/72



Remarks on Flat Minima Hypothesis

® In practice, FMH is very successful in guiding hyperparameter tuning and designing new
optimizer for better generalization, e.g., the sharpness-aware minimization (Foret et al.,
2021).

® However, FMH is only empirically validated. Theoretical understandings of the underlying
mechanism is still limited.

Theoretical Questions:
® What is the appropriate metric of measuring “flatness”?
® Why does SGD prefer flat minima?

14/72



Remarks on Flat Minima Hypothesis

® In practice, FMH is very successful in guiding hyperparameter tuning and designing new
optimizer for better generalization, e.g., the sharpness-aware minimization (Foret et al.,
2021).

® However, FMH is only empirically validated. Theoretical understandings of the underlying
mechanism is still limited.

Theoretical Questions:
® What is the appropriate metric of measuring “flatness”?
® Why does SGD prefer flat minima?
® Why does flat minima generalize well?

14/72



Sharpness Metrics

® Sharpness characterizes how the loss function (model prediction) changes under small
perturbation in the parameter space. A sharp minimum corresponds to model, whose
prediction is sensitive to the change of the parameters.
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Sharpness Metrics

® Sharpness characterizes how the loss function (model prediction) changes under small
perturbation in the parameter space. A sharp minimum corresponds to model, whose
prediction is sensitive to the change of the parameters.

® The specific sharpness metric depends on what do we mean by “small perturbation”:

® At a minimum 6*, we have

M V2L(07) = e ZEEZIZEOD 4 o)
Te(V2L(0%)) = Eomnio e 20 TIZLED) | 5

p
2(L(6* +€) — L(6%))

P2

IV2LO*)|F = Eenn(0,02v2L(6%)) +O(p)
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Sharpness Metrics

® Sharpness characterizes how the loss function (model prediction) changes under small
perturbation in the parameter space. A sharp minimum corresponds to model, whose
prediction is sensitive to the change of the parameters.

® The specific sharpness metric depends on what do we mean by “small perturbation”:

® At a minimum 6*, we have
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® What happens if the perturbation is not very small? Does high-order gradient matter?
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Sharpness Metrics

® Sharpness characterizes how the loss function (model prediction) changes under small
perturbation in the parameter space. A sharp minimum corresponds to model, whose
prediction is sensitive to the change of the parameters.

® The specific sharpness metric depends on what do we mean by “small perturbation”:

® At a minimum 6*, we have

M V2L(07) = e ZEEZIZEOD 4 o)
Te(V2L(0%)) = Eoonio e 22 *;3 —LED | o)
VL) = Econio v pony) 0 *;3 —LE) 4 o)

® What happens if the perturbation is not very small? Does high-order gradient matter?
® Any connection with model’s adversarial /random robustness?
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Why Do Flat Minima Generalize Well?

Training Function

.
' Testing Function

at ] Sharp Minimum

Flat Minimum

Figure 7: The most popular intuitive explanation of why flat minima generalize well provided in [2].
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Why Do Flat Minima Generalize Well?

Training Function

.
! Testing Function

v

Sharp Minimum

Flat Minimum

Figure 7: The most popular intuitive explanation of why flat minima generalize well provided in [2].

Remark:
® This illustration is “misleading” as it essentially suggests that sharp minima cannot

generalize well! But this is wrong!
® This is due to in high dimensions, the testing landscape deviates the training landscape
16 /72
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Sharp Minima Can Generalize well

® RelLU networks are invariant under neural-wise rescaling:

a
AORelU (WTX) = XORQLU(()\W)TX).
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T,y 2 Aw) T
a0ReLU(W ' X) = XJRQLU(( w) ' x).

® The rescaling operation (a, w) — (a/\, Aw) does not change the function implemented
by the model, but can significantly change the sharpness.

* Consider a toy landscape L(a,w) = 3(aw — 1)%. At global {(a,w) : aw = 1}, we have

V2L(a,w) = (7“”12 12> .

a

Thus, rescaling can make a solution arbitrarily sharp.
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Sharp Minima Can Generalize well

ReLU networks are invariant under neural-wise rescaling:

a
AORelU (WTX) = XO'RQLU ((Aw) Tx) .

The rescaling operation (a,w) — (a/A, Aw) does not change the function implemented
by the model, but can significantly change the sharpness.

Consider a toy landscape L(a,w) = (aw — 1)2. At global {(a,w) : aw = 1}, we have

V2L(a,w) = (“f 12> .

a

Thus, rescaling can make a solution arbitrarily sharp.

This implies that we can only expect flatness to be a sufficient condition for
generalization.

17/72



A PAC-Bayesian Perspective of FMH

® We will introduce the PAC-Bayesian explanation of FMH, which is the most popular
theory in the community (Neyshabur et al., NIPS 2017).

® However, we will clarify that this explanation is very misleading.
e But PAC-Bayes Theory itself is very useful.
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PAC-Bayes Theory: Setup

® |let X and Y denote the input and output space, respectively. For brevity, denote by
Z =X ® )Y the joint space.
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® |let X and Y denote the input and output space, respectively. For brevity, denote by
Z =X ® )Y the joint space.
® Let H be the hypothesis/model space and D € P(Z) be the data distribution.

® Let £:H x Z+ R be the loss function. Then, £(h, z) denotes the model h's prediction

loss at z.
® Let S ={z1,22,...,2,} be the training set. Assume z; S D and denote by

Dy = 717 Z?:l 6( = 2).
® Then, we denote by
L(h) = EZND[Z(hﬂ Z)L j’(h) = EZNﬁn [f(h7 Z)]?
the population and empirical loss, respectively.

® Consider a posterior distribution @ € P(H) over the model space 7. Then, we can define
generalization of @Q by

L(Q) = EnqlL(h)],  L(Q) = En~qlL(h)].
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PAC-Bayesian Generalization Bound

Theorem 1 (McAllester (1998, 1999a))

Let £ : H x Z + [0,1] be a loss function and P be a prior distribution over H. Then, for any
d € (0,1), with probability at least 1 — & over the sampling of S, we have for any Q € P(H), it

holds that
(Q>+\/DKL(Q||P2)n+10g(1/5)

~

LQ) <
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PAC-Bayesian Generalization Bound

Theorem 1 (McAllester (1998, 1999a))

Let £ : H x Z — [0,1] be a loss function and P be a prior distribution over H. Then, for any
d € (0,1), with probability at least 1 — & over the sampling of S, we have for any Q € P(H), it

holds that
(Q>+\/DKL(Q||P2)n+1Og(1/5)

o

LQ) <

Remark:
® The posterior distribution can () can depend on the training set .S but P cannot.

® One often takes P, @ as certain Gaussian distributions since which the KL divergence
between two Gaussian has an explicit form.
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PAC-Bayesian Generalization Bound

Theorem 1 (McAllester (1998, 1999a))

Let £ : H x Z — [0,1] be a loss function and P be a prior distribution over H. Then, for any
0 € (0,1), with probability at least 1 — § over the sampling of S, we have for any Q) € P(H), it

holds that
(Q)+\/DKL(Q||P2)n+1Og(1/5)

>

LQ) <

Remark:
® The posterior distribution can () can depend on the training set .S but P cannot.

® One often takes P, @ as certain Gaussian distributions since which the KL divergence
between two Gaussian has an explicit form.

® PAC-Bayes theory has many application in machine learning theory. In this lecture, we will
focus its application in explaining FMH.

® \We refer interested readers to [3, Chapter 31] and [4] for more materials about PAC-Bayes
theory.
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Donsker and Varadhan’s Variational Principle

® Let X be general domain. Let V : X — R be an (negative) energy function and
m € P(X) be an arbitrary underling distribution. Denote by 7y the corresponding Gibbs
distribution given by
d’/TV eV(w)

dr (SU) = ExNﬂ_[eV(m)] :
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® Let X be general domain. Let V : X — R be an (negative) energy function and
m € P(X) be an arbitrary underling distribution. Denote by 7y the corresponding Gibbs
distribution given by
d’lTV eV(w)

i O = E vy

Theorem 2 (Donsker and Varadhan, 1976)

The Gibbs distribution satisfies

my = argmax (E;p[V ()] — Dkw(p||7))
pEP(X)

and moreover

log Exnrle” @] = sup (EonplV(2)] — Dxr(plIT)) .
pEP(X)
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Donsker and Varadhan’s Variational Principle

® Let X be general domain. Let V : X — R be an (negative) energy function and
m € P(X) be an arbitrary underling distribution. Denote by 7y the corresponding Gibbs
distribution given by
d’lTV eV(w)

ar (z) = Eyrl[e’ @]

Theorem 2 (Donsker and Varadhan, 1976)

The Gibbs distribution satisfies

my = argmax (E;p[V ()] — Dkw(p||7))
pEP(X)

and moreover
logEsunleV @] = sup (Eznp[V ()] — Dxr(p||7)).

PEP(X)
It is implied that for a given p € P(X), it holds for any 7 € P(X), A > 0 that
E,[V] <logE.[e"] + Dxr(p|lr) = &V <E [eV]elrrCllm),

The blue one can be viewed as a generalized Jensen inequality.
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Donsker and Varadhan’s Variational Formula (Cont’d)

Proof:

d
Dra(pllmv) = [[1og (32 ) ap

= Dis(pllm) + Eony frog (S]]
= Dit(pllr) ~ Eany [V (2)] + log ELeV .

Then, the proof is completed by noticing Dxk1,(p||my) > 0 and the equality is achieved when
p=Tv.
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Proof of the PAC-Bayesian Bound 2

e Let A,(h) = L(h) — L(h) (generalization gap). Then, we need to bound ]EhNQ[ﬁn(h)].

2A proof for bounding the expected generalization gap is more intuitive.
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Proof of the PAC-Bayesian Bound 2

Let A, (k) = L(h) — L(h) (generalization gap). Then, we need to bound ]EhNQ[ﬁn(h)].
Recall Hoeffding's inequality: For any A > 0,

Bg[eABn ) < 22

By the Chernoff-Cramer approach, we have

—~ Eg A En~q[An(h)]
P (EhNQ[An(h)]zt)z [ ~ )

By Donsker and Varadhan's variational principle,

AEnnalBaM] < B o[ ()] Pri(@IIP)

2A proof for bounding the expected generalization gap is more intuitive.
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Proof of the PAC-Bayesian Bound (Cont’d)

® Taking expectation wrt S gives
Egle?ErvelBnW]] < By |y, ple?Bn(W]ePrL(@IIP)

< Bpop Bgle?BnM]ePxe(@QIIP)

< ¢ +DrL(QIIP).
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< B +DKL(QIIP).
® Therefore, we have

~ 2
B (BneglBa(h)] > 1) < ¥+ D@D
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Proof of the PAC-Bayesian Bound (Cont’d)

® Taking expectation wrt S gives
]ES[EAJEhNQ[ﬁn(h)]] < Eg EhNP[EAA"(h)]eDKL(QHP)
< Bpop Bgle?BnM]ePxe(@QIIP)
< e +DKL(QIIP),
® Therefore, we have

~ 2
B (BneglBa(h)] > 1) < ¥+ D@D

® This yield with probability at least 1 — 9, we have

EnglAn(h)] < S%Jr DKL(QHP))\+ log(1/6)
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Proof of the PAC-Bayesian Bound (Cont’d)

® Taking expectation wrt S gives
Egle?ErvelBnW]] < By |y, ple?Bn(W]ePrL(@IIP)

< Bpop Bgle?BnM]ePxe(@QIIP)

< ¢ +DrL(QIIP).

Therefore, we have

~ 2
B (BneglBa(h)] > 1) < ¥+ D@D

This yield with probability at least 1 — §, we have

EnglAn(h)] < S%Jr DKL(QHP))\+ log(1/6)

Optimizing A completes the proof.
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PAC-Bayesian Generalization Bound for Flat Minima

Theorem 1 (PAC-Bayesian bound for sharpness-generalization, ["])

Suppose £: © x Z + [0,1]. For any p > 0, if we assume L(0) < E__xr(0,021)[L(6 + ¢)], then
w.p. at least 1 — § over the choice of S, we have

klog (1 + 190 (1 + \/@» +4log 2 +O(1)
L(#) — L(0) < max L(0+¢)— L(0) +

= llell2<o n

Sharpness

where k is the number of parameter space.
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PAC-Bayesian Generalization Bound for Flat Minima

Theorem 1 (PAC-Bayesian bound for sharpness-generalization, ["])

Suppose £: © x Z + [0,1]. For any p > 0, if we assume L(0) < E__xr(0,021)[L(6 + ¢)], then
w.p. at least 1 — § over the choice of S, we have

klog (1 + 190 (1 + \/@» +4log 2 +O(1)
L(#) — L(0) < max L(0+¢)— L(0) +

= llell2<o n

Sharpness

where k is the number of parameter space.

® Let us criticize this “theorem”!
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Proof

® Let Q@ = N(0,02%1). Then, by PAC-Bayesian bound, we have

Dx(Q|IP) +log 5
2n

L(0) < EpnqlL(0)] < EonglL(0)] + \/

3This is not correct since crf, should not depend on the training set S. Fortunately, this issue can be fixed by

a standard union bound argument. We leave this to homework.
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® Recall that
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Proof

® Let Q@ = N(0,02%1). Then, by PAC-Bayesian bound, we have

L(0) < Egq[L(0)] < IEQNQ[ﬁ(g)] + \/DKL(QHQJZL) + log%

® Recall that

Dic W1, 21z ) = 5 (10 (21 ) = K+ G = )5 o = ) + (s 50))

® Taking P = N (up,0%1) gives,

ko? + ||up — 0]3 o2
I 2P H2—k+k’log —123

Da@lP) = 5 |1 ’

3This is not correct since crf, should not depend on the training set S. Fortunately, this issue can be fixed by

a standard union bound argument. We leave this to homework.
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Proof

Let Q@ = N(0,02%1}). Then, by PAC-Bayesian bound, we have

L(0) < Eog[L(0)] < Ego[L(0)] + \/DKL(Q”;) + log
o Recall that
Pra (om0 e =) = % (log <§i:> — k4 (1 — p2) 85 (1 — po) + Tr(22121)>
* Taking P = N(up,0p1) gives,

1 [ko? + ||up — 0|3 o?
Dra(@lP) = 5 |*THEE = oy (22
P

® Taking up = 0,0% = o2 + k~1(|0||3 nearly 3 completes the proof.

3This is not correct since crf, should not depend on the training set S. Fortunately, this issue can be fixed by
a standard union bound argument. We leave this to homework.
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Remarks

The lessons what we learn from the aforementioned analysis include
® Flatness can be only a sufficient condition for generalization.

® Whether flat minima generalize depends on

® Model architecture
® Flatness metric
® Data distribution.
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An Important Observation

Consider the regression problem

L(G) = %;(f(xue = %1216
® the Hessian
H(0) := V2L( ZVf xi; )V f (2456 Zezvz x50

G(9)

where we refer to G(6) as the empirical Fisher matrix.
® When L(0) is small, we have H(0) ~ G(6) and particularly, at an interpolation
minimum 6* where L(0*) = 0, we have

H(6%) =G(9")
® We shall measure the “sharpness” by using G(0) instead of H(0), e.g.,

1 n
== IV F0)*
i=1
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Two-layer Networks (Without Bias)

® Consider two-layer ReLU networks (without bias) given by

m

f(2,0) = ajo(w;"z)
j=1
where a; € R,w; € R? and o(t) = max(t,0).
® We assume x ~ p = Unif(v/dS?1).
® A simple calculation:

Tr[G(0)] = E,[[|V f(2:0)|] Z ]+ aF Ello’ (w] ) [l«]?)
= Z(71||wj||2 +’Y2da?>7

j=1
where 71,72 are two absolute constants given by
" = Eqfo(x1)?], Y2 = By o’ (21)?].
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Two-layer Networks (Cont’d)

Define a weight /5 norm as follows

10]l2,q := \l > (lwjl* + qa3)
j=1

Theorem 2 (Thm 4.1 in [0])

Let N(d,d) = inf{n € N : dlog(n/d)/n < 1}.
® If n > N(d,J), then it holds w.p. 1 — ¢ that

Te(G(0) ~ 10ll2.a NG O)IF ~ [6ll5,va-
e If n > dN(d,J), then it holds w.p. at least 1 — § that

IGO)l2 ~ [16]]2,1-

Remark: It is worth noting that “sharpness” depends on the training data but the parameter
norms do not!
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How do we kill the data dependence?

Derivation on the backboard!
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Flatness Implies Generalization

For ReLU networks, the generalization gap can be controlled by the path norm

m
1611p == > falwyll

j=1
, which can be further upper bounded by the weighted £5 norm:
m m
16112, = D (lw;l* + qa3) = 2v/a Y la;lllw;|l = 2v/allf]».
j=1 j=1

Theorem 3 (Thm 4.3 in [0])
Suppose sup,, |f*(x)] < 1. For any ¢ € (0,1), if n 2 N(d,0), then it holds w.p. at least 1 — §
for any interpolation minimum 6 that

Tr*(G(6))

E, [I£(2:0) = f*(@)|° S poly(n, 1/6).

Remark:
® Similar results also hold for other metrics of sharpness. We show next that a slight
change of input distribution can cause that flat minima generalize poorly.
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Two-layer Networks With Bias

[7] shows that a slight modification of the input distribution causes that flat minima don't
necessarily generalize.

* Data distribution: = ~ Unif({£1}%) and y = 2V z(?).

® Model: Two-layer ReLU network with bias: f(z,0) = >0, ajo(wjz +by).

Theorem 4 (Flat minima do not generalize, Theorem 4.1 in [/])

Under the setting above, if m > n, there is a flattest global minimum that cannot
generalize at all. (“Flattest” is in the sense of Hessian trace, in terms of all global minima,

ie. f(zi,0) =y, Vi)
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Two-layer Networks With Bias (Cont’d)

Proof: Step 1: Construct a so-called memorizing solution.

Definition 1 (Memorizing solution)

A 2-layer network is a memorizing solution if (1) it interpolates the training dataset, i.e. global
minimum, (2) any z; in the training activates only one neuron in the hidden layer, and different
x;'s activate different neurons.

® WLOG, assume m =mn. For j =1,2,...,m, let
wW; = LL‘j/H$jH; b]' = —05\/;l a; = yj/(05\/(§)

log(n/8)

® w.p. 1 =6, sup; jep 2] 2| < &2

® By the above choice, w.p. 1 — d, each sample can only activate one neuron. Consequently,
~ n
f(zi;0) = Zaja(iiji —0.5Vd) = a;o(&] z; — 0.5Vd) = y;.
j=1

® In this way we obtain a memorizing solution that predicts 0 anywhere outside the training
set, thus no generalization at all. Or, to be specific, the generalization error is 1 — n/2%.
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Two-layer Networks With Bias (Cont’d)

Step 2: Show that the memorizing solution is the flattest among all global minima.
® We do this by lower bounding the sharpness. Note that we still have

S\
i=1

® For any z;, we have f(z;,0) => " ajo (ij:r, +b;) = y;. For simplicity of writing we

7j=1

introduce the new notations w) = concat(w;, b;) € R4 and z} = concat(z;,1) € R4

Then by Cauchy-Schwarz inequality,

m

IVaf (i, )12 = (02w ) + lay L (w) "o = 0)af)?)

j=1
% /T / 1 >0
Z o} a; |1 (w] " 2} > 0)] ]

22% )| llaill = 21151yl

We can choose an appropriate memorizing solution such that all equalities hold
simultaneously. Therefore it is the flattest. O
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Two-layer networks with bias (Cont’d)

180 —— Sharpness r1.0 200 —— Sharpness r1.0
Valid acc Valid acc
" 160 Trainacc | 0.9 " Trainacc | 0.9
9 0.8 g 120 0.8
5 140 © S_ 8
5 120 0.7< =100 0.7 <
L L
Y100 r0.6 n r0.6
50
80 +0.5 L0.5
10! 10° 10° 10! 10° 10°
Epoch Epoch
(a) Baseline (b) 1-SAM

Figure 8: FMH cannot explain the implicit regularization of SGD. The sharpness-aware minimization
(SAM) find flatter solutions but they generalize worse.
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Sharpness-Aware Minimization (SAM)

® Since we believe reducing sharpness can be helpful in generalization, can we use this
observation to design an algorithm with better generalization?
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Sharpness-Aware Minimization (SAM)

® Since we believe reducing sharpness can be helpful in generalization, can we use this
observation to design an algorithm with better generalization?

® [5] proposes a sharpness-aware minimization (SAM), which aims to minimize
LMy .= L() + max L(O+¢) — L(6)

~—~ llell2<p
fitting loss

sharpness
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The “Unreasonable” Simplification

® However, the new loss is hard to calculate. Fortunately, we have the following
approximation of the maximizer ¢*(6):

Vo L(6) =:¢(0)

€*(6) = argmax L(0 + ¢) ~ argmax L(6) + eTVQL(Q) = PW =
2] 2

llell2<p lell2<p
® And the derivative

0 + ()

d
Vo544 0) % VoL0 4+ e(0)) = G, 10)]0 o) = VLo

in the last approximation we neglect the derivative of ¢(6).

® In a summary, one SAM step goes like

VL0
Ot+1 =0, —nVL <9t+P (6:) )

IVL(6:) |
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The Performance of SAM on Vision Tasks

Throughput

Model #params (img/sec/core) ImageNet RealL
ResNet
ResNet-50-SAM 25M 2161 76.7 (+0.7) 83.1 (+0.7)
ResNet-101-SAM 44M 1334 78.6 (+0.8) 84.8 (+0.9)
ResNet-152-SAM 60M 935 79.3 (+0.8) 84.9 (+0.7)
ResNet-50x2-SAM 98M 891 79.6 (+1.5) 85.3 (+1.6)
ResNet-101x2-SAM 173M 519 80.9 (+2.4) 86.4 (+2.4)
ResNet-152x2-SAM 236M 356 81.1 (+1.8) 86.4 (+1.9)
Vision Transformer

ViT-S/32-SAM 23M 6888 70.5 (+2.1)  77.5(+2.3)
ViT-S/16-SAM 22M 2043 78.1 (+3.7) 84.1 (+3.7)
ViT-S/14-SAM 22M 1234 78.8 (+4.0) 84.8 (+4.5)
ViT-S/8-SAM 22M 333 81.3 (+5.3) 86.7 (+5.5)
ViT-B/32-SAM 88M 2805 73.6 (+4.1) 80.3 (+5.1)
ViT-B/16-SAM 8™ 863 79.9 (+5.3) 85.2 (+5.4)

Figure 9: Table 2 in Chen, et al.,

(2022).
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https://arxiv.org/pdf/2106.01548.pdf

The Performance of SAM on NLP tasks

Model | SGlue | BoolQ CB CoPA  MultiRC ReCoRD RTE WiC WSC
Small 67.7 72.6 89.4/89.3 67.0 68.5/214 61.7/60.8 693 654 721
Small + SAM (0.05) | 68.4 735 92.1/89.3 610 68.5/228 62.1/61.0 69.7 657 798
Base 753 80.0 91.7/94.6 710 754/354 762/754 809 693 769
Base + SAM (0.15) 78.5 82.2 93.7/94.6 780 77.5/391 782/772 859 704 817
Large 84.3 86.6 99.4/98.2 89.0 83.7/51.0 86.5/856 892 729 84.6
Large + SAM (0.15) 84.6 88.0 95.0/96.4 86.0 84.0/53.7 873/864 892 752 865
XL 87.2 88.6 93.7/96.4 950 869/61.1 89.5/884 913 749 894
XL + SAM (0.15) 89.1 89.4 100.0/100.0 95.0 87.9/63.7 90.9/90.0 921 755 942

Table 1: Experimental results (dev scores) on the (full) SuperGLUE benchmark. Public checkpoints of various
sizes are fine-tuned with and without SAM for 250k steps. We see that SAM improves performance across all

model sizes.

Figure 10: Table 1 in Bahri, et al., (2022).

Remark: Small (77M), Base (250M), Large (880M), and XL (3B).
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How SAM works?

® Let us take a look at the SAM update:

VL6,
0t+1:9t—nVL<9t+p ( )>

IVL(0:)|

® No explicit regularization at all. It should be certain implicit bias that improves the
performance.

® How to formulate the implicit bias of SAM?
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Why does SGD Prefer Flat Minima?

A Stability Perspective
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The Escape Phenomenon
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Figure 11: Fast escape phenomenon in fitting corrupted FashionMNIST.
Observation:

® This escape phenomenon indicates that GD solutions are dynamically unstable for SGD.
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The Escape

100

Train Accuracy(%)

Observation:

® This escape phenomenon indicates that GD solutions are dynamically unstable for SGD.
® The escape is unreasonably fast, providing a indicator of how much SGD dislikes sharp

minima.

Phenomenon

2000 1000 6000 8000 10000

70

Test Accuracy(%)

—————— @

10

12000 14000
Iteration

i
i
i
i
i
1
i
i
T
H
i
i
I
I
i
i
1
1
i
i
]
]
i
»
I
i
|
i
.

0 2000

1000

6000
Itera

8000 10000 12000 14000

tion
Figure 11: Fast escape phenomenon in fitting corrupted FashionMNIST.
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Stability of Gradient Flow

The gradient flow (GF) is GD with a infinite-small learning rate.

0, = —VL(6,).

* All critical points (VL(0) = 0) are the fixed points of GF.

® But GF only prefers minima which are the stable ones. Saddle points are unstable;
minima are stable.

\ Lle)

c 0

Figure 12: GF only selects C and D. A and B are unstable for GF.
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Stability of Gradient Descent

Gradient descent (GD) updates as 0,41 = 0, — nVL(0;).
® GD with a large LR only converges to the minimum D.

® GD escape from the minimum C exponentially fast.

A

L(e)

Awlin) 7

C 0

Figure 13: GD with a large LR only selects D. The minimum C is stable for GF but not for GD with a
relatively large LR.

)\ﬂnx (V‘LIOO)) s —%
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The Linear Stability Analysis

® Linearize the GD dynamics: Then, linearzing GD around 6* gives

Opp1 — 0" =0, — 0" —n(VL(0;) — VL(6))
~ (I —nH(0%))(0: —07)
= (I —nH(6"))" (80 — 6").
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The Linear Stability Analysis

® Linearize the GD dynamics: Then, linearzing GD around 6* gives

Opp1 — 0" =0, — 0" —n(VL(0;) — VL(6))
~ (I —nH(0%))(0: —07)
= (I —nH(6"))" (80 — 6").

* Stability condition: Stability = |1 — nH (6*)[2 <1 =

M(H(07)) <
———

Sharpness

I N

Otherwise, GD escapes from that minimum exponentially fast: (1 — nA;(H(0*)))".
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The Linear Stability Analysis

® Linearize the GD dynamics: Then, linearzing GD around 6* gives
9t+l -0 = 9t — 0" — n(VL(et) - VL(H*))
~ (I —nH(07))(0, — 07)
= (I —nH(9"))" (0 — 07).

* Stability condition: Stability = |1 — nH (6*)[2 <1 =

M(H(07)) <
———

Sharpness

I N

Otherwise, GD escapes from that minimum exponentially fast: (1 — nA;(H(0*)))".

® Implication: Stability can control the largest eigenvalue of Hessian.
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The Edge of Stability (EoS) Phenomenon

For training neural networks, we find that GD often occurs on the edge of stability (EoS)

Table 1: Sharpness |H(6")||2 of GD solutions vs. the learning rate n

i 0.01 0.05 0.1 0.5 1

FashionMNIST 53.5+4.3 39.3+£0.5 196+£0.15 39400 19+0.0
CIFAR10 1989406 39.8+£0.2 1984+0.1 3.64+04 -
upper bound: 2/n 200 40 20 4 2

See follow-up works (Cohen et al., ICLR 2021; Jastrzebski et al., ICLR 2020) on this striking
phenomenon.
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GD on Neural Networks Typically Occurs at EoS

Fully-connected net on CIFAR-10 5k subset 3 VGG on CIFAR-10

train loss
train loss

O e i) 300 -

e —

#1100 a

2 2 200

= 2

& 507 & 100 4

wn wn
T T T T T T 0_ T T T T T
0 500 1000 1500 2000 2500 0 2000 4000 6000 8000

iteration iteration

Figure 14: Taken from Cohen et al., (2021).

Remark:
® EoS (Wu et al. (2018)), progressive sharpening (Jastrzebski et al. (2020)).
® Cohen et al., (2021) provides a systematical investigation of the EoS and progressive

sharpening phenomenon and highlight the importance of these phenomena.
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What affects the stability of SGD

® GD: Consider the optimization of f(z) = %amz, GD will escape the minimum if the
learning rate n > 2/a.
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What affects the stability of SGD

® GD: Consider the optimization of f(z) = %axz, GD will escape the minimum if the

learning rate n > 2/a.
® SGD:

fi(z) = min {;xz %(m — 1)2} . fao(z) = min {;gﬁ %9(3; — 1)2}

® Both z =0 and z = 1 are global minima.

® The two functions correspond to different batches of data.. GD optimizes
f@) = 5(fi(z) + fa(2)).

® In each iteration, SGD randomly picks one function from fi and f> and applies gradient
descent to that function.

® SGD with the learning rate 7 = 0.7 is not stable around = = 1: stable for f; but unstable for

fa.
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An illustrative example

Consider the target function f(z) = 1 (f1(z) + f2(z)) with

fi(x) = min(2?,0.1(x — 1)?), fa(x) = min(2?,1.9(x — 1)?)

0.4 !
— [=h+h) h
0 i ! 0.20
03] == £ A / g
N 1 =
—— SGD traJectory’,’ \l ! 20.15
h 1 L [
h ' =
B 0.10
[
L,
S 0.05
0.00 J
0 200 400

Number of iteration
Figure 15: SGD with n = 0.7, 290 = 1 — € with e=1e-5.

Implication:
® Sharpness cannot fully characterize the difference between SGD and GD. The introduction

of non-uniformity is necessary.
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Linear stability of SGD

® Here we focus on the over-parameterized regime. Then, all global minima are fixed points
of SGD since at global minimum:

1 n
L(6") =~ D 4i(6) =0=£;(67) = 0= VLi(0") =0,Vi=1,...,n
=1
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Linear stability of SGD

® Here we focus on the over-parameterized regime. Then, all global minima are fixed points

of SGD since at global minimum:

1 n
L(6") =~ D 4i(6) =0=£;(67) = 0= VLi(0") =0,Vi=1,...,n
=1

® Consider an one-dimensional problem:

The SGD iteration is given by,

Tt41 = Tt — NA;, Tt =

a; > 0 Vi€ [n]

(1 - Wait)xh
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Linear stability of SGD

® So after one step update, we have
Ezip1 = (1—mna)BEay, (4)
Emfﬂ = [(1 —na)* + 7]252] E2?, (5)

— 15 e — /1 — a2,
where a = 37" L a;, s = /= > " a? — a®. We call a: sharpness s: non-uniformity.
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Linear stability of SGD

® So after one step update, we have

Eziiq
2
Exiy,

(1 —na)Exy,
[(1=na)>+1°s"| Ex

2

t»
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Linear stability of SGD

® So after one step update, we have

Ezip1 = (1 —na)Exy, (4)
Ezi, = [(1—-na)+n°s’|Eaf, (5)

® Otherwise, a small perturbation will lead SGD to escape from 0.
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The Selection Diagram

s:nonuniformity
s:nonuniformity

\J

a:sharpness 2/n a:sharpness

The learning rate and batch size play different roles in the global minima selection.
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Extension to high dimensions

® Similar analyses can be extended for high-dimensional cases

Amax{u—nﬂm’g((z:f))z} <1

Let @ = Amax(H), 5% = Amax(X), then a necessary condition is

B(n—1) %@

1
0<a< 0<s< =
=a= _8_77 n—B n

b

ISR
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The selection mechanism

— —
(=) t

nonuniformity
ot

Figure 16: The sharpness-non-uniformity diagram for the minima selected by SGD.

FashionMNIST

® GD °
a oot o
L A SGD,B=4 AP - —
______ i o

H 2/n
0 2

sharpness

® SGD prefer uniform solutions.

= D
o (e}

nonuniformity
DO
o

CIFAR10
® D °:|
%  SGD, B=25
B SGD, B=10 = == = = = _?.‘_
A SGD, B=4 * 00
* o e
I S
* **
______ B
# 2/n
0 10 20

sharpness

® Non-uniformity is nearly proportional to the sharpness.

® Combining them together, SGD is biased towards flat minima.
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Non-uniformity is strongly correlated to sharpness

@

Non-uniformity
-

Figure 17: Scatter plot of sharpness and non-uniformity. For each case, we trained about 500 models

FNN for FashionMNIST

VGG for CIFAR-10

with different initializations, learning rates, batch sizes, etc.
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Towards A Necessary Stability Condition of SGD

® Consider
Opr1 = 0r — n(VL(z¢) + &)
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Towards A Necessary Stability Condition of SGD

® Consider
Or41 =0, —n(VL(x¢) + &)

° Let %(6;) = E[&&,]. When VL(6;) or 1 is small, we have
E[L(0141)] = E[L(6; — nV L(z¢) — n&)]
~ E[L(6: — nVL(z))] + & Te[H(6)2(6,)].

® The first term comes from the GD part, while the second term is determined by SGD noise.
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Towards A Necessary Stability Condition of SGD

® Consider
Opr1 = 0r — n(VL(z¢) + &)

Let X(0;) = E[&,&]. When VL(6;) or 7 is small, we have
E[L(0¢+1)] = E[L(0: — nV L(z¢) — n&t)]

~ EIL(, L))+ = T{H (050,

Obviously, how SGD noise contributes the stability depends on

how the noise covariance X(6;) aligns with the Hessian H (6;).

The first term comes from the GD part, while the second term is determined by SGD noise.
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The alignment property of SGD noise

® The decoupling approximation near global minima manifold:

%(0) = % Z eV f(x5;0)e;V f(xi50)" — VL(O)VL(0)"

~ % Z eIV f(xi; )V f(xi30)"

K2

~ (711 Ze?) <71L ZVf(xi;G)Vf(Xi;e)T> = 2L(0)G(0).

i
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The alignment property of SGD noise

® The decoupling approximation near global minima manifold:

%(0) = % Z eV f(x5;0)e;V f(xi50)" — VL(O)VL(0)"

~ % Z eV F(x;0)V f(xi;0)"

1 2 1 T
~ | — - — i i =2L .
(n Z) (n ;mev}f(xz,e) > (0)G(0)
® Magnitude: The noise magnitude is proportional to the loss.
® Direction: That X(6) aligns with G(0) suggests

Near the global minima manifold, the noise concentrates in sharp directions of local
landscape.
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Quantify the alignment strength

Te(2(0)G(6))

“O) = GO0 (@)
RO

YO = sm@lco )

u(6) = a(6)3(60) (9)

® «(f): standard cosine similarity to quantify the “direction” alignment.
® (3(0) quantifies the “magnitude” non-degeneracy of noise wrt the loss.
I

® 1(0) is a loss-scaled alignment factor.
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Quantify the alignment strength

 T(R0)G0)

“O) = GO 1=0) (@)
=0

P0) = TGO (8)

u(0) = a(6)B(6) (9)

® «(f): standard cosine similarity to quantify the “direction” alignment.
® (3(0) quantifies the “magnitude” non-degeneracy of noise wrt the loss.
® 1(0) is a loss-scaled alignment factor.

The key observation: There exists a positive constant p such that

/~L(9) > Ho,

(When the decoupling approximation holds, po = 1.)
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Experiment results: MNIST

Linear net
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Figure 18: (Up) The alignment factors during the training. (Bottom) How the alignment strength
changes with the over-parameterization. Here FCN=fully-connected networks.

log,o(model size)
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Experiment results: CIFAR-10

ResNet-110 " VGG-19
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Why is the alignment satisfied?

Tr(3( Zegz TG 0)g:(0 ZEQHQL ”G
Z Zng &) = 2L(O)|GO)|[F,

the &~ comes from the uniformity of {||g;( )||G}Z are uniform. Let

¥(0) = min, [|g; (O)IIZ:/ (5 3271 lgill)-
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Why is the alignment satisfied?

Tr(2(9) Zegz 6)"G(0)g:(0 ZeQHgL )%
~ ( Z anz )12) = 2L(O)IIG(0)]13

the &~ comes from the uniformity of {|g;(# )||G}Z are uniform. Let

¥(0) = min, [|g; (O)IIZ:/ (5 3271 lgill)-

Linear net FCN CNN
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In the literature, many people attribute the validity of approximation to the uniformity of
fitting errors {e?};, e.g., (Liu et al., iclr2022), which is unfortunately wrong.
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Provable alignments

Proposition 1: Linear networks

Let f(z;0) be linear network. Let f(-;0) be a deep linear net and z ~ N (0, S). Consider the
online SGD setting, i.e., n = co. Then, u(6) > 1.

Proposition 2: Random feature models

Let f(z;0) = Y.L, 00 (w] ), where {w;}; % Unif(v/dS?—1). Suppose that z ~ Unif(S%1).
For any § € (0,1), assume n > d°log(1/4), then w.p. at least 1 — &, u(0) = d~*.

In these models, we prove that the alignment holds for the entire parameter space not only
around global minima.
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The linear stability condition

Let 6* be a global minimum that is linearly stable. If the noise of linearized SGD satisfies

w(0) > po, then
1 /B
HO")|p < —y/—.
I1H (6] o\ o
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The linear stability condition

Theorem 3

Let 6* be a global minimum that is linearly stable. If the noise of linearized SGD satisfies

w(0) > po, then
1 /B
HO")|p < —y/—.
I1H (6] o\ o

Proof: By the preceding lemma, we have

EL(G)] > L BT (0)26,)] = TN 0, L0,
> M IHOE g7 Gy (Using w(8) > o).

- B

. 20 H(0%)]12 .
The stability ensures w < 1. Hence, ||H(0%)||% < B/(1on?).

64 /72



Implication: a size-independent flatness control

1 |B
HO)|r <~ —.
IHEe < )2

® This upper bound of flatness is independent of the sample and parameter size, no matter
how over-parameterized the model is.

® Large LR and small batch size lead to flatter minima.
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Implication: a size-independent flatness control

1 |B
IH@O)|r < =

ny\ Mo

® This upper bound of flatness is independent of the sample and parameter size, no matter

how over-parameterized the model is.

® Large LR and small batch size lead to flatter minima
® Comparison with GD.

® They control different “flatness”:

1
H(O)||Fr = N2(H
1#6) Z )<

SGD

® A naive bound of Hessian's Fro-norm for GD:

|H(O")||r < /rank(H (6*))A\1(H(0

This is size dependent.

vs  M(H(OY) <
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The importance of noise structure

Let m denote the parameter space dimension. Consider two types of SGDs:

Geometry-aware SGD: 6,41 = 0, —n(VL(0:) + &11)
Isotropic SGD: ;41 = 0, — n(VL(0:) + &a2.t),
where
E[&,tfft} = 2L(0:)G(0,), El¢2,.4&3 4] = 202 L(0;) 1,1,

where o2 = T(G(0))

is chosen to ensure that two types of noises have the same total variance.
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The importance of noise structure

Let m denote the parameter space dimension. Consider two types of SGDs:

Geometry-aware SGD: 6,41 = 0, —n(VL(0:) + &11)
Isotropic SGD: ;41 = 0, — n(VL(0:) + &a2.t),

where
El¢1&1,] = 2L(0:)G(6:),  E[2.4&3 ] = 20°L(6:) 1,

where 02 = Tr(igot)) is chosen to ensure that two types of noises have the same total variance.

The stability of two SGDs:

S

Geometry-aware SGD: |H(0")||r < — (size-independent)

Ts

mB
n

Isotropic SGD: Tr(H(0")) < (size-dependent).
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CIFAR-10 experiments

ResNet
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® The actual sharpness of SGD solutions is (nearly) independent of the model size.

® QOur upper bound is close to the actual sharpness, suggesting a near EoS phenomenon
for SGD.
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The bound becomes tighter as decreasing batch size

ResNet-38
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How much SGD dislikes sharp minima?

Theorem 4 (Escape from sharp minima)
IF|H @) |F > £1/ 2, then we have

E[L(6)] > ) E[L(60)]
where o = 2| H(6%)]]% > 1.

® The sharper the minimum is, the faster the escape is.
® The stronger the noise aligns with local geometry, the faster the escape is.
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Linear net FCN CNN

- E[L(6)] 101 o B0 - E[L(6)]

6 8 0 2

6 8 0 2 6 8

4 4 4
Step: ¢ Step: ¢ Step: t
Figure 19: The exponentially fast escape from sharp minima. The blue curves are 200 trajectories
of SGD; the red curve corresponds to the average. The sharp minimum is found by GD. When GD
nearly converge, we switch to SGD with the same learning rate. This choice ensures that the minimum

is stable for GD, and thus the escape is purely driven by SGD noise.
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