
Topics in Deep Learning Theory (Spring 2025)

Lecture 11: How GD/SGD Converges to Flat Minima

Instructor: Lei Wu Scribe: Zilin Wang

1 Introduction

So far we have discussed the stability condition for SGD, e.g. Tr ≤ 2/η. But it remains unclear
how SGD evolves to find these stable global minima. This question is about dynamics.

Generally there are two ways of studying dynamics. One is on toy models, e.g. linear
regression, random feature model, linear network. In these settings the analysis can be thorough
but hard to extend to more complex settings. What we want to talk about here is some “realistic”
argument that can also apply in real settings when there is not so strong assumptions.

In realistic settings it is nearly impossible to study the global dynamics. So we turn to local
dynamics, such as

• Near initialization, NTK and Kaiming initialization, the effect of learning rate warm up,
etc.

• Near convergence, what is SGD’s behavior when it is close to global minima.

2 Initialization

Consider the two-layer network

f(x) =
m∑
j=1

ajσ(w
T
j x),

initialized as
aj ∼ N (0, 1),wj ∼ N (0, Id/d).

Is this initialization good?
Note that

‖G(θ)‖22 ∼
m∑
j=1

(a2j + ‖wj‖2) ∼ 2m

for x ∼ Unif(
√
dSd−1). In order to prevent the training from blowing up, we need to set

η = O( 1√
m
). This is not scalable since the learning rate tuned well on small nets cannot be

applied to larger nets.
To fix this problem, we can choose to

• Use a different initialization, aj ∼ N (0, 1/m),wj ∼ N (0, Id/(md)), such that ‖G(θ)‖2 =
O(1).
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• Keep the initialization, but now the model is

f(x) =
1

m

m∑
j=1

ajσ(w
T
j x),

The limit is
∫
aσ(wTx) dπ(a,w) as m→∞, thus scalable.

An example from ResNet Consider the ResNet
x`+1 = x` +

1

m

m∑
j=1

ajσ(w
T
j x

`)

x0 = x

and f(x; θ) = φTxL. What happens when L→∞?
An intuitive way is to think

x`+1 = (1 + α)x` = · · · = (1 + α)`+1x

where α is a constant. So, the model will blow up as L→∞.
In practice, batch normalization solves it. But without BN, it is important to modify the

structure to make it consistent for L.
One approach: 

x`+1 = x` +
1

mL

m∑
j=1

ajσ(w
T
j x

`)

x0 = x

so that
xL =

(
1 +

α

L

)
xL−1 = · · · =

(
1 +

α

L

)L
x

is finite.

3 Local dynamics near global minima

Now, we start the discussion on local dynamics near global minima.
First let’s see a toy example to gain some intuition. Consider the optimization with objective

function f(x, y) = (xy−1)2. Figure 1 shows the GD trajectory. Although initialized near global
minima, GD does not converge to a minimizer closest to the initial point, but a flatter one which
satisfies the stability condition. In this process,

• In the direction vertical to the global minima manifold, the trajectory oscillates.

• In the direction parallel to the global minima manifold, the trajectory moves slowly (rela-
tive to the oscillation) towards a flatter region.

The movement towards flatter regions are slow because

• The gradient is almost in the normal space (vertical to global minima). Let g = g⊥ = g‖,
we have ‖g⊥‖ � ‖g‖‖. The learning rate η cannot be too large otherwise ηg⊥ blows up.
So, ηg‖ is small.
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Figure 1: GD trajectory of minimizing (xy − 1)2.

• The distance it needs to go through is O(1).

Then we introduce a model to formulate this intuition.
Let f(x, y) = 1

2y
TH(x)y where x ∈ Rm, y ∈ Rp−m. Let n = p − m. Assume

λmin(H(x)) > 0. It is easy to see the global minima M = {(x, y) : y = 0}.
The GD update gives 

xt+1 = xt −
η

2

n∑
i,j=1

∇Hij(x)yt(i)yt(j)

yt+1 = yt − ηH(x)yt

The Hessian

∇2f =

(
1
2∇

2H[y, y] ∇H(x)y
yT∇H(x) H(x)

)
≈
(

0 0
0 H(x)

)
near global minima.

Assume further that
H(x) = diag(λ1(x), · · · , λn(x)),

where λ1 > · · · > λn, thenxt+1 = xt −
η

2

n∑
i=1

∇λi(x)y2t (i)

yt+1(i) = yt(i)− ηλi(xt)yt(i) ⇒ y2t+1(i) = (1− ηλi(xt))2y2t (i)

Stable regime: λ1(xt) < 2/η For smaller λi, yt(i) decays slower. So the weight of ∇λi
keeps large for a longer time⇒ λi decays faster.

Smaller eigenvalues decays faster. Therefore, the spectrum concentrates to large eigenval-
ues.
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Unstable Regime: λ1(xt) > 2/η > λ2(xt) > · · · For i = 2, · · · , n, we have y2t (i) =
max(1− ηλ2, 1− ηλn)2ty20(i), which is exponential decay.

There exists T s.t. for t > T ,

xt+1 = xt −
ηy2t (1)

2
∇λ1(xt)

But how large is yt(1)? This cannot be estimated in this model since in this quadratic landscape,
unstable means blowing up. We can introduce an asymmetric landscape to tackle this problem.
Suppose the loss landscape is `(y) = 1

2ay
2 + 1

6by
3. The cubic term prevents it from blowing up

even if η > 2/a. The dynamics bounce between two sides and in most iterations it nearly holds
that `′′ = a+ by = 2/η, which yields

y =
a− 2/η

b

where b is a constant. In a word, in most of the time yt(1) is close to the value where sharpness
= 2/η. Therefore,

xt+1 = xt − η(λ1(xt)− 2/η)2∇λ1(xt)

So λ1(xt) ≈ 2/η.

The implicit bias of SAM Now let’s take a look at

xt+1 = xt −
η

2

n∑
i=1

∇λi(x)y2t (i)

Since yt(1) decays fast and the spectrum concentrates to λ1, how can we continue to decrease
λ1?

One way is to add perturbation to yt(1) to keep it big. This is exactly the implicit bias of
Sharpness-aware Minimization (SAM).

SAM:

θt+1 = θt − η∇f
(
θt + ρ

∇f(θt)
‖∇f(θt)‖

)
= θt − η

(
∇f(θt) + ρ∇2f(θt)

∇f(θt)
‖∇f(θt)‖

+O(ρ2)

)
We have

∇2f(θt) ≈ ∇2f(θ∗) =

(
0 0
0 H

)
Then,

yt+1 = yt − ηHyt − ηρH
Hy

‖Hy‖

=

(
I − ηH − ηρH2

‖Hyt‖

)
yt

≈ − ηρH
2

‖Hyt‖
yt

as yt is small.
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SGD and noise structure SGD update

θt+1 = θt − η(∇f(θt) + ξt)

We assume the noise is constant level with a Hessian geometric structure

E[ξtξTt ] = σ2∇2f(θt) ≈ σ2
(

0 0
0 H(xt)

)
Similar to the above argument, the update is fast for y but slow for x. The dynamics of x actually
sees the average E[y2].

We have
E y2t+1(i) = (1− ηλi)2 E y2t (i) + η2σ2λi(xt)

To solve the stationary value, let q(i) = E y2t+1(i) = E y2t (i), then

q(i) =
η2σ2λi

2ηλi − (ηλi)2
≈ ησ2

2

Therefore,

xt+1 = xt − η
n∑

i=1

∇λi(xt) ·
ησ2

2

= xt −
η2

2B
∇(Tr(H(xt)))

As a comparison, we investigate the case where the noise is isotropic, namely

E[ξtξTt ] = σ2I

Following the same derivation we obtain

qi =
ησ2

2λi

and

xt+1 = xt −
η2σ2

2

n∑
i=1

∇λi(xt) ·
1

λi(xt)

= xt −
η2

2B
∇(log detH(xt)))

The first noise structure is good because it keeps a finite energy while minimizing sharpness
efficiently. Note that, in order for the sharpness to decay in the same rate, the moment of noise
with Hessian geometry is

E ‖ξt‖2 = Tr(H) = O(1),

but for isotropic noise it is
E ‖ξt‖2 = O(n)

Another noise structure is that the noise level is proportion to the loss and the geometry is
Hessian, namely

E[ξtξTt ] = 2L(xt, yt)

(
0 0
0 H(xt)

)
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Therefore,
yt+1(i) = (1− ηλi)yt(i) + η

√
λi · 2L(xt, yt)ξ̃t,i

where ξ̃t,i is a random variable with zero mean and unit variance. Let qt := Ey2t , we have

qt+1(i) = (1− ηλi)2qt(i) + η2λi

(
d∑

k=1

λkqt(k)

)

which is a linear dynamics. We van rewrite it as

qt+1 = (I − 2ηH + η2H2 + ηλλT)qt

where λ = (λ1, · · · , λm)T. This is still a quadratic case where qt either converges or blows
up. In practice, it remains an open question what is SGD’s EoS. We may need a model to
characterize the phenomenon that the loss does not decay during the EoS process.

Discussion: Large η in practice From above discussion we know that large learning rate
leads to EoS. This makes the convergence slow in sharp directions. So a question is, why
do not use infinitely-small learning rate to accelerate the convergence corresponding to large
eigenvalues in practice?

One guess: Although η < 2/λ1 speeds up convergence in sharp directions, progressive
sharpening will increase the gap between eigenvalues, i.e. increase the condition number of the
problem. Using large η controls λ1, thus controls the condition number. EoS helps convergence
in this sense. In another word, with a large learning rate, the optimizer adaptively explores
well-behaved regions.
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