
Topics in Deep Learning Theory (Spring 2025)

Lecture 12: GD converges to max-margin solutions

Instructor: Lei Wu Scribe: Lei Wu

The content of this lecture is a summary of the results in [Soudry et al., 2018, Gunasekar et al., 2018]
(linear model) and [Ji and Telgarsky, 2018, Lyu and Li, 2019] (nonlinear model).

Notation. In this note, we use ‖ · ‖ to denote the `2 norm unless otherwise specified. We also
use standard big-O notations: O(·),Ω(·) and Θ(·).

We have studied how factors like model architectures, optimizers, hyperparameters impact
the the implicit bias in training machine learning (ML) models. In this lecture, we further show
that the loss function is also crucial for implicit bias.

Setup. Consider the binary classification problem. Let {(xi, yi)}ni=1 with xi ∈ Rd and yi ∈
{+1,−1} be the training data. We make the following assumption:

Assumption 0.1. • (Linear separability) there exists a w ∈ Rd such that w>xiyi ≥ 0.

• maxi ‖xi‖ ≤ B.

Under the above assumption, there exit many linear models that can perfectly classify all
training data. However, for better generalization, the max-margin solution is often preferred.

Definition 0.2. Given a model f : Rd 7→ R, the margin of f is defined as γ(f) = mini∈[n] f(xi)yi.

When f(x) = fw(x) := w>x, we let γ(w) = γ(fw). The max-margin solution is given by

w∗ = argmax
‖w‖=1

γ(w) γ∗ = γ(w∗).

For a classification problem, we would like to minimize the 0-1 loss. However, due to the
non-smoothness and non-convexity of 0-1 loss, in practice, we turn to minimize some surrogate
losses such as logistic loss, hinge loss, etc. Here, we consider the exponential loss

L(w) =
1

n

n∑
i=1

e−yix
>
i w. (1)

The gradient descent (GD) for minimizing L(·) is given by

wt+1 = wt − η∇L(wt).

We will show that wt converges to the max-margin solution w∗, regardless the initialization.
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1 Landscape Analysis

Before we delve into the dynamics analysis, we need some understanding of the landscape of
L(·), which is very different from the landscape of regression.

Lemma 1.1 (Basic Properties). • The minimizers of L(·) are unbounded.

• For any w ∈ Rd that perfectly classifies all data, we have L(λw)→ 0 as λ→ +∞.

The proof is omited.

Lemma 1.2 (Gradient and Hessian). v>∇L2(w)v ≤ BL(w)‖v‖22 and γ∗L(w) ≤ ‖∇L(w)‖2 ≤
BL(w).

Proof. The gradient and Hessian is given by

∇L(w) = − 1

n

n∑
i=1

e−yix
>
i wxiyi, ∇2L(w) =

1

n

n∑
i=1

e−yix
>
i wxix

>
i . (2)

Note that

‖∇L(w)‖ ≥ ∇L(w)>(−w∗) =
1

n

n∑
i=1

e−yix
>
i wyix

>
i w
∗ ≥ γ∗L(w)

and

‖∇L(w)‖ ≤ 1

n

n∑
i=1

e−yix
>
i w‖xi‖ ≤ BL(w).

Additionally,

v>∇2L(w)v =
1

n

n∑
i=1

e−w
>xiyi(v>xi)

2 ≤ B‖v‖2L(w).

Remark 1.3. This implies that 1) the sharpness (the largest eigenvalue of Hessian) decreases
to zero as the loss converges to zero; 2) the gradient is well-controlled by the loss.

2 Convergence Analysis

We make the following assumption on the learning rate:

Assumption 2.1. Assume η to be sufficiently small such that in each step L(wt+1) ≤ L(wt).

Nearly all analysis of GD starts from the descent inequality :

L(wt+1) = L(wt)− η‖∇L(wt)‖2 +
η2

2
inf

β∈[0,1]
∇L(wt)

>∇2L(wt − βη∇L(wt))∇L(wt)

≤ L(wt)− η‖∇L(wt)‖2 +
η2B

2
‖∇L(wt)‖2 inf

β∈[0,1]
L(wt − βη∇L(wt))

≤ L(wt)− η‖∇L(wt)‖2 +
η2B

2
‖∇L(wt)‖2L(wt), (3)

where the last step use the assumption of η and the convexity of L(·). For notation simplicity,
let Lt = L(wt) and gt = ‖∇L(wt)‖.
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2.1 Loss Convergence

Let us first examine the convergence of the loss. Note that although L(·) is convex, we cannot
apply the standard results of convex optimization to conclude that L(wt) = O(1/t). Standard
analysis of convex optimization assumes that the minima are located in a compact domain,
whereas in our case, the minima are at infinity. In fact, the convergence of convex optimization
can be arbitrarily slow if the minima are at infinity.

Lemma 2.2. L(wt) = Θ(1/t).

Proof. By the descent inequality, when η is sufficiently small, we have

L(wt+1) ≤ L(wt)−
η

2
‖∇L(wt)‖2 ≤ L(wt)−

γ∗η

2
L(wt)

2.

This yield,
1

Lt+1
≥ 1

Lt
+

r∗η

2− r∗ηLt
≥ 1

Lt
+
γ∗η

2
⇒ 1

Lt
≥ 1

L0
+
γ∗ηt

2
(4)

which gives

Lt = O

(
1

t

)
.

On the other hand, using ez ≥ 1 + z, we have

L(wt+1) =
1

n

n∑
i=1

e−(wt−η∇L(wt))>xiyi =
1

n

n∑
i=1

e−w
>
t xiyieη∇L(wt)>xiyi

≥ 1

n

n∑
i=1

e−w
>
t xiyi(1 + η∇L(wt)

>xiyi)

= L(wt)− η‖∇L(wt)‖2 ≥ L(wt)− ηB2L(wt),

where the last step uses Lemma (1.2). Analogous to (4) , we can obtain

L(wt) = Ω

(
1

t

)
.

Lemma 2.3.
∑t

s=0 ‖∇L(ws)‖2 ≤ 2L(w0)/η and
∑t

s=0 ‖∇L(ws)‖ = Ω(log t).

Proof. Due to L(wt+1) ≤ L(wt)− η
2‖∇L(wt)‖2, we have

t∑
s=0

‖∇L(ws)‖2 ≤
2

η
(L(w0)− L(wt+1)) ≤ 2L(w0)/η.

Moreover,
t∑

s=0

‖∇L(ws)‖ ≥ γ∗
t∑

s=0

L(ws) ≥ Cγ∗
t∑

s=0

1

s
= Cγ∗ log t.
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2.2 The Margin Dynamics

Theorem 2.4. The margin of GD solution satisfies |γ
(

wt
‖wt‖

)
− γ∗| = O(1/ log t).

Proof. By the descent inequality (3), we have

Lt+1 ≤ Lt
(

1 +
Bη2g2t

2
− ηg2t

Lt

)
≤ Lt

(
1 +

Bη2g2t
2
− ηγ∗gt

)
≤ Lt exp

(
Bη2g2t

2
− ηγ∗gt

)
≤ L0 exp

(
Bη2

2

t∑
s=0

g2s − ηγ∗
t∑

s=0

gs

)
,

where the second step uses Lemma (1.2). Noting that

L(w) =
1

n

n∑
i=1

e−w
>xiyi ≥ 1

n
max
i
e−w

>xiyi =
1

n
exp(−min

i
w>xiyi), (5)

we have

min
i
w>t+1xiyi ≥ − logL(wt+1)− log n = ηγ∗

t∑
s=0

gs −
Bη2

2

t∑
s=0

g2s − log n.

Additionally,

‖wt + 1‖ ≤ ‖w0‖+ η
t∑

s=0

‖∇L(ws)‖ = ‖w0‖+ η
t∑

s=0

rs.

Thus the margin satisfies

γ

(
wt+1

‖wt+1‖

)
=

miniw
>
t+1xiyi

‖wt+1‖
≥
ηγ∗

∑t
s=0 rs −

Bη2

2

∑t
s=0 r

2
s − log n

‖w0‖+ η
∑t

s=0 rs

≥ C1ηγ
∗ log t− 0.5BηL(w0)− log n

‖w0‖+ ηC1 log t
= γ∗ −O

(
1

log t

)
,

where we use Lemma (2.3).

Remark 2.5. We can see that GD converges to the max-margin solution but the margin’s con-
vergence is exponentially slow.

3 Extensions

3.1 Steepest Descent

We have studied GD, which can be viewed as steepest descent (GD) with respect to the `2
metric. In this subsection, we consider general steepest descent. Throughout this subsection, we
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temperately use ‖ · ‖ to denote a generic norm in Rd and its dual norm is given by

‖u‖∗ = sup
‖v‖≤1

u>v.

SD with respect to the ‖ · ‖ norm is given by

wt+1 = argmin
w∈Rd

(
L(wt)−∇L(wt)

>(w − wt) +
η

2
‖w − wt‖2

)
, (6)

which can be further explicitly written as

wt+1 = wt − η‖∇L(wt)‖∗δt with δt = argmax
‖δ‖≤1

δ>∇L(wt).

Examples.

• When ‖ · ‖ is the `2 norm, SD recovers the standard GD.

• When ‖ · ‖ is the `1 norm, SD becomes

wt+1 = wt − η∂jtL(wt)ejt , with jt = argmax
j
|∂iL(wt)|,

where ∇L(w) = (∂1L(w), . . . , ∂dL(w))> ∈ Rd and ej is the one-hot vector. This is
exactly the greedy coordinate descent as in each step, it select the coordinate
whose gradient is largest to update.

• When ‖ · ‖ is `∞ norm, SD becomes signGD:

wt+1 = wt − η‖∇L(wt)‖1 sign(∇L(wt))

The implicit bias of SD for minimizing L(·) converges the max-margin solution with respect to
the ‖ · ‖ solution:

Theorem 3.1. For any norm ‖ · ‖, consider to minimize L(·) using SD with respect to ‖ · ‖.
Suppose η to be sufficiently small. Then, SD converges to the following max-margin solution:

lim
t→∞

γ

(
wt
‖wt‖

)
= γ∗, with γ∗ = argmax

‖w‖≤1
γ(w).

The proof is analogous to that of GD and is left to homework.

Remark 3.2. By the above theorem, the greedy coordinate descent will converge to max-margin
solutions with `1 sparsity.
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3.2 Nonlinear Homogeneous Models

The above result can be also extended to nonlinear homogeneous models. Let f(·; θ) : Rd 7→ R
be a homogeneous model, i.e., f(x;λθ) = λαf(x; θ) for any λ ∈ R+ and some positive constant
α. Let

L(θ) =
1

n

n∑
i=1

e−yif(xi;θ).

Then, one can show that GD converges to the KKT point of the following max-margin problem

min ‖θ‖22 (7)

s.t. yif(xi; θ) ≥ 1. (8)

Note that we can only show the convergence to KKT points. For general non-convex problem,
we are unable to show GD converge to the max-margin solutions. For the proof and more details,
we refer interested readers to [Lyu and Li, 2019].
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