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Feature Learning

• In vison tasks, the result can be predicted using merely a few important features.

• For the CIFAR-10 classification task, the state-of-the-art CNNs can achieve test
accuracy 99%, while current kernel methods can only get 87%-92%.
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• The most important conference in deep learning.
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Feature Learning Changes the Paradigm of Machine Learning

• Transfer learning (e.g., Pretraining + finetuing).
Deep learning is made popular by the fact that DNNs trained in large-scale
ImageNet dataset contains enormous vision-relevant features, which can be used
in applying DNNs to other domain with little data.

• Large language models (LLMs) like ChatGPT contains lots of features, which can
be useful for downstream tasks.

• The feature learning has paved a way towards AGI.
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How can NNs learn features?

We attack this problem by considering the learning of multi-index models.

• Toolbox: Hermite analysis and boolean analysis.

• Introduction of multi-index models.

• Learnability of multi-index models with modified algorithms.

• Learnability of multi-index models via vanilla SGD: information exponent and
leap complexity.

• Other formulations and open questions.
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Toolbox: Fourier Analysis of Gaussian and Hamming Spaces

• Hermite Analysis: An analysis of the Gaussian space L2(γd) with
γd = N (0, Id) by using Hermite polynomials.
• We shall use γd to denote both N (0, Id) and the corresponding PDF. When d = 1,

we drop the subscript for brevity.

• Boolean Analysis: An analysis of the Hamming space L2(πd) with
πd = Unif({−1,+1}d) by using monomials.
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1D Hermite Polynomials (HPs)

Definition 1 (1D HPs)

Let γ(x) = exp(−x2/2)/
√

2π. The k-th normalized probabilist’s HP 2, hk : R→ R,
is the degree k polynomial given by

hk(x) =
(−1)k√
k!

dkγ
dxk

(x)

γ(x)
. (1)

• The first forth such HPs are

h0(x) = 1, h1(x) = x, h2(x) =
x2 − 1√

2
, h3(x) =

x3 − 3x√
6

, h4(x) =
x4 − 6x2 + 3√

4!
.

• The physicist’s HP is given by Hk(x) = (−1)ke−x
2 dk

dxk
e−x

2
.

• We mostly use the normalized probabilist’s HPs due to its brevity for L2 analysis.

2The un-normalized one is Hek(x) =
√
k!hk(x), for which the leading term’s coefficient is always 1.

The normalization ensures ‖hk‖L2(γ) = 1.
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1D HPs (cont’d)

• HPs form a complete orthonormal basis of L2(γ):

Ex∼γ [hj(x)hk(x)] = 〈hj , hk〉γ = δj,k.

• For any f ∈ L2(γ), the Hermite expansion of f is given by

f(x) =
∞∑
k=0

f̂khk(x),

where {f̂}∞k=0 is referred to as the “Hermite coefficient” satisfying

f̂k = 〈f, hk〉 =
1√
2π

∫
R
f(z)hk(z)e

− z
2

2 dz.

• Plancherel’s Theorem: For any f, g ∈ L2(γ), we have

〈f, g〉γ =
∞∑
k=0

f̂kĝk.
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1D HPs (cont’d)

The following facts will be useful:

• Recurrence relation: He′k(x) = xHek(x)−Hek+1(x) = kHek−1(x).

• Let γd = N (0, Id). For any f, g ∈ L2(γ) and u, v ∈ Sd−1, we have

Ex∼γd
[
f(u>x)g(v>x)

]
=

∞∑
k=0

f̂kĝk(u
>v)k

(The proof is left as homework.)

We refer to Section 11.2 of [Donnell, 2021] for more details.
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Multidimensional Hermite Polynomials

Definition 2

For a multi-index α ∈ Nd, we define the (normalized) multivariate HP hα : Rd 7→ R by

hα(x) =

d∏
j=1

hαj (xj).

• The total degree of hα is |α| :=
∑d

j=1 αj .

• {hα}α∈Nd forms a “Fourier basis” of L2(γd).
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Hermite Tensors

We can organize the multidimensional HPs using Hermite tensors:

Definition 3 (Hermite tensors)

The k-th normalized Hermite tensor Hk : Rd → (Rd)⊗k is defined as

Hk(x) =
(−1)k√
k!

∇kγd(x)

γd(x)
.

• When k = 0, H0(x) = (h0(x)).

• When k = 1, H1(x) = (h1(x1), h1(x2), . . . , h1(xd)) ∈ Rd.
• When k = 2,

H2(x) =


h2(x1) h1(x1)h1(x2) . . . h1(x1)h1(xd)

h1(x2)h1(x1) h2(x2) . . . h1(x2)h1(xd)
...

...
. . .

...
h1(xd)h1(x1) h1(xd)h1(x1) . . . h2(xd)

 =
1

2
(xx>−Id) ∈ Rd×d.
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Hermite Expansion via Hermite Tensors

• For for any A,B ∈ (Rd)⊗k, define 〈A,B〉 =
∑

i1,i2,...,ik∈[d]Ai1,...,idBi1,...,id .

• Using Hermite tensors, one can write the multidimensional Hermite expansion in
the following succinct manner:

f(x) =
∑
k≥0

〈Ck(f),Hk(x)〉 where Ck(f) := Ex∼γd [f(x)Hk(x)],

where Ck(f) ∈ (Rd)⊗k.
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Hermite Tensors

The following lemmas will be useful.

Lemma 4

If ‖u‖ = 1, we have

hk(〈u, x〉) =
〈

Hk(x), u⊗k
〉
.

Lemma 5 (Generalized Stein’s Lemma)

√
k! · Ex∼γ [f(x)Hk(x)] = Ex∼γ

[
∇kxf(x)

]
• The stein’s lemma implies that in Gaussian space, the expected k-order gradients

of a function are equal to its corresponding k-th Hermite coefficients.

For a reference on Hermite Tensors, we refer to Note on N-dimensional hermite
polynomials by Harold Grad (too old, we need a better reference.)
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Boolean Analysis 3

• Let Fd = {−1, 1}d be the Hamming cubes equiped with Hamming distance:

∆(x, y) = #{i : xi 6= yi, i ∈ [d]}, for any x, y ∈ Fd.

• Let F = {f : Fd 7→ R} be the set of real-valued functions over Fd. Then, F is a
2d-dimensional space.
• Typical boolean functions include

• Parity/Monomials: f(x) = χS(x) =
∏
i∈S xi for S ⊂ [d]. When S = ∅, define

χS(x) = 1. Parity functions can be understood as indicator functions.
• Majority:

Majd(x) =

{
1 if #{i : xi = 1} ≥ #{i : xi = −1}
−1 otherwise

.

3We refer to Analysis of Boolean Functions by O’Donnell for more details.
14 / 49
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Fourier Analysis over Hamming Cubes

• Recall πd = Unif(Fd). Define the L2(πd) by

〈f, g〉 = Ex∼πd [f(x)g(x)] =
1

2d

∑
x∈Fd

f(x)g(x).

Proposition 6

The 2d parity functions {χS}S⊂[d] forms a complete orthonormal basis of L2(πd).

Proof: We only need to verify the orthonormal property: For any S, T ⊂ [d]

χS(x)χT (x) =
∏
i∈S

xi
∏
j∈T

xj =
∏

i∈S∆T

xi
∏

j∈S∩T
x2
j =

∏
i∈S∆T

xi = χS∆T (x),

where S∆T denote the symmetric difference. Taking expectation completes the proof.
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Fourier Analysis over Hamming Cubes (Cont’d)

Definition 7

For any f ∈ F , its Fourier-Walsh expansion is given by

f(x) =
∑
S∈[d]

f̂SχS(x),

where f̂S = E[f(x)χS(x)].

Example:

Maj3(x1, x2, x3) =
1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x1x2x3. (2)

Some important properties:

• E[f2] =
∑

S⊂[d] f̂
2
S and E[fg] =

∑
S f̂S ĝS .

• E[f ] = f̂∅.

• Var[f ] =
∑

S 6=∅ f̂
2
S .
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Single/Multi-Index Models

• Consider a target function that takes the form:

f(x) = g(v · x) with g : R 7→ R and v ∈ Rd.

This type of models are called single-index models and g is referred to as the
link function.
• When g is known, it is tyically referred to as generalized linear model (GLM), e.g.,

logistic regression.
• When g is unknown but assumed to be monotonic, this is called “isotonic

regression”.

• The mutil-index model is a natural extesion:

f(x) = g(Ux) = g(u>1 x, u
>
2 x, . . . , u

>
r x),

where g : Rr 7→ R and U ∈ Rr×d.

17 / 49



Learning Multi-index Models

• Learning a multi-index model needs to capture both
• the underlying “feature” U ∈ Rr×d;
• the low-dimensional link function g : Rr 7→ R.

• In Lecture 2, we already showed that two-layer networks can approximate and
estimate multi-index models efficiently.
• The remaining question is about the optimization:

• Whether does there exist an algorithm that can learn multi-index models efficiently?
• Whether does standard algorithm such as SGD can learn multi-index models

efficiently?
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The Setup of Learning Multi-index Models

• Suppose that inputs are drawn from γd = N (0, Id) and f∗(x) = g(Ux) with
UU> = Ik.

• Consider a two-layer learner network

fθ(x) = aTσ(Wx+ b) =
m∑
j=1

ajσ (〈wj , x〉+ bj)

with a square loss L(θ) = E
[
(fθ(x)− f∗(x))2

]
.

• Initialization:

• suppose aj ∈ {+1,−1} and wj ∼ N (0, δ2Id) and bj = 0.
• we shall use a symmetric trick to ensure at initialization

fθ(x) ≡ 0.
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The Role of Symmetric Initialization

Under the symmetric initialization, we have at initialization,

∇wjL(θ) = E
[
2 (fθ(x)− f?(x))∇wjfθ(x)

]
= −2E

[
f?(x)∇wjfθ(x)

]
= −2aj E[f∗(x)σ′(w>j x)x]

The key observation is that

The “feature U” can be decodered using ∇wjL(θ) via appropriately tuning the
scale parameter δ.

We will discussed the following two cases separately:

• small scale: δ � 1;

• vanilla scale: δ = 1/d.
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Small-scale Initialization

When δ � 1, we have

∇wjL(θ) = −2aj E[f∗(x)σ′(wj · x)x]

≈ −2σ′(0)aj E[f∗(x)x] = −2σ′(0)aj E[∇f∗(x)]

• Recalling f∗(x) = g(Ux), we have

E[∇f∗(x)] = U> E[∇g(Ux)]

= U Ez∼N (0,Ik)[∇g(z)] = U E[g(z)z] = UC1(g),

where C1(g) = 〈g,H1〉.
• When r = 1, as long as C1(g) 6= 0, one-step GD can capture the “feature”.

• When r > 1, the gradient can only recover a subspace of U , i.e. UC1(g).
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Vanilla-scale Initialization in High Dimension

• Analogously, we need to look at

∇wjL(θ) ∝ Ex
[
f?(x)σ′(w>j x)x

]

• Let σ′ =
∑∞

k=0 ckhk be the Hermite expansion of σ′. Then, we have

Ex
[
f∗(x)xσ′(〈wj , x〉)

]
=
∑
k≥0

ck Ex [f∗(x)xhk(〈wj , x〉)] .

• We assume Ex [f∗(x)] = Ex [f∗(x)x] = Ex [∇f∗(x)] = 0 (this can be done by a
preprocessing step on the data, i.e., removing the linear part).

• Then, we have

∇wjL(θ) = −2aj
∑
k≥1

ck Ex [f∗(x)xhk(〈wj , x〉)]

• Question: Why do we want to remove the linear part?
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Vanilla Initialization in High Dimension (Cont’d)

• For the calculation in the multi-index case, we need to use Hermite Tensors.

• For any k ∈ N, we have

Ex [f∗(x)xhk(〈wj , x〉)] = Ex
[
f∗(x)x〈Hk(x), w⊗kj 〉

]
= 〈w⊗kj ,Ex [f∗(x)xHk(x)]

=
1√
k!
〈w⊗kj ,Ex

[
∇kx (f∗(x)x)

]
〉

• Noticing that for w ∼ Unif(Sd−1) and fixed A ∈ (Rd)⊗k, we have w.h.p. that

〈w⊗k, A〉 ∼ d−k/2.

• Hence,

∇wjL(θ) ≈ −2ajc1 E[f∗(x)xh1(〈w, x〉)] = −2ajc1 E[f∗(x)x〈w, x〉].
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Vanilla Initialization in High Dimension (Cont’d)

• Upon previous analysis, we have

∇wjL(θ) ∼ E
[
f∗(x)xx>

]
wj

= 2E [f∗(x)(H2(x) + Id)]wj = 2E [f∗(x)H2(x)]wj

= Ex
[
∇2f∗(x)

]
wj

• Recall that f∗(x) = g(Ux). We have

E[∇2f∗(x)] = U> E[∇2g(Ux)]U = U> Ez∼γr [∇2g(z)]U

=
√

2U> E[g(z)H2(z)]U

• Assume Qg := E[g(z)H2(z)] is full-rank. Then, due to wj ∼ N (0, Id), we have

∇wjL(θ) ∼ N (0,
√

2U>QgU),

i.e., ∇wjL(θ) approximately obeys a Gaussian distribution with full-rank
covariance matrix in the subspace. This is necessary for our kernel step
arguments and the final learnability guarantee.
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Results

Consider the modified gradient-based algorithm:

• Phase I (feature Learning): W (1) = W (0) − η1∇WL(θ(0)).

• Phase II (sub-space random feature): re-initialize bj ∼ N (0, 1). Then, for
t = 2, . . . , T

a(t) = a(t−1) − η2[∇aL(a(t),W (1), b) + λta
(t−1)].

Theorem 8 (Informal, Alex et al., COLT 2022)

Under previously mentioned condition, the above modified GD can learn the
multi-index targets using

• O(d2) samples

• polynomial time.

On the contrary, kernel methods suffer from the CoD for a general link function g.
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Remarks

• The previous learnability requires the Hermite coeffient matrix E[g(z)H2(z)] to be
full-rank.

• Gradient retrieves features by using only the second-order information.

• Pure high-order targets like f∗(x) = hk(〈u, x〉) with k ≥ 3 and ‖u‖ = 1 do not
satisfy the above condition.
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Towards a time/sample complexity estimation
for feature learning with standard algorithms
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Problem Setup

• In the first part of this section, we will study the time/sample complexity of
learning the single-index models

h∗(x) = φ(〈w∗, x〉)

via gradient descent, where w∗, x ∈ Rd and ‖w∗‖ = 1. We assume the input
distribution is N(0, Id).

• The complexity of extracting the latent feature w∗ completely depends on the
structure of φ.
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Single-index Models and Information Exponent

Consider single-index models
f(x) = φ(〈w, x〉).

What properties of φ and w determine the learnability?

Definition 9

For a function φ ∈ L2(γ), let φ =
∑∞

k=0 φ̂khk be the Hermite expansion of φ. The
information exponent of φ is defined as

k?(φ) = min{k : φ̂k 6= 0}.
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Learning Setup and Result

• Consider the model hθ(x) = φ(〈w, x〉) to learn the target h∗(x) = φ(〈w∗, x〉).
Here, we assume the link function is known.

• Online spherical SGD: wt+1 = PSd−1

(
wt − η∇Sd−1L̂(wt)

)
with random

initialization w0 ∼ Unif(Sd−1). Here L̂ is the minibatch loss.

Theorem 10 (Informal, Arous et al., JMLR 2021)

To make the final test loss od(1), Õ(dmax(k∗−1,1)) training steps suffice. Therefore, the
sample complexity is Õ(dmax(k∗−1,1)) and the time complexity is Õ(dmax(k∗−1,1)+1).
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30 / 49

https://arxiv.org/abs/2003.10409


Proof Intuition

• Population loss

L(w) :=
1

2
E
[
(φ(〈w, x〉)− φ(〈w∗, x〉))2

]

• For technical simplicity, we assume ‖wt‖ = 1 throughout the training (This can be
done by using spherical gradient descent). In that case, we have

L(w) = constant− E [φ(〈w, x〉)φ(〈w∗, x〉)] = constant−
∑
k≥0

φ̂2
k〈w,w∗〉k

• From the above argument, we have

Minimizing L(w) is equivalent with maximizing
∑

k≥0 φ̂
2
k〈w,w∗〉k.
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Proof Intuition

• Training objective
∑

k≥0 φ̂
2
k〈w,w∗〉k and gradient

∑
k≥1 kφ̂

2
k〈w,w∗〉k−1w∗.

• At the initialization, 〈w,w∗〉 = Θ(d−1/2). When 〈w,w∗〉 = Θ(1), the training will
significantly speed up since the gradient becomes much larger. Therefore, in order
to characterize the time/sample complexity, we only need to focus on the training
process when 〈w,w∗〉 = od(1).

• When 〈w,w∗〉 = od(1), the training objective approximates φ̂2
k∗〈w,w∗〉k

∗
.

Therefore, WLOG we can just consider the case φ = hk∗ where the population
loss becomes

L(w) = 1− 〈w,w∗〉k∗ .

• The spherical GF is given by

ẇt = −(I − wtw>t )∇L(wt).
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• Training objective
∑

k≥0 φ̂
2
k〈w,w∗〉k and gradient

∑
k≥1 kφ̂

2
k〈w,w∗〉k−1w∗.

• At the initialization, 〈w,w∗〉 = Θ(d−1/2). When 〈w,w∗〉 = Θ(1), the training will
significantly speed up since the gradient becomes much larger. Therefore, in order
to characterize the time/sample complexity, we only need to focus on the training
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Proof Intuition

• The spherical GF is

ẇt = k∗
(
〈wt, w∗〉k

∗−1w∗ − 〈wt, w∗〉k
∗
wt

)
Let Rt = 〈wt, w∗〉. Then,

Ṙt = k∗Rk
∗−1
t (1−R2

t ).

• Denote Rt = 〈wt, w∗〉, then we have

Rt+1 −Rt = ηk∗Rk
∗−1
t (1−R2

t )

with R0 = Θ(d−1/2).
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Result

Let T0.5 = inf{t : R2
t ≥ 0.5}. Then,

• When k∗ = 1, we obtain
d

dt
(R2

t ) = R2
t (1−R2

t ).

Therefore, R2
t = R2

0e
t when t ∈ T0.5. Therefore, for this case, we only need steps

O(log d).

• When k∗ > 1, if R0 < 0, limt→∞Rt 6= 1. This means the learning can succeed iff

R0 = 〈w0, w
∗〉 > 0.

By assuming R0 = O(d−1/2) > 0, we need

Θ(η−1d
k∗
2
−1)

steps.
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From GF to SGD

• For online SGD, we have

Rt+1 −Rt = −η〈Pwt∇L̂t(wt), w∗〉
= ηk∗Rk

∗−1
t − η〈∇L̂t(wt)−∇L(wt), w

∗〉

• ∑
1≤t≤T η〈∇L̂(wt)−∇L(wt), w

∗〉 is the martingale part. Due to

〈∇L̂t(wt)−∇L(wt), w
∗〉 = Θ(1), the martingale part should scale as η

√
T where

T is the number of total steps.

• To keep the martingale (noise) part controllable, we should have η
√
T = Θ

(
1√
d

)
,

thus leading to η = Θ(d−k
∗/2) and T = Θ(η−1d

k∗
2
−1) = Θ(dk

∗−1).

35 / 49



From GF to SGD

• For online SGD, we have

Rt+1 −Rt = −η〈Pwt∇L̂t(wt), w∗〉
= ηk∗Rk

∗−1
t − η〈∇L̂t(wt)−∇L(wt), w

∗〉

• ∑
1≤t≤T η〈∇L̂(wt)−∇L(wt), w

∗〉 is the martingale part. Due to

〈∇L̂t(wt)−∇L(wt), w
∗〉 = Θ(1), the martingale part should scale as η

√
T where

T is the number of total steps.

• To keep the martingale (noise) part controllable, we should have η
√
T = Θ

(
1√
d

)
,

thus leading to η = Θ(d−k
∗/2) and T = Θ(η−1d

k∗
2
−1) = Θ(dk

∗−1).

35 / 49



From GF to SGD

• For online SGD, we have

Rt+1 −Rt = −η〈Pwt∇L̂t(wt), w∗〉
= ηk∗Rk

∗−1
t − η〈∇L̂t(wt)−∇L(wt), w

∗〉

• ∑
1≤t≤T η〈∇L̂(wt)−∇L(wt), w

∗〉 is the martingale part. Due to

〈∇L̂t(wt)−∇L(wt), w
∗〉 = Θ(1), the martingale part should scale as η

√
T where

T is the number of total steps.

• To keep the martingale (noise) part controllable, we should have η
√
T = Θ

(
1√
d

)
,

thus leading to η = Θ(d−k
∗/2) and T = Θ(η−1d

k∗
2
−1) = Θ(dk

∗−1).

35 / 49



Beyond Single-Index Models: Leap Complexity

Recall the targets
f(x) = g(Ux) with g : Rr 7→ R.

• In single-index model, we have shown the information exponent of link function
determines the time complexity.

• For multi-index model, we shall show that the leap complexity of link function
determines the time/sample complexity.
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Leap Complexity

• Any function in L2 (µ⊗r) can be expressed in the orthogonal basis of L2 (µ⊗r),
i.e., the Hermite or Fourier-Walsh basis for µ ∼ N(0, 1) and µ ∼ Unif({+1,−1})
respectively,

h∗(z) =
∑
S∈Zr

ĥ∗(S)χS(z),

where Z = {0, 1} for the Boolean case and Z = Z+for the Gaussian case,
χS(z) =

∏
i∈[P ] χSi (zi),

χSi (zi) =

{
zSii (Boolean case)

hSi (zi) (Gaussian case)

where hk is the k-th Hermite polynomial, k ∈ Z+.
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Leap Complexity

Definition 11 (Leap Complexity, (Abbe et al., COLT2022))

For h : {−1,+1}r 7→ R, let S (h) := {S1, . . . , Sm} ,m ∈ Z+. We define the leap
complexity of h∗ as

Leap (h) := min
π∈Πm

max
i∈[m]

∥∥∥Sπ(i)\ ∪i−1
j=0 Sπ(j)

∥∥∥
1
,

where, for Sj = (Sj(1), . . . , Sj(P )) in {0, 1}r or Zr+ for the Boolean or Gaussian case

respectively,
∥∥∥Sπ(i)\ ∪i−1

j=0 Sπ(j)

∥∥∥
1

:=
∑

k∈[P ] Sπ(i)(k)1{Sπ(j)(k)=0,∀j∈[i−1]}, with

Sπ(0) = 0P .

• In words, a function h is leap-k if its non-zero monomials can be ordered in a
sequence such that each time a monomial is added, the support of h grows by at
most k new coordinates, where each new coordinate is counted with multiplicity
in the Gaussian case.
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Leap Complexity

• Some examples in the Boolean case.

Leap (z1 + z1z2 + z1z2z3 + z1z2z3z4) = 1, Leap (z1 + z2 + z2z3z4) = 2,
Leap (z1 + z1z2z3 + z2z3z4z5z6z7) = 4, Leap (z1z2z3 + z2z3z4) = 3

• Some examples on isotropic Gaussian data.

Leap (hk (z1)) = Leap (h1 (z1)h1 (z2) · · ·h1 (zk)) = k

Leap (hk1 (z1) + hk1 (z1)hk2 (z2) + hk1 (z1)hk2 (z2)hk3 (z3)) = max (k1, k2, k3) ,

Leap (h2 (z1) + h2 (z2) + h2 (z3) + h3 (z1)h8 (z3)) = 2
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Experiments
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Conjectures

• Let f∗ : Rd → R in L2

(
µ⊗d

)
for µ either N (0, 1) or Unif{+1,−1} satisfying

f∗(x) = g(Ux) where U ∈ Rr×d and r = Od(1).

• Let f̂ tNN be the output of training a FCN with poly(d) edges and
rotationally-invariant weight initialization with t steps of one-pass online-SGD on
the square loss.

• Claim: For almost all targets, the risk is bounded by

Ex
[(
f̂ tNN(x)− f∗(x)

)2
]
≤ ε if and only if t = Ω̃d

(
d(Leap(h∗)−1)∨1

)
poly(1/ε).

• This claim is proposed and partially proved in SGD learning on neural networks:
leap complexity and saddle-to-saddle dynamics by Abbe, Boix-Adsera and
Misiakiewicz.
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Learning a Single Monomial

• From here, with a little abuse of notation, we use Hek(z) :=
√
k!hk(z) to denote

the Hermite polynomials in 1D without normalization. We first consider the case
of learning a single monomial with Hermite exponents k1, . . . , kP :

f∗(x) = h∗(x≤r) where h∗(z) = Hek1 (z1) Hek2 (z2) · · ·Hekr (zr) .

We assume D = k1 + . . .+ kr ≥ 2 WLOG.

• Network architecture
fθ(x) =

∑
ajσ(〈wj , x〉+ bj)
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Learning a Single Monomial

• Let us firstly train wi while setting bi zero and ai very small at initialization. In
that case, we have

L(θ) = E
[
(fθ(x)− f∗(x))2

]
≈ constant − 2E [fθ(x)f∗(x)]

• E [fθ(x)f∗(x)] is the correlation loss. In this loss different neurons do not interact.
Therefore, let us directly consider the correlation loss and track the dynamics of a
unique neuron (a,w).

• We assume that w0
1 = . . . = w0

d = 1/
√
d and firstly consider gradient flow here for

technical convenience. In GF, the dynamics is described by only two parameters

αt1 = wt1 = . . . = wtP , αt2 = wtP+1 = . . . = wtd,
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Learning a Single Monomial

• We recall the following useful identities (where G ∼ N(0, 1) )

EG [Hek(G)g(G)] = EG
[
g(k)(G)

]
, xHek(x) = Hek+1(x) + kHek−1(x).

• In particular, by integration by parts, we have

E

 ∏
j∈[P ]

Hekj (xj)σ
′ (〈wt, x〉)

 =

∏
j∈[P ]

(
wtj
)kj·EG [σ(1+k1+...+kP )

(∥∥wt∥∥G)] .
• Furthermore, if i ∈ [P ]

xif∗(x) = (ki Heki−1 (xi) + Heki+1 (xi))

 ∏
j∈[P ],j 6=i

Hekj (xj)


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Learning a Single Monomial

• The gradient for αti, i = 1, 2:

E
[
h∗(z)σ′

(〈
wt, x

〉)
x1

]
≈
(
αt1
)D−1 E

[
σ(D)

(∥∥wt∥∥G)] ≈ µD(σ)
(
αt1
)D−1

E
[
h∗(z)σ′

(〈
wt, x

〉)
xP+1

]
≈
(
αt1
)D

αt2E
[
σ(D+2)

(∥∥wt∥∥G)] ≈ µD+2(σ)
(
αt1
)D

αt2

where µk(σ) is the k-th Hermite coefficient of σ.

• We can approximate the above dynamics via the following ODEs

dRt
dt

= RD−1
t

dSt
dt

= RDt St R0 = S0 =
1√
d

• Thus, in order to have Rt = Θ(1), we need total steps T = Θ(dD−1) using similar
arguments in the previous subsection.
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Learning the Nested Monomials

• Second, consider the case of nested monomials

h∗(z) =

L∑
l=1

∏
s∈[Pl]

Heks (zs) ,

where 0 =: P0 < P1 < P2 < . . . < PL =: P and k1, . . . , kP are positive integers.
For l ∈ [L], we denote Dl = kPl−1+1 + . . .+ kPl , and D = maxl∈[L]Dl the size of
the biggest leap.

• Example:
h∗(z) = z1 · · · zP1 + z1 · · · zP2 + . . .+ z1 · · · zPL
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Learning the Nested Monomials

• For understanding simplicity, consider the above example for now. The intuition is
basically the same with the single monomial cases by comparing the gradient
magnitude of each coordinate. Firstly we learn the coordinates 1, . . . , P1 within
time Θ(dP1−1).

• After we learnt the coordinates 1, . . . , P1, the gradients of other coordinates
become larger. Thus, we can learn the coordinates P1 + 1, . . . , P2 within time
Θ(dP2−P1−1). Repeating this process, the overall time complexity indeed should
be Θ(dD−1) where D is the largest leap.
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Open Questions

• Can neural networks efficiently learn non-linear features, i.e, targets like
g(p1(x), . . . , pR(x)) where p1, . . . , pR are nonlinear functions?

• Can those results be extended to other input distributions? For example, when the
input distribution has some known or unknown low dimension structure, can
gradient descent utilize this structure and do feature learning more efficiently?

• Feature learning in other architectures, like CNNs and transformers?

• ...
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Thanks!
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