Neural Network Landscape
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Big Picture

* Landscape properties are essential for understanding the optimization,
generalization and implicit bias of neural network training.

* We have seen that sharpness of local landscape is related to
generalization performance and implicit bias.

* Progressive sharpening impacts the convergence speed of optimizers.

* In this lecture, we shall mostly focus on exploring the non-local
properties of neural network landscape.



Mountain Landscape




Non-convex Landscape in Science
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The loss landscape of neural network

* In general, the loss landscape
of neural network can be Exponentially many local minima for single

neurons
also extremely bad. There
are many papers arguing this
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landscape property highly
depends on the target

. We show that for a single neuron with the logistic function as the transfer
fu N Ct | O N . function the number of local minima of the error function based on the
square loss can grow exponentially in the dimension.

Abstract



Recap of Auer et al., 1995

* Consider the learning of a single neuron with sigmodal activation
function:

n

Bs(W) = ~ 3 (g — o(w 1))

1=1

Theorem 3.4 Let ¢ and L satisfy (P1). Then for all n > 1 there is a sequence of examples

S {08, W) (Xn,¥)), Xt € R%, y € ¢(R), such that Es(w) has L%Jd distinct local
minima.



Proof Sketch

* First, prove the for d=1, it holds

* By induction, assume there exists S = {(z1,51),-., (zn,9.)} such that there exist n
local minima. Then, show we can construct a(zn+1,y»+1) such that Es/(-) has
n+1 minima, where S’ = {(z1,41), ..., (@nt1, Yni1)} .

* Second, lift to high dimension by the following lemma.

Lemma 3.3 Let f : R — R be a continuous function with n disjoint minimum-containing
sets Uy, ..., Un. Thenthesets Uy, X --- X Uy, tj € {1,...,n}, are nd disjoint minimum-

containing sets for the functiong : R* — R, g(z1,...,z4) = f(z1) + - - + f(za).
* Third, construct S = U4 Sk, Where

Sy = {((5,0,...,0),y)} LY, Sa={((0,24,0,...,0),5:)} 0y



A Modern View of Neural Network Landscape

This illustration is misleading.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

Taken from (Li et al., NIPS 2017) .



Absent of Spurious Local Minima




Linear Networks (Kenji Kawaguchi, NIPS2016)

Theorem 2.3 (Loss surface of deep linear networks) Assume that X X' and XY are of full rank
with d, < d, and X has d,, distinct eigenvalues. Then, for any depth H > 1 and for any layer
widths and any input-output dimensions d,dy,dg—1,...,d1,d, > 1 (the widths can arbitrarily

differ from each other and from d,, and d,), the loss function L(W') has the following properties:
(i) It is non-convex and non-concave.
(ii) Every local minimum is a global minimum.
(iii) Every critical point that is not a global minimum is a saddle point.

(iv) If rank(Wy - - - Ws) = p, then the Hessian at any saddle point has at least one (strictly)
negative eigenvalue.!

X eRé&*m Yy c RW*m v =YX (XX ")) XY?, p=min(dy, do, ..., dn).



NTK results

* For empirical landscape, as long as the network is sufficiently large,
there exist many global minima near the initialization and GD can find

them efficiently.

* |t seems to suggest that overparameterization is a key to ensuring a
benign landscape

* Since then, many studies have aimed to establish certain benign
properties of neural network landscape by exploiting over-
parameterization.



Analysis of the teacher-student setup

* Teacher-student setup
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* When n=k, there exists many local minima and SGD can find them
easily.

* When n=k+1, SGD +rand init rarely find local minima

* When n>=k+2, SGD+rand init nearly cannot find local minima

Itay Safran, Ohad Shamir, Spurious Local Minima are Common in Two-Layer ReLU Neural Networks, ICML 2018.



Experiments

Table 1. Spurious local minima found for n = k

k | n % of runs Average Average
converging to | minimal | objective
local minima | eigenvalue value

6 |6 0.3% 0.0047 0.025

7 17 5.5% 0.014 0.023

8 | 8 12.6% 0.021 0.021

9 19 21.8% 0.027 0.02

10 | 10 34.6% 0.03 0.022

11 | 11 45.5% 0.034 0.022

12 | 12 58.5% 0.035 0.021

13 | 13 73% 0.037 0.022

14 | 14 73.6% 0.038 0.023

15 | 15 80.3% 0.038 0.024

16 | 16 85.1% 0.038 0.027

17 | 17 89.7% 0.039 0.027

18 | 18 90% 0.039 0.029

19 | 19 93.4% 0.038 0.031

20 | 20 94% 0.038 0.033

Table 2. Spurious local minima found for n # k

k | n % of runs Average Average
converging to | minimal | objective
local minima | eigenvalue value

8 |9 0.1% 0.0059 0.021

10 | 11 0.1% 0.0057 0.018

11 | 12 0.1% 0.0056 0.017

12 | 13 0.3% 0.0054 0.016

13 | 14 1.5% 0.0015 0.038

14 | 15 5.5% 0.002 0.033

15 | 16 10.1% 0.004 0.032

16 | 17 18% 0.0055 0.031

17 | 18 20.9% 0.007 0.031

18 | 19 36.9% 0.0064 0.028

19 | 20 49.1% 0.0077 0.027




Mildly over-parameterized

e Karhadkar et al., Mildly Overparameterized ReLU Networks Have a
Favorable Loss Landscape, arXiv:2305.19510, 2023.

e Zhou et al., A Local Convergence Theory for Mildly Over-
Parameterized Two-Layer Neural Network, COLT 2021.

e Safran et al., The Effects of Mild Over-parameterization on the
Optimization Landscape of Shallow ReLU Neural Networks, COLT 2021.



Mode Connectivity

Linear interpolation
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Figure 1. Left: A slice through the one million-dimensional train-

ing loss function of DenseNet-40-12 on CIFAR10 and the min-
imum energy path found by our method. The plane is spanned

Draxler et al., Essentially No Barriers in Neural Network Energy Landscape, ICML 2018.



Visualizing Mode Connectivity (link)
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Loss surface of ResNet-164 on CIFAR-100. Left: three optima for independently trained networks;
Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend, connecting the

lower two optima on the left panel along a path of near-constant loss.

Garipoy, et al., Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs, NeulPS 2018.


https://izmailovpavel.github.io/curves_blogpost/

Summary

* Local Landscape/geometry
* Sharpness
* Saddle points
e Plateau, basin, valley

* Non-local landscape
* Progressive sharpening (landscape along optimization trajectory)
* Mode connectivity

* Global landscape
e Absent of bad local minima

* Over-parametrization



Reading

M. Bianchini and M. Gori, Optimal learning in artificial neural networks: A review of
theoretical results, Neurocomputing, 1996. [Old survey]

Ruoyu Sun et al., The Global Landscape of Neural Networks: An Overview. IEEE Signal
Processing Magazine 2020. [Modern survey]

Draxler et al., Essentially No Barriers in Neural Network Energy Landscape, ICML 2018.
Hao Li et al., Visualizing the Loss Landscape of Neural Nets, NIPS 2017
https://izmailovpavel.github.io/curves blogpost/

https://losslandscape.com/
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