lmportant Phenomena in LLM

Lei Wu

Qutline

* Grokking

* Neural Scaling Law
* Emergence

* In-context Learning

Grokking: Emergence wrt Training Epochs

Modular Division (training on 50% of data)

100 —— train Key Difference:
G , * |In-distribution vs. Qut-of-
80 distribution

* Unpredictablity!!
* |t happens due to the

60
> . .
® difference between evaluation
S metric about the training
< 40
progress.
20

10! 102 103 104 10° 106
Optimization Steps

Grokking phenomenon in learning f(x,y)=(x/y) mod p (in this figure, p=97).
Similar behaviors also happen for moduar addition, etc.

The slow progression of implicit bias can induce
grokking

* In binary linear classification

o 9
o O
O
K X
XK
i
’EVC\;V\\\'\S -

* The same phenomenon can also happen for the noise-driven/ oscillation-
driven implicit bias.

Grokking can happen for all problems with statistical -
computational gap.

* Memorization i1s much easier than generalization in terms of time-
complexity. In this case, the grokking Is a task-specific property (nearly
Independent of the model and optimizer used)

* Consider the learning of parity (Barak et al., NeurlPS 2022)

m = 10000 m = 1800 m = 1000 m = 700

0.4 -

=
N

classification error

o
o
5 3
-]
1

0 1 P 0 5 0 2 4 0.0 0.5 1.0
1le3 le3 le4d leb
iteration t

Scaling Law

* The scaling behavior of ML models has been studied for a long

time (Seung, et al., 1992)
gen-err(n) ~ an~* + b

* |n classical ML, we often has a = 0.5 or 1. For KRR/RF regression,
the exponent can be smaller or larger than 0.5, depending on the

target function f5

relative smoothness.

log 10(error)

0

1,2.02)

0.01, 1.99)

(
(0.1, 1.99)
(
(

0, 1.99)

0 1 2 3

109 14(n)

] 1 Dec 2017

DEEP LEARNING SCALING IS PREDICTABLE, EMPIRICALLY

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun,

Hassan Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, Yanqi Zhou

{joel, sharan,ardalaninewsha, gregdiamos, junheewoo, hassankianinejad,
patwarymostofa, yangyang62, zhouyangi } @baidu.com

Baidu Research

ABSTRACT

Deep learning (DL) creates impactful advances following a virtuous recipe: model
architecture search, creating large training data sets, and scaling computation. It
is widely believed that growing training sets and models should improve accuracy
and result in better products. As DL application domains grow, we would like a
deeper understanding of the relationships between training set size, computational
scale, and model accuracy improvements to advance the state-of-the-art.

Neural Scaling Law (Hestness, et al., 2017)

0.67 —— 208 Hidden 0.71 - ——— Token Error Rate
- 512 Hidden ' -—= Token Error Rate Trend
0.62 ~== 208 Hidden Trend 0.65 -

—== 512 Hidden Trend

0.60 -
g(m)|=.3.84 m?*3

))
© ©
&) o)
0 0
(@] (@]
S S 055 -
& 0.54 =
3 3
:‘ ;‘ 0.50
a 0.51 a
[[
£ g 0.46
3 - =}
= 0.48 E
£ £ 042
= 0.44 - . == =

e 0.39

0.41 - W
B 0.36
2.20 2I21 2I22 2I23 2I24 2I25 2I26 2l27 25.9 2120 2[21 2122 2[23 2'24 2I25 2]26 2l27
Training Data Set Size, Number of Tokens (Log-scale) Training Data Set Size, Number of Tokens (Log-scale)

Figure 1: Neural machine translation learning curves. Left: the learning curves for separate models
follow £(m) = aomPs + ~. Right: composite learning curve of best-fit model at each data set size.

Language modeling with RNN

5.00 -

4.54 -

4.12 -

3.73 A

Minimum Validation Loss (Log-scale)

3.39 ~

= 2-layer LSTMs
mes 4-Layer LSTMs
=== Depth-5 RHNs
== 2-Layer LSTMs Trend
= = 4-Layer LSTMs Trend
= = Depth-5 RHNs Trend

efm) = 112.0.m%9%

N
~

N
g(m) = 11.7 m%% N2

Training Data Set Size, Millions of Words (Log-scale)

Model Num Params, Millions (Log-scale)

177 -

93 -

49 -

25 4

13 -

7.0

3.6 A

1.9 4

1.0

= 2-lLayer LSTMs
mes 4-Layer LSTMs

s(m) = 5.08e> m°78!_z

Depth-5 RHNs 20
2-Layer LSTMs Trend
= = 4-Layer LSTMs Trend
- Depth-5 RHNs Trend

Training Data Set Size, Millions of Words (Log-scale)

* The scaling law is nearly independent of the model depth and arch.

A sketch of power-law learning curves

Small Data _ Irreducible
: Power-law Region E
Region rror
Region A A A B
Best Guess Error L(N, D) = F4+ — 4+ —
N« DF

Generalization Error (Log-scale)

Irreducible Error

Training Data Set Size (Log-scale)

Refined analysis of scaling law

: * Decoder-only Transformer
Scaling Laws for Neural Language Models + Training: Adam for a fixed 250k

iterations, batch size 512, context
length 1024 tokens. 3k warmup+

Jared Kaplan * Sam McCandlish* COSi ne LR d eca
Johns Hopkins University, OpenAl OpenAl y
° .
jaredk@jhu.edu sam@openai.com Datasets' WebteXtZ
Tom Henighan Tom B. Brown Benjamin Chess Rewon Child
OpenAl OpenAl OpenAl OpenAl
henighan@openai.com tom@openai.com bchess@openai.com rewon@openai.com
Scott Gray Alec Radford Jeffrey Wu Dario Amodei
OpenAl OpenAl OpenAl OpenAl

scott@openai.com alec@openai.com jeffwu@openai.com damodei@openai.com

Non-embedding parameters matter

0 Layer
—e— 1 Layer

I

Test Loss

—e— 2 Layers

+

3 Layers
6 Layers
> 6 Layers

108 107 108
Parameters (with embedding)

10°

Test Loss

S

w

| —— 3 Layers

—e— 1 Layer |
—e— 2 Layers \\\@\\‘\
6 Layers

> 6 Layers

108 10% 105 106

Parameters (non-embedding)

* Removing the embedding parameters yields clear power-law
* Scaling law hold well as long as the depth is not extremely small or large.
* The exponent (slopes in the above figure) depends weakly on the model shape.

107 108

- 10°

Transtormer vs. LSTM

Transformers asymptotically outperform LSTMs LSTM plateaus after <100 tokens
due to improved use of long contexts Transformer improves through the whole context
Test Loss 5.4 Per-token
Test Loss 6 |
4.8
/_ l Parameters:
3.6 e 400K
1 Layer 5 . 400K
2 Layers 2M
3.01 Transformers 4 Layers 3M
3 | 200M
24 300M
BN LS5) " J S ® % L R | . € L o L | L & # % m Btz % 2 o ' 5 X LB B | b b = T B * * . T LI U |
105 106 107 108 109 101 102 103

Parameters (non-embedding) Token Index in Context

The transferabllity of scaling law to similar
datasets

—e— WebText2 (Test) * WebText2: web scrape of outbound links

B L pemet Books from Reddit with a minimum of 3 upvotes.
5 " Z\féﬁfj;a(:rawl * [nternet Books: Books available on the

7 internet

— 4 « Books: Fiction books (11k books)

kS - Wikipedia: ~6million articles
3 * Common Crawl: entire website data

(petabytes)

104 105 106 107 108 10°
Parameters (non-embedding)

The smoothly improved is the cross-entropy loss

Generalization performance depends on the

training loss not training phase

5.0 1
c ~Q —== Books during training
9 4.5 SN @ Wikipedia during training
45) \~’\‘ ® Books at convergence
=2 4.0 S8) Wikipedia at convergence
2 ~ %
84 RN
A 3.5 Qe
L" \/\L
<) Qo
£ e,
@) 3.0 1 \n\\
- -9
o
n
n
2 2.5
—

5.0 4.5 4.0 3.5 3.0 2.5

Test Loss on Training Distribution

Dashed curves correspond to a large
model training.

Dots corresponds to convergent
solutions of model with different size.

Large model Is more sample-efficient

2.2
—— LLaMA 7B

2.1- — LLaMA 13B
0 2.0- —— LLaMA 33B
o LLaMA 65B
o 1.9
<
C 1.8
(v
— 1.7

1.6-

1.5

0 200 400 600 800 1000 1200 1400
Billion of tokens

Training loss over training tokens for LLaMa models.

LLM training involves processing
only one epoch.

Large model converges fasters and is
thus more sample-efficient.

Why?

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,

Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*
*Equal contributions

We investigate the optimal model size and number of tokens for training a transformer language model
under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and
the number of training tokens should be scaled equally: for every doubling of model size the number
of training tokens should also be doubled. We test this hypothesis by training a predicted compute-
optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and
4x more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B),
Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks.
This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly

~ ama _ ry - R - -« &« = me = — - oeww - ~ =

The Major Message of Chinchilla Law Paper

Kaplan et al. (2020) showed that there is a power law relationship between the number of
parameters in an autoregressive language model (LM) and its performance. As a result, the field has
been training larger and larger models, expecting performance improvements. One notable conclusion
in Kaplan et al. (2020) is that large models should not be trained to their lowest possible loss to be
compute optimal. Whilst we reach the same conclusion, we estimate that large models should be
trained for many more training tokens than recommended by the authors. Specifically, given a 10x
increase computational budget, they suggests that the size of the model should increase 5.5x while
the number of training tokens should only increase 1.8x. Instead, we find that model size and the
number of training tokens should be scaled in equal proportions.

Compute-optimal Training

* For LLM (auto-regressive) trained for one-epoch with a cosine LR,
we have

C=CyND
_ A B
L—F-FF-{-LO

where the variables are

« (' is the cost of training the model, in FLOPs.

e N is the number of parameters in the model.

e D is the number of tokens in the training set.

e L is the average negative log-likelihood loss per token (nats/token), achieved by the trained LLM on the test dataset.
o L represents the loss of an ideal generative process on the test data

A
Na

captures the fact that a Transformer language model with N parameters underperforms the ideal generative process

captures the fact that the model trained on D tokens underperforms the ideal generative process

Compute-optimal LLM

* Given a compute budget, what Is the best model size and data size?
. A B
min L(N,D) := Na + L + Lo

s.t. C()ND =C

* The solution Is given by

B e 1

C \otrp 1 /C)\ o+s oA\ 5+
NO — —~ 7DO -~ |\ ~) — |\ 2o
w0=0(g)" Pm@=5 () o= (53)

* In Chinchila scaling law papetr,

N,y (C) = 0.6 CO4
D,,:(C) = 0.3 CY°
Loyt (C) = 1070 C70154 - 1.7

* Observation: To achieve compute-optimal, scale the model size and
data size In approximately equation proportions. But this may not hold
generally.

summary: scale is all you need

* LLM training 1s mysteriously predictable
* We can train small models to fitting scaling law,

* Then, use the fitted scaling law to predict the performance of large
models and optimally allocate resources for training large models

* LLM performance depends on the scale. The architecture shape
does not matter too much.

* Transformer has better scaling property than LSTM.
* Large models are more sample-efficient than small models.

* Scaling law now plays an important role in assessing new
architecture and optimizers.

Reading

* Hestness et al., Deep learning scaling Is predictable, empirically

* Kaplan et al., Scaling Laws for Neural Language Models, openAl.

* Hoffman et al., Training Compute-Optimal Large Language Models,

DeepMind.

https://arxiv.org/pdf/1712.00409
https://arxiv.org/pdf/2001.08361
https://arxiv.org/pdf/2203.15556

In-context learning (ICL)

Pretrained LLMs can perform in-context learning (vs. few-shot finetuning).

In the following lines, the symbol —> represents a simple mathematical operation.
100 + 200 —> 301

838 + 520 —> 1359

343 + 128 —> 472

647 + 471 —> 1119

64 + 138 —> 203

498 + 592 —>

Answer:

1091

Understanding |CL

* Use T,denote the model, whose inputs are few-shot samples
* Train the ICL model in a supervised manner

arg min £ Zﬁ (f(xs), T ([21, f(21) - .., 24]))
1=1

) L1yeeey man(.’.U) .
f~p(f) - -

» Consider the linear target function class f(z) = w'z with w ~ N(0, I4)

* Then, the leaned model should be able to perform ICL.

What does the trained TF implement?

* There exists many estimators for linear regression:
* Ridge regression/ordinary least square (OLS)/Lasso
* Multiple/single-step GD/One-step Newton
* Etc.

* Measure the difference between two ICL estimators

Squared prediction difference. Given any learning algorithm .A that maps from a set of input—
output pairs D = [x1,y1,...,Tn,Ys] to a predictor f(x) = A(D)(x), we define the squared
prediction difference (SPD):

SPD(A1, Az) = E (A1(D)(x") — A2(D)())* (15)

D=[z,,...]~p(D)
z'~p(x)

where D is sampled as in Eq. (8). SPD measures agreement at the output level, regardless of the
algorithm used to compute this output.

0.8

<
o)

1/d SPD(A;, A»)
S
~

<
b

0.0

Experiments In linear regression

27 A
e \‘
\
\ ——
\
\ ——
\
\ ——
\
\ N
‘\
-
\\\\/ °
1 2 4 8 10 12 14

#exemplars

(OLS, ICL)

(Ridge(0.1), ICL)
(GD(0.01), ICL)
(SGD(0.01), ICL)
(GD(0.02), ICL)
(SGD(0.03), ICL)
(OLS,Y)

(KNN(3, weighted), ICL)
(KNN(3, uniform), ICL)

S (QIESY)
* (Ridge(0.1), Y)
+ (ICL,Y)

d=8, L=16,H=512, H=8.
In this noiseless setting,
trained TF approximately
iImplement OLS.

The problems

* The aforementioned explanations of ICL are based on an operator
learning framework, which can be used to investigate:
* TF can approximate/represent certain estimator

* Investigate how model architectures like attention, softmax changes the
Inductive bias into certain estimators.

* To learn generalizable estimator needs only poly(n,d, F) samples (Bal et
al.,NeurlPS 2014)

* This framework Is fact more useful In meta-learning, such as
analyzing learned optimizer, statistical estimator and ODE/PDE
solver.

The problems (conta)

* However, In ICL, the LLM Is pretrained on a generic dataset,
where no such clear supervised data are avallable.

* The operator learning framework does not explain:
* How does pretrained LLMs master ICL in performing next-token
prediction?
* Why does ICL ability emerge so late?

Emergence

ARITHMETIC

8 billion parameters

Few-Shot Prompted Tasks

The ICL capability emerges only when the model is large
enough.

In the following lines, the symbol —> represents a simple mathematical operation.
100 + 200 —> 301

838 + 520 —> 1359

343 + 128 —> 472

647 + 471 —> 1119

64 + 138 —> 203

498 + 592 —>

Answer:

1091

Other Tasks

* Word Unscrambling
Input: The word hte is a scrambled version of the English word Output: the

Input: The word sohpto is a scrambled version of the English word Output: photos

_ _ Target Word: “bat"
* Word in Context (WIC)
Sentence 1: He picked up the bat and headed towards the pitch.

Sentence 2: The bat flew out of the cave.

Label: "False"

(A) Mod. arithmetic
50

Accuracy (%)
[[\ w =
o o [oms o

o

1018 1020 1022 10%

(E) TruthfulQA

W b g Y
o O O O O

Accuracy (%)
[~}
o

—_
o

o

1020 1022 1024

Emergent Abillities

—e— LaMDA —=— GPT-3 —4— Gopher

(B) IPA transliterate
50

40
30

20

BLEU (%)

10

0

10'% 1020 10?2 10%*

(F) Grounded mappings

—a&— Chinchilla —@— PaL

(C) Word unscramble
50

N W
o o O

Exact match (%)
o

1018 1020 1022 1024

0

(G) Multi-task NLU

70 70
60 60
X 50 X 50
> 40 > 40
3 3
:?-; 30 sé 30 o
o 20 o 20
< <
10 10
0 | 0 |
1020 1022 1024 1020 1022 1024

Model scale (training FLOPs)

M === Random

(D) Persian QA

N W
o o O

Exact match (%)
o

0 L
1018 1020 10?2 10%

(H) Word in context

1020 1022 1024

Log scale vs. Linear scale

performance

40

30

20

10

performance

0.5 1 5 10 50 100

billions of params (log-scale)

40

30

20

10

50 100 150

billions of params (linear scale)

See this link

https://docs.google.com/spreadsheets/d/1uWAtODZmmzhKxDrBXJqjufEtEu56PzfhhV78lGcl1b4/edit

Remarks

* Emergence Is observed for downstream (reasoning) tasks.

* The downstream tasks are very different from the pretrain data
* The evaluation metrics are not cross-entropy but accuracy.

* Still many tasks in BIG-Bench is challenging for LLM.

Augmented prompting strategies

(A) Math word (C) 8-digit addition
problems 100

25 T e
/E)\ Scratchpad
& 80
- 20 Chain of §
% thought —
5 15| 2> 60
Q ®
Q
< 10 5 40
M O
CR. < 20
% No chain i\IC})l g
U O (of thought O FEERERES

22 ;02511024 1019 1020 1021

1021 10

Emergence: surpassing finetuning

Sociological change in the Al community: finetuned task-
specific models are outperformed by few-shot prompted large

model

Accuracy (%)
\V) D (o)} oo o
o o o o o

o

(A) TriviaQA
(GPT-3)

1B 100B

Accuracy (%)

(B) Physical QA
(GPT-3)

90

Qo
)

~
o

o
o

Model scale (number of parameters)

1B 100B

Accuracy (%)

= = = Prior SOTA (pretrain—finetune)

—o— Few-shot prompting
(C) GSMS8K (D) OKVQA
(PaLM) (Flamingo)
60
é\i =6 /
>
§ 40
g 30
2
é 0
S 10 |
0 | | O |
8B 62B 540B 3B9B 80B

Emergence: measure of model “size”

Training compute vs. WikiText103 ppl vs. WikiText103 ppl vs.
What'’s the right x-axis for emergence? | a4 |, iodel sixs - Cralming compute model size
¥ & 5 & 5
. . ®)
Can be viewed through training FLOPs, = 102 87 37|
oy . 80 292 i 4?’;4 10 4?’-2 10
model parameters, wikitext103 ppl. g 1071 = =
'@ 1021 | i, e
LT, I = 20 [= 2010
1B 10B 100B 1020 1022 10%4 1B 10B 100B
Model parameters Training FLOPs Model parameters
MMLU MMLU MMLU
_ 100 _100 _100
) X 80 X 80
> 60 > 60 > 60
(o] o]]
& 40| & 40 S 40
5 - - ---- 5 B o F 4=t .
O 20 (&) 20 o 20
< O < O | L | L | < O | |
1020 1022 1024 1B 10B 100B 2015 10 7 5
Training FLOPs Model parameters WikiText103 ppl

—#&— Chinchilla —4— Gopher = -- Random

Emergent Abilities - fact or illusion?

* In real emergent phenomenon, the rules of the game change.

* [t Is unclear at this point what exactly this means with respect to
Large Language Models.

A plausible explanation: Compounding effect

* The downstream tasks often take multi-step reasoning. In this case, evaluation metric
matters

* Fail vs. success

* The number of correct steps.

« Assume that the success of one-step reasoning is p. Then, the prob. of k-step success is: p*

10+ 10 - |

0.8 1 0.8 -

0.6 1 0.6 1

0.4 1 0.4

0.2 1 0.2 1

O.O] T T T T LJ T O'O 7 —
00 02 04 06 08 10

10-? 10°* 10°

Fvaluation metrics

—— 7 =0

~~
&

Error rate (%

Cross-entropy loss

100

90 |

80 |

70

Modified arithmetic

1020 1022 1024

1020 1022 1024

100

90 |

80 [

70

15
10

—— T =1

IPA transliterate

1020 1022 1024

Training FLOPs

100

90

80

70

15
10

- = = Random

Word unscramble

1020 1022 1024

Claimed emergent abllities evaporate upon
changing the metric

L0

Accuracy
o o o
NN (@) 0]

o
N

S
o

Target Str Len

1
2
cnaffeer 3 ’.
- + = 4 .0"’ ’/t
0. ,
+ . 5 “.3 ',o /.0
&
o / 9
&
00" /’ ./
0"‘ "' 0/
0‘.‘ 0, 0/
3 A
0"‘ ," 0/
2ed Vs /
. /,‘/
*
SES
e 4
‘ ﬂ""'@“;-’;""
= -
10° 1010 101!

Model Parameters

Accuracy

- Token Edit Distance

o
“¢"::"‘;’
‘‘‘‘‘ R
"""" '¢”‘/‘
““““ o
“.“ ”’O ‘/‘
"‘ ’¢’ /,/
/’-I- 7
/‘ ‘o’/
] P
i &
A 4
R Target Str Len
/* / 1
s’ 4
4
‘/, T 3
/
' - 4
— 5
10° 1010 10*

Model Parameters

Induced emergent reconstruction abllity In
shallow nonlinear autoencoders (for CIFAR-100)

No Emergent Ability Metric-Induced Emergent Ability
- C)
Q
a v 0.003
= N — 0.004
>|<° o5 04
= |
x X
z|Al 1 —
< 4 Il
— =2 HlZ: 0.3
I -1
! 10)
= >
(5 =
5 2 02
3 5
“ [s]
>
0.1
= c
> :
2 1072 a
e
n
Q
= 0.0
104 10° 1ig°

104 10° 10°
Shallow Autoencoder Model Parameters

Shallow Autoencoder Model Parameters

Scaling law vs. Emergence

* Scaling law says that LLM Is predictable.
* Emergence emphasizes that LLM ability 1s unpredictable.

* Any contradictions? No!
* Scaling law Is about the pretraining loss/PPL.
* Emergence Is about the downstream performance.

More Is different?

72, Volume 177, Number 4047 SCIE NCE

More Is Different

Broken symmetry and the nature of
the hierarchical structure of science.

P. W. Anderson

less relevance they seem to have
very real problems of the rest
ence, much less to those of s

The constructionist hypothesis
down when confronted with th
difficulties of scale and complexit
behavior of large and complex
gates of elementary particles, if
out, is not to be understood in
of a simple extrapolation of the
erties of a few particles. Inste
each level of complexity entire
properties appear, and the unde
ing of the new behaviors requi

Phase transition

Phase transition i sillanguages

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In chemistry, thermodynamics, and other related fields like physics and biology, a
phase transition (or phase change) is the physical process of transition between
one state of a medium and another. Commonly the term is used to refer to
changes among the basic states of matter: solid, liquid, and gas, and in rare
cases, plasma. A phase of a thermodynamic system and the states of matter have
uniform physical properties. During a phase transition of a given medium, certain
properties of the medium change as a result of the change of external conditions,
such as temperature or pressure. This can be a discontinuous change; for
example, a liquid may become gas upon heating to its boiling point, resulting in an
abrupt change in volume. The identification of the external conditions at which a
transformation occurs defines the phase transition point.

Plasma A

Liquid

Enthalpy of system

Types of phase transition |edit]

States of matter |[edit]

~

Emergence vs. Phase transition

In philosophy, systems theory, science, and art, emergence occurs when a complex entity
has properties or behaviors that its parts do not have on their own, and emerge only when
they interact in a wider whole.

Emergence plays a central role in theories of integrative levels and of complex systems. For
instance, the phenomenon of life as studied in biology is an emergent property of chemistry
and quantum physics.

Summary

* Understanding emergence 1s crucial for

* Accelerate the Emergence of Desirable Abilities: In training large language
models (LLMs), emergent abilities like in-context learning (ICL) often appear
very late 1n the process. By understanding emergence, we can potentially
speed up the development of these beneficial capabilities.

* Prevent the Emergence of Undesirable Abilities: Some unknown or harmful
abilities might also emerge during training. By understanding emergence, we
can take steps to prevent these from developing.

* To fully understand ICL, 1t 1s important to investigate why ICL
abilities appear so late 1n the training process.

Reading

* Wel et al., Emergent Abilities of Large Language Models,
TMLR2023.

* Schaeffe et al., Are Emergent Abilities of Large Language Models
a Mirage?, NeurlPS 2023.

