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Grokking: Emergence wrt Training Epochs

Modular Division (training on 50% of data)
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Grokking phenomenon in learning f(x,y)=(x/y) mod p (in this figure, p=97).
Similar behaviors also happen for moduar addition, etc.



The slow progression of implicit bias can induce
grokking

* In binary linear classification
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* The same phenomenon can also happen for the noise-driven/ oscillation-
driven implicit bias.



Grokking can happen for all problems with statistical -
computational gap.

* Memorization i1s much easier than generalization in terms of time-
complexity. In this case, the grokking Is a task-specific property ( nearly
Independent of the model and optimizer used)

* Consider the learning of parity (Barak et al., NeurlPS 2022)
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Scaling Law

* The scaling behavior of ML models has been studied for a long

time (Seung, et al., 1992)
gen-err(n) ~ an~* + b

* |n classical ML, we often has a = 0.5 or 1. For KRR/RF regression,
the exponent can be smaller or larger than 0.5, depending on the

target function f5

relative smoothness.
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DEEP LEARNING SCALING IS PREDICTABLE, EMPIRICALLY
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ABSTRACT

Deep learning (DL) creates impactful advances following a virtuous recipe: model
architecture search, creating large training data sets, and scaling computation. It
is widely believed that growing training sets and models should improve accuracy
and result in better products. As DL application domains grow, we would like a
deeper understanding of the relationships between training set size, computational
scale, and model accuracy improvements to advance the state-of-the-art.



Neural Scaling Law (Hestness, et al., 2017)
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Figure 1: Neural machine translation learning curves. Left: the learning curves for separate models
follow £(m) = aomPs + ~. Right: composite learning curve of best-fit model at each data set size.



Language modeling with RNN

5.00 -

4.54 -

4.12 -

3.73 A

Minimum Validation Loss (Log-scale)

3.39 ~

= 2-layer LSTMs
mes 4-Layer LSTMs
=== Depth-5 RHNs
== 2-Layer LSTMs Trend
= = 4-Layer LSTMs Trend
= = Depth-5 RHNs Trend

efm) = 112.0.m%9%

N
~

N
g(m) = 11.7 m%% N2

Training Data Set Size, Millions of Words (Log-scale)

Model Num Params, Millions (Log-scale)

177 -

93 -

49 -

25 4

13 -

7.0

3.6 A

1.9 4

1.0

= 2-lLayer LSTMs
mes 4-Layer LSTMs

s(m) = 5.08e> m°78!_z

Depth-5 RHNs 20
2-Layer LSTMs Trend
= = 4-Layer LSTMs Trend
- Depth-5 RHNs Trend

Training Data Set Size, Millions of Words (Log-scale)

* The scaling law is nearly independent of the model depth and arch.




A sketch of power-law learning curves
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Refined analysis of scaling law
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Scaling Laws for Neural Language Models + Training: Adam for a fixed 250k
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Non-embedding parameters matter
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* Removing the embedding parameters yields clear power-law
* Scaling law hold well as long as the depth is not extremely small or large.
* The exponent (slopes in the above figure) depends weakly on the model shape.
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Transtormer vs. LSTM

Transformers asymptotically outperform LSTMs LSTM plateaus after <100 tokens
due to improved use of long contexts Transformer improves through the whole context
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The transferabllity of scaling law to similar
datasets

—e— WebText2 (Test) * WebText2: web scrape of outbound links
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The smoothly improved is the cross-entropy loss



Generalization performance depends on the

training loss not training phase
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Large model Is more sample-efficient
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Training loss over training tokens for LLaMa models.

LLM training involves processing
only one epoch.

Large model converges fasters and is
thus more sample-efficient.

Why?



Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,

Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*
*Equal contributions

We investigate the optimal model size and number of tokens for training a transformer language model
under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and
the number of training tokens should be scaled equally: for every doubling of model size the number
of training tokens should also be doubled. We test this hypothesis by training a predicted compute-
optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and
4x more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B),
Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks.
This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly
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The Major Message of Chinchilla Law Paper

Kaplan et al. (2020) showed that there is a power law relationship between the number of
parameters in an autoregressive language model (LM) and its performance. As a result, the field has
been training larger and larger models, expecting performance improvements. One notable conclusion
in Kaplan et al. (2020) is that large models should not be trained to their lowest possible loss to be
compute optimal. Whilst we reach the same conclusion, we estimate that large models should be
trained for many more training tokens than recommended by the authors. Specifically, given a 10x
increase computational budget, they suggests that the size of the model should increase 5.5x while
the number of training tokens should only increase 1.8x. Instead, we find that model size and the
number of training tokens should be scaled in equal proportions.



Compute-optimal Training

* For LLM (auto-regressive) trained for one-epoch with a cosine LR,
we have

C=CyND
_ A B
L—F-FF-{-LO

where the variables are

« (' is the cost of training the model, in FLOPs.

e N is the number of parameters in the model.

e D is the number of tokens in the training set.

e L is the average negative log-likelihood loss per token (nats/token), achieved by the trained LLM on the test dataset.
o L represents the loss of an ideal generative process on the test data

A
Na

captures the fact that a Transformer language model with N parameters underperforms the ideal generative process

captures the fact that the model trained on D tokens underperforms the ideal generative process



Compute-optimal LLM

* Given a compute budget, what Is the best model size and data size?
. A B
min L(N,D) := Na + L + Lo

s.t. C()ND =C

* The solution Is given by
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* In Chinchila scaling law papetr,

N,y (C) = 0.6 CO4
D,,:(C) = 0.3 CY°
Loyt (C) = 1070 C70154 - 1.7

* Observation: To achieve compute-optimal, scale the model size and
data size In approximately equation proportions. But this may not hold
generally.



summary: scale is all you need

* LLM training 1s mysteriously predictable
* We can train small models to fitting scaling law,

* Then, use the fitted scaling law to predict the performance of large
models and optimally allocate resources for training large models

* LLM performance depends on the scale. The architecture shape
does not matter too much.

* Transformer has better scaling property than LSTM.
* Large models are more sample-efficient than small models.

* Scaling law now plays an important role in assessing new
architecture and optimizers.



Reading

* Hestness et al., Deep learning scaling Is predictable, empirically

* Kaplan et al., Scaling Laws for Neural Language Models, openAl.

* Hoffman et al., Training Compute-Optimal Large Language Models,

DeepMind.



https://arxiv.org/pdf/1712.00409
https://arxiv.org/pdf/2001.08361
https://arxiv.org/pdf/2203.15556

In-context learning (ICL)

Pretrained LLMs can perform in-context learning (vs. few-shot finetuning).

In the following lines, the symbol —> represents a simple mathematical operation.
100 + 200 —> 301

838 + 520 —> 1359

343 + 128 —> 472

647 + 471 —> 1119

64 + 138 —> 203

498 + 592 —>

Answer:

1091



Understanding |CL

* Use T,denote the model, whose inputs are few-shot samples
* Train the ICL model in a supervised manner

arg min £ Zﬁ (f(xs), T ([21, f(21) - .., 24]))
1=1

) L1yeeey man(.’.U) .
f~p(f) - -

» Consider the linear target function class f(z) = w'z with w ~ N(0, I4)

* Then, the leaned model should be able to perform ICL.



What does the trained TF implement?

* There exists many estimators for linear regression:
* Ridge regression/ordinary least square (OLS)/Lasso
* Multiple/single-step GD/One-step Newton
* Etc.

* Measure the difference between two ICL estimators

Squared prediction difference. Given any learning algorithm .A that maps from a set of input—
output pairs D = [x1,y1,...,Tn,Ys] to a predictor f(x) = A(D)(x), we define the squared
prediction difference (SPD):

SPD(A1, Az) = E (A1(D)(x") — A2(D)())* (15)

D=[z,,...]~p(D)
z'~p(x)

where D is sampled as in Eq. (8). SPD measures agreement at the output level, regardless of the
algorithm used to compute this output.
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The problems

* The aforementioned explanations of ICL are based on an operator
learning framework, which can be used to investigate:
* TF can approximate/represent certain estimator

* Investigate how model architectures like attention, softmax changes the
Inductive bias into certain estimators.

* To learn generalizable estimator needs only poly(n,d, F) samples (Bal et
al.,NeurlPS 2014)

* This framework Is fact more useful In meta-learning, such as
analyzing learned optimizer, statistical estimator and ODE/PDE
solver.



The problems (conta)

* However, In ICL, the LLM Is pretrained on a generic dataset,
where no such clear supervised data are avallable.

* The operator learning framework does not explain:
* How does pretrained LLMs master ICL in performing next-token
prediction?
* Why does ICL ability emerge so late?



Emergence

ARITHMETIC

8 billion parameters



Few-Shot Prompted Tasks

The ICL capability emerges only when the model is large
enough.

In the following lines, the symbol —> represents a simple mathematical operation.
100 + 200 —> 301

838 + 520 —> 1359

343 + 128 —> 472

647 + 471 —> 1119

64 + 138 —> 203

498 + 592 —>

Answer:

1091



Other Tasks

* Word Unscrambling
Input: The word hte is a scrambled version of the English word Output: the

Input: The word sohpto is a scrambled version of the English word Output: photos

_ _ Target Word: “bat"
* Word in Context (WIC)
Sentence 1: He picked up the bat and headed towards the pitch.

Sentence 2: The bat flew out of the cave.

Label: "False"
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Log scale vs. Linear scale
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https://docs.google.com/spreadsheets/d/1uWAtODZmmzhKxDrBXJqjufEtEu56PzfhhV78lGcl1b4/edit

Remarks

* Emergence Is observed for downstream (reasoning) tasks.

* The downstream tasks are very different from the pretrain data
* The evaluation metrics are not cross-entropy but accuracy.

* Still many tasks in BIG-Bench is challenging for LLM.



Augmented prompting strategies
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Emergence: surpassing finetuning

Sociological change in the Al community: finetuned task-
specific models are outperformed by few-shot prompted large

model
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Emergence: measure of model “size”
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Emergent Abilities - fact or illusion?

* In real emergent phenomenon, the rules of the game change.

* [t Is unclear at this point what exactly this means with respect to
Large Language Models.




A plausible explanation: Compounding effect

* The downstream tasks often take multi-step reasoning. In this case, evaluation metric
matters

* Fail vs. success

* The number of correct steps.

« Assume that the success of one-step reasoning is p. Then, the prob. of k-step success is: p*
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Fvaluation metrics
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Claimed emergent abllities evaporate upon
changing the metric
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Induced emergent reconstruction abllity In
shallow nonlinear autoencoders (for CIFAR-100)
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Scaling law vs. Emergence

* Scaling law says that LLM Is predictable.
* Emergence emphasizes that LLM ability 1s unpredictable.

* Any contradictions? No!
* Scaling law Is about the pretraining loss/PPL.
* Emergence Is about the downstream performance.



More Is different?
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Phase transition

Phase transition i sillanguages

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In chemistry, thermodynamics, and other related fields like physics and biology, a
phase transition (or phase change) is the physical process of transition between
one state of a medium and another. Commonly the term is used to refer to
changes among the basic states of matter: solid, liquid, and gas, and in rare
cases, plasma. A phase of a thermodynamic system and the states of matter have
uniform physical properties. During a phase transition of a given medium, certain
properties of the medium change as a result of the change of external conditions,
such as temperature or pressure. This can be a discontinuous change; for
example, a liquid may become gas upon heating to its boiling point, resulting in an
abrupt change in volume. The identification of the external conditions at which a
transformation occurs defines the phase transition point.

Plasma A

Liquid

Enthalpy of system

Types of phase transition |edit]

States of matter |[edit]

~



Emergence vs. Phase transition

In philosophy, systems theory, science, and art, emergence occurs when a complex entity
has properties or behaviors that its parts do not have on their own, and emerge only when
they interact in a wider whole.

Emergence plays a central role in theories of integrative levels and of complex systems. For
instance, the phenomenon of life as studied in biology is an emergent property of chemistry
and quantum physics.




Summary

* Understanding emergence 1s crucial for

* Accelerate the Emergence of Desirable Abilities: In training large language
models (LLMs), emergent abilities like in-context learning (ICL) often appear
very late 1n the process. By understanding emergence, we can potentially
speed up the development of these beneficial capabilities.

* Prevent the Emergence of Undesirable Abilities: Some unknown or harmful
abilities might also emerge during training. By understanding emergence, we
can take steps to prevent these from developing.

* To fully understand ICL, 1t 1s important to investigate why ICL
abilities appear so late 1n the training process.



Reading

* Wel et al., Emergent Abilities of Large Language Models,
TMLR2023.

* Schaeffe et al., Are Emergent Abilities of Large Language Models
a Mirage?, NeurlPS 2023.



