
Mathematical Introduction to Machine Learning

Lecture 2: Linear Method for Regression
November 17, 2024

Lecturer: Lei Wu Scribe: Lei Wu

In this chapter, we introduce several popular linear methods for regression problem, which have been
widely used in practice. The advantage of linear methods is that they always have good theoretical guaran-
tees due to the simplicity.

1 Linear regression

Linear regression is the simplest method in statistics and machine learning, and it often serves as a good
illustrative example for understanding machine learning models and algorithms.

The hypothesis space of linear regression is given by

H =
{
βTx+ β0 : β ∈ Rd, β0 ∈ R

}
.

In this case, θ = (β, β0) are the parameters to be learned from data. In machine learning, it is customary
to introduce the extended coordinate x̃ = (xT , 1)T ∈ Rd+1 and let β̃ = (βT , β0)

T ∈ Rd+1. Then, we can
writeH =

{
β̃T x̃

}
. In fact, it is often simply to write

H =
{
βTx

}
.

Given the data set S = {(xi, yi)}ni=1, the empirical risk is given by

R̂(β) = 1

n

n∑
j=1

1

2

(
βTxj − yj

)2
=

1

2n
∥Xβ − y∥22. (1)

Here, X = (x1,x2, · · · ,xn)
T ∈ Rn×(d+1) be the data matrix and y = (y1, y2, · · · , yn)T ∈ Rn.

1.1 Ordinary least squares (OLS)

In OLS, the solution is chosen to be the minimizer of the empirical risk (1). Set∇R̂(β) = 0, and we obtain

n∑
j=1

(
βTxj

)
xj =

n∑
j=1

yjxj . (2)

One can then write (2) as (
XTX

)
β = XTy. (3)

The above equation is known as the normal equation and XTX is called the Gram matrix.
Suppose that XTX is full rank. The OLS estimator can be expressed as

β̂ =
(
XTX

)−1
XTy. (4)

1

When XTX is singular, e.g., in the over-parameterized case: d+ 1 > n, we usually pick up the minimum-
norm solution:

minimize ∥β∥2
s.t. Xβ = y.

(5)

If rank(X) = n, the minimum-norm solution can be expressed as

β = XT (XXT)−1y. (6)

In practice, the labels are often noisy:

yi = βTxi + ξi

with ξi ̸= 0. Therefore, we do not use the OLS estimator directly, since it overfits the noise, thereby hurting
the generalization performance. To deal with this issue, the popular approach is to consider regularized
methods, which minimizes following penalized empirical risk:

1

2n
∥Xβ − y∥22 + λ r(β).

Here, r(β) is the penalization term, which incorporates our prior knowledge about the data. λ is the hyper-
parameter that controls the trade-off between the fitting error and the penalty. The questions is: How do we
choose the penalty function r(·) and set the value of hyper-parameter λ?

1.2 Ridge regression

In this section, we introduce the simplest regularized model: ridge regression, for which r(β) = ∥β∥22/2.
Thus, the objective function becomes

1

2n
∥Xβ − y∥22 +

1

2
λ ∥β∥22 . (7)

One advantage of this regularization is that the minimizer has a closed-form expression:

β̂ =

(
1

n
XTX + λId

)−1

XTy. (8)

Note that the ridge regression is a special case of the Tikhonov regularization, where the objective
function is

1

2n
∥Xβ − y∥22 +

1

2
λ ∥Γβ∥22 . (9)

Here, Γ is the Tikhonov matrix, which controls the effect of regularization through different coordinates.
Ridge regression corresponds to Γ = Id.

1.3 Least absolute shrinkage and selection operator (Lasso)

Another popular regularized linear model is Lasso:

1

2n
∥Xβ − y∥22 + λ ∥β∥1 . (10)

Different from the ridge regression, Lasso penalize the ℓ1 norm. The motivation to consider the ℓ1 norm is
to promote sparsity. Let us first make the sparsity assumption as follows.

2

Assumption 1.1 (Sparsity). Let ∥β∥0 = #{i ∈ [d] : |βi| > 0}. Assume that the ground truth β∗ satisfies
∥β∗∥0 ≪ d.

This sparsity assumption is satisfied in many applications, where only a few coordinates/variables matter.
In this case, we are not only interested in the prediction but also discovering of these important variables.

To promote sparsity, the natural regularized model is

min
β

1

2n
∥Xβ − y∥22 + λ∥β∥0. (11)

However, (11) is computationally intractable since the ℓ0 norm is non-continuous and non-convex. Here
we use the terminology “norm” in a loose way and it mainly means a quantity that controls the model
complexity. To circumvent this challenge, one can choose to relax ℓ0 to ℓp with p > 0:

min
β

1

2n
∥Xβ − y∥22 + λ∥β∥p, (12)

Shown in Figure 1 are the landscapes of one-dimensional ℓp norm for various p’s. Obviously, ℓp norm is
continuous as long as p > 0 but it is convex only when p ≥ 1. Solving convex problems are often easier
than solving non-convex ones. Hence, it is not surprising that p = 1 is preferred since it is the smallest p
that ensures convexity.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

|x
| p

p=0
p=1
p=0.5
p=0.2

Figure 1: An illustration of the landscape of ℓp norm for various p’s. Here, x is an one-dimensional variable.

However, the preceding intuitive explanations only suggest that ℓ1 is close to ℓ0 in some sense. It
is unclear if the ℓ1 solution is sparse when the ground truth β∗ is sparse. To see how the ℓ1 relaxation
works, we examine the following constraint problem (the relation with the problem (10) is discussed in the
exercise):

min
∥β∥p≤t

1

2
∥Xβ − y∥22 (13)

Shown in Figure 2 are the contour curves of R̂(β) = 1
2∥XβT − y∥22 (dashed curves) and r(β) = ∥β∥p

(solid curves).
We have the following observations:

3

p=0.4
p=1
p = 2

p=0.4
p=1
p = 2

Figure 2: Illustration of how the ℓp norm promotes the sparsity when 0 < p ≤ 1. Left: Both ℓ1 and ℓ0.4
succeeds; Right: ℓ1 fails but ℓ0.4 succeeds.

• For 0 < p ≤ 1, the contour curves of R̂(·) tend to touch first at the “sharp” corners of the contour
curves of r(·). In other words, the ℓp regularization promotes the sparsity when 0 < p ≤ 1. By
contrast, the ℓ2 norm does not show this preference.

• The smaller is p, the stronger is the sparsity. The right figure provides an example where ℓ1 fails in
promoting sparsity while ℓ0.4 succeeds.

• Geometrically speaking, it is the sharp corners that is most important for promiting sparsity.

Concerning both the computational feasibility and sparsity promotion, the natural choice is the Lasso
(10), which can be viewed as a convex relaxation of (11).

1.3.1 Compressed sensing

By comparing the left and the right panel in Figure 2, we can conclude that the ℓ1 regularization can promote
sparsity only if the input data satisfy certain conditions. The theory of compressed sensing identifies some
of these conditions.

Consider the problem of finding the sparsest solution:

min ∥β∥0 ,
s.t. Xβ = y,

(14)

where X ∈ Rn×d with d > n is a “fat” matrix .

Definition 1.2. A vector β is said to be s-sparse if ∥β∥0 ≤ s. Here s is a positive integer.

Definition 1.3. X is said to satisfy the restricted isometry property (RIP) if there exists a δs ∈ (0, 1) such
that

(1− δs)∥β∥2 ≤ ∥Xβ∥2 ≤ (1 + δs)∥β∥2

holds for all s-sparse vectors β.

4

Theorem 1.4. Let β1 be a solution of
min ∥β∥1 ,
s.t. Xβ = y,

(15)

and β0 be the solution of (14). Assume that δ2s <
√
2− 1. Then

∥β1 − β0∥1 ≤ C0 ∥β0 − Ts(β0)∥1 , (16)

where Ts is a function defined as follows

(Ts(β))j =

{
(β)j , if (β)j is among the s largest components of β,
0, otherwise.

In particular, if β0 is s-sparse, then β1 = β0.

This theorem tells us that when the RIP condition is satisfied, ℓ1 can recover ℓ0 with the error depending
on the sparsity of ℓ0 solutions. In particular, when the ℓ0 solution is sparse, the recovery is exact. It is of
great importance to understand the RIP condition and the implications of this theorem. However, the proof
is quite techinical and thus we do not present it here. Interested readers can find it in [?].

1.3.2 Some analyses of Lasso

The following questions arise naturally:

• How should we choose λ?

• How big is the error?

• How much is the effect of the noise?

Consider the situation where the ground truth β∗ is sparse and the signal y is contaminated by noise:

yi = β∗Txi + εi, (17)

where εi is the random noise. Let ϵ = (ε1, ε2, . . . , εn)
T ∈ Rn be the noise vector. Denote by β̂ the Lasso

estimator (10).

Proposition 1.5. For the Lasso estimator, if λn ≥ ∥XT ε∥∞
n , then

1

2n
∥X(β̂ − β∗)∥22 ≤ 2λn∥β∗∥1. (18)

(18) shows that the empirical risk is well-controlled when the penalization is relatively large with respect
to the noise, i.e. λn ≥ ∥XT ϵ∥∞/n. The proof given below is simple but very representative for generaliza-
tion analysis of regularized estimators. The main idea is to compare the estimator of interest with “ground
truth” and to identify some conditions such that the estimator has properties similar to ground truth. This
comparison trick will appear many times in this book and we will see in exercise that this comparison can
also lead to the controlledness of the norm of Lasso estimator.

5

Proof. By comparing β̂ with the ground truth β∗, we have

1

2n
∥Xβ̂ − y∥22 + λn∥β̂∥1 ≤

1

2n
∥Xβ∗ − y∥22 + λn∥β∗∥1 (19)

Notice that y = Xβ∗ + ϵ implies for any β ∈ Rd that

∥Xβ − y∥22 = ∥Xβ −Xβ∗∥22 + 2⟨X(β − β∗), ϵ⟩+ ∥ϵ∥22. (20)

Inserting (20) into the comparison inequality (19), we obtain the following estimates.

1

2n
∥X(β̂ − β∗)∥2 ≤

1

n
⟨X(β̂ − β∗), ϵ⟩+ λn∥β∗∥1 − λn∥β̂∥1

≤ ∥X
Tε∥∞
n

∥β̂ − β∗∥1 + λn(∥β∗∥1 − ∥β̂∥1).

Since λn ≥ ∥XT ε∥∞
n , we have

1

2n
∥X(β̂ − β∗)∥22 ≤ λn

(
∥β̂ − β∗∥1 − ∥β̂∥1 + ∥β∗∥1

)
≤ 2λn∥β∗∥1.

Theorem 1.6. Assume ∥Xj∥22 = n,∀j ∈ [d] where Xj is the j-th column of X and the noise εi
iid∼ N (0, σ2)

for i = 1, . . . , n. For any δ ∈ (0, 1), with prob. 1− δ over the sampling of the random noise, we have

∥XTε∥∞
n

≤ Cσ

√
log(d/δ)

n
,

and
1

n
∥X(β̂ − β∗)∥22 ≤

Cσ
√
log(d/δ)∥β∗∥1√

n
.

This theorem suggests that λn should decrease with the sample size n, which is consistent with our
intuition: A weaker regularization is preferred when more samples are used. In addition, when β∗ is s-
sparse, ∥β∗∥1 = O(s) and the resulting error depends on the dimension only logarithmically. This also
explains why ℓ1 regularization is favorable in high dimension when the ground truth is sparse. It should be
stressed that the preceeding analysis only provides an estimate of the training error. We will see later that a
similar bound also holds for the generalization error, i.e., Ex[|xT β̂ − xTβ∗|2].

Proof. By Proposition 1.5, what remains is to estimate ∥XTε∥∞ = maxj∈[d] |XT
j ε|. Since ε ∼ N (0, σ2Id),

XT
j ε ∼ N (0, ∥Xj∥22 σ2). Then, we have

P
{
max
1≤j≤d

∣∣XT
j ε

∣∣ ≥ t

}
≤ dP

{∣∣XT
1 ε

∣∣ ≥ t
}

= 2d

∫ ∞

t

1√
2πσ2n

e−
z2

2σ2n dz

= 2d
1√
2π

∫ ∞

t
σ
√

n

e−
z2

2 dz.

6

Notice that the tail of standard norm distribution satisfies

1√
2π

∫ ∞

x
e−

z2

2 dz ≤ e−
x2

2 , ∀x > 0.

Therefore,

P
{
max
1≤j≤d

∣∣XT
j ε

∣∣ ≥ t

}
≤ 2d√

2π
e−

t2

2σ2n .

Let the failure probability 2d√
2π
e−

t2

2σ2n ≤ δ. We have t ≥ Cσ
√
n log(d/δ). Therefore, we can conclude that

with probability 1− δ,
∥XTε∥∞

n
≤ Cσ

√
log(d/δ)

n
.

The normalization condition ∥Xj∥22 =
∑n

i=1 x
2
i,j = n ensures that the value of each coordinate is

roughly O(1). From the proof, one can see the Gaussian assumption: εi ∼ N (0, σ2) is not essential and it
can be replaced by any distribution as long as its tail decays like a Gaussian, i.e., P{|εi| > t} ≤ C1e

−C2t2

for some positive constants C1, C2. This kind of tail property is often referred to as being sub-Gaussian (see
[Vershynin, 2018, Section 2] for more details).

1.3.3 Variable Selection

Lasso has become one of most popular method in statistics since it can perform not only prediction but also
variable selection. This is due to the sparsity-promoting effect of ℓ1 regularization, which can set the coeffi-
cients of unimportant variables exactly to zeros (see Theorem 1.4). The variables with non-zero coefficients
naturally account for the prediction, and this interpretability is very important in many applications. By
contrast, ridge regression does not possess this property.

Define β̂ : [0,∞) 7→ Rd be the regularization path of Lasso defined by

β̂(λ) = argmin
β

1

2n
∥Xβ − y∥22 + λ∥β∥1. (21)

Analogously, we can define the regularization path of ridge regression. Shown in Figure 3 are the regular-
ization paths of Ridge and Lasso, respectively. One can see that for Ridge, no matter how big is λ, all the
coefficients are always non-zero (though their specific values may be small). By contrast, Lasso sequentially
set the coefficients of unimportant variables to exact zeros as increasing λ. This intriguing property of Lasso
regularization path facilitates the variable selection.

1.3.4 Algorithms for Lasso

Let us first look at the one-dimensional case:

Sλ(x) = argmin
t

1

2
(x− t)2 + λ|t|. (22)

7

Figure 3: Regulation paths β̂(λ) for ridge regression (Left) and Lasso regression (Right). The response is
the average credit debt, the predictors are income, limit (credit limit), rating (credit rating), student (indica-
tor), and others. (taken from Ryan Tibshirani’s slides)

In this case, the minimizer has a closed-form expression:

Sλ(x) =

x− λ, if x > λ

0, if − λ ≤ x ≤ λ

x+ λ, if x < −λ.
(23)

Sλ(·) is called the soft thresholding function. As a comparison, the hard thresholding function is defined
as

Hλ(x) = argmin
t

1

2
(x− t)2 +

λ2

2
|t|0, (24)

which also has a closed-form expression:

Hλ(x) =

x if x > λ

0, if − λ ≤ x ≤ λ

x, if x < −λ.
(25)

Figure 4 provides a visualization of Sλ and Hλ. By comparing them, we see that they both promote
sparsity but in slightly different ways. Specifically, Sλ(x) shrinks x to zero exactly when the absolute value
of x is smaller than the threshold. This again explains why the ℓ1 norm can promote sparsity and is useful
for variable selection. As a comparison, let us look at the solution of Ridge:

Rλ(x) = argmin
t

1

2
(t− x)2 +

λ

2
|t|2 = x

1 + λ
.

This suggests that Ridge does not shrink x to zero no matter how small x is. In other words, Ridge does not
promote sparsity.

8

https://www.stat.cmu.edu/~ryantibs/datamining/lectures/17-modr2.pdf

S (x)
y = x

H (x)
y = x

Figure 4: Left: The soft-thresholding function; Right: The hard-thresholding function.

For the d-dimensional case, we can convert it into a sequence of one-dimensional problems by using the
coordinate descent method. Consider the minimization of f(x1, . . . , xd). The coordinate descent method
repeats the following cyclical iteration until convergence:

x
(t+1)
1 ∈ argmin f(x1, x

(t)
2 , x

(t)
3 . . . , x

(t)
d)

x
(t+1)
2 ∈ argmin f(x

(t+1)
1 , x2, x

(t)
3 . . . , x

(t)
d)

· · ·

x
(t+1)
d ∈ argmin f(x

(t+1)
1 , x

(t+1)
2 , x

(t+1)
3 . . . , xd).

Notice that the above is a Gauss-Seidel type update.
Let Xk with k ∈ [d] be the k-th column of X .

∥Xβ − y∥22 =
∥∥∥y −∑

k ̸=j

Xkβk

∥∥∥2
2
− 2

〈
y −

∑
k ̸=j

Xkβk, Xjβj
〉
+ ∥Xj∥22 β

2
j

= ∥ỹj∥22 − 2⟨ỹj , Xj⟩βj + ∥Xj∥22 β
2
j ,

where ỹj = y −
∑
k ̸=j

Xkβk.

Then the update of j-coordinate is given by

βj ← argmin
βj

1

2n

(
∥Xj∥22β2

j − 2⟨ỹj , Xj⟩βj
)
+ λ|βj |

βj = S nλ

∥Xj∥22

(
⟨ỹj , Xj⟩
∥Xj∥22

)
. (26)

Repeat (26) for j = 1, 2, . . . , d until convergence.
The above coordinate descent method is simple and easy to implement. However, in practice, the most

popular methods of solving large-scale ℓ1 optimizations is the alternating direction method of multipliers
(ADMM) and its variants. We refer interested readers to [Boyd et al., 2011] for more details. However, it
should be stressed that coordinate update is a very general way of designing method and can be applicable
to many situations.

9

2 Kernel methods

The previous methods can only deal with linear problems. A direct extension to nonlinear cases is to consider
the following model:

f(x;β) =
m∑
j=1

βjϕj(x), (27)

where {ϕj}mj=1 are a set of nonlinear basis functions. The typical examples include the Fourier basis, (local)
polynomials, splines, etc. Note that the model is still linear in parameters but the represented function can
be nonlinear.

The basis functions are often called “features” in machine learning and the corresponding feature map
Φ : X 7→ Rm is given by

Φ(x) = (ϕ1(x), . . . , ϕm(x))T ∈ Rm,

where X is the input space and Rm is the feature space. In many applications, one often choose m > d,
where the feature map lifts the input x to a higher-dimensional feature space.

To fit the model (27), consider the ridge regression in feature space:

β̂ = argmin
β

1

2n

n∑
i=1

 m∑
j=1

βjϕj(xi)− yi

2

+
λ

2
∥β∥22

= argmin
β

1

2n
∥Φ̂β − y∥22 +

λ

2
∥β∥22, (28)

where Φ̂ = (ϕj(xi))i,j ∈ Rn×m is the feature matrix. Then,

β̂ =

(
1

n
Φ̂T Φ̂ + λIm

)−1

Φ̂Ty. (29)

The function represented by β̂ is given by

f̂(x) =
m∑
j=1

β̂jϕj(x). (30)

The following theorem shows that f̂ can be written as a linear combination of

k(x,x′) = Φ(x)TΦ(x) =
m∑
j=1

ϕj(x)ϕj(x
′). (31)

Here, k : X × X 7→ R is called the kernel function, and the rigorous definition is given later. Specifically,
we have the following representation theorem for the solution (28).

Theorem 2.1. Let G = (k(xi,xj)) ∈ Rn×n be the Gram matrix. For any λ > 0, let α̂ =
(
1
nG+ λIn

)−1
y.

The solution of (28) can be rewritten as

f̂(x) =
n∑

i=1

α̂ik(xi,x). (32)

10

Proof. For any A ∈ Rn×m, we have the following identity

(ATA+ Im)−1AT = AT (AAT + In)
−1.

Hence,

β̂ =

(
1

n
Φ̂T Φ̂ + λIm

)−1

Φ̂Ty = Φ̂T

(
1

n
Φ̂Φ̂T + λIn

)−1

y = Φ̂T α̂

=
n∑

i=1

Φ(xi)αi.

Then, we have

f̂(x) =

m∑
j=1

ϕj(x)β̂j =

m∑
j=1

ϕj(x)

n∑
i=1

ϕj(xi)α̂i

=

n∑
i=1

α̂i

 m∑
j=1

ϕj(xi)ϕj(x)

 =

n∑
i=1

α̂ik(xi,x).

In (29), the computation overhead mainly comes from the inverse of a m ×m matrix, while for (32),
it becomes the inverse of n × n matrix. Therefore, (32) is computationally more efficient than (29) when
m > n, i.e., the dimension of feature space is higher than the sample size.

Another intriguing observation is that the method only needs to specify the kernel k(·, ·) without needing
to evaluate the actual features {ϕj}mj=1. This insight applies to all the methods that only depend on the Gram
matrix, where we can do the following replacement:

xT
i xj −→ Φ(xi)

TΦ(xj) = k(xi,xj)

In the literature, this is called the kernel trick. This trick is applicable to many methods, such as PCA,
density estimation, Fisher discrimination analysis. In this chapter, we focus on the ridge regression.

2.1 Kernel Methods

We generalize the previous observations to very general cases.
A “feature map” is defined as a map Φ : X 7→ H where X is the input space and H is feature space.

HereH can be any Hilbert space. Taking the example (27),H = Rm and

Φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕm(x))T ∈ Rm.

Definition 2.2. k : X × X 7→ R is said to be a kernel if there exists a feature map Φ : X 7→ H such that

k(x,x′) = ⟨Φ(x),Φ(x′)⟩.

Notice that ⟨·, ·⟩ denotes the inner product in H. To simply notations, we omit the dependence on H
when it is clear from the context.

11

Definition 2.3 (SPD function). A function k : X × X 7→ R is a semi-positive definite (SPD) if

• k(x,x′) = k(x′,x) for any x,x′ ∈ X .

• The kernel matrix K = (k(xi,xj)) ∈ Rn×n is SPD for any x1, . . . ,xn ∈ X , i.e.,

n∑
i,j=1

αiαjk(xi,xj) ≥ 0, ∀α ∈ Rn.

Obviously, any kernel k is SPD:

n∑
i,j=1

αiαjk(xi,xj) =
n∑

i,j=1

αiαj⟨Φ(xi),Φ(xj)⟩ = ∥
n∑

i=1

αiΦ(xi)∥2 ≥ 0.

The following theorem shows that the converse direction also holds and we will rigorously discuss it later
in Moore-Aronszajn theorem.

Theorem 2.4. For any SPD function k : X × X 7→ R, there exists a feature map Φ : X 7→ H with H be a
Hilbert space such that

k(x,x′) = ⟨Φ(x),Φ(x′)⟩.

Hence, k is a kernel.

Thus we have that SPD functions and kernels are equivalent. Therefore, we can check if k(·, ·) is a
kernel by verifying if k(·, ·) is SPD, without the need to know the feature map.

2.2 Examples of kernels

Here, we provide a list of popular kernels.
Polynomial kernel: k(x,x′) = (1 + xTx′)s is SPD for any s ∈ N+.

• Linear (s = 1). We have k(x,x′) = ⟨Φ(x),Φ(x′)⟩ with

Φ(x) = (1, x1, . . . , xd).

• Quadratic (s = 2): The feature map is given by

Φ(x) = (x2d, . . . , x
2
1︸ ︷︷ ︸

quadratic

,
√
2xdxd−1, . . . ,

√
2xdx1,

√
2xd−1xd−2, . . . ,

√
2x2x1︸ ︷︷ ︸

cross terms

,
√
2xd, . . . ,

√
2x1︸ ︷︷ ︸

linear terms

, 1︸︷︷︸
constant

).

⟨Φ(x),Φ(x′)⟩ =
d∑

i=1

(xi)
2(x′i)

2 + 2
∑
i ̸=j

xixjx
′
ix

′
j + 2

∑
i

xix
′
i + 1

= (
d∑

i=1

xix
′
i)
2 + 2

∑
i

xix
′
i + 1

= (xTx′ + 1)2 (33)

12

Gaussian kernel: k(x,x′) = e−
∥x−x′∥22

2 . Considering d = 1, we have

k(x, x′) = e−
x2

2
−x′2

2 exx
′
= e−

x2

2
−x′2

2

∑
n

1

n!
(x)n(x′)n

= ⟨Φ(x),Φ(x)⟩,

where Φ(x) = e−
x2

2 (1, x, 1√
2
x2, . . . , 1√

n!
xn, . . .).

The general Gaussian kernel is defined by

k(x,x′) = e−
∥x−x′∥22

2σ2 .

Intuitively, the Gaussian kernel sets the inner product in the feature space between x and x′ to be close to
zero if they are far away from each other in the original space. σ is the parameter (often referred to as the
bandwidth) that controls the scale determining what we mean by “close”.

Laplace kernel:

k(x,x′) = e−
∥x−x′∥2

σ .

This kernel is less smooth than the Gaussian kernel. Recently, it has been shown that the Laplace kernel is
intimately related to neural network models (in kernel regime)[Chen and Xu, 2020, Geifman et al., 2020].

Dot-product kernels 1: Let Sd−1 = {x ∈ Rd : ∥x∥2 = 1}. A kernel k : Sd−1 × Sd−1 7→ R is said to
be dot-product if there exists a κ : [−1, 1] 7→ R such that

k(x,x′) = κ(xTx′),

which means that the kernel value only depends on the inner-product of two inputs. For instance, the Laplace
kernel constrained on spheres is dot-product:

k(x,x′) = e−∥x−x′∥2 = e−
√

2−2xTx′
= κ(xTx′),

where κ(t) = e−
√
2−2t. We can see that κ is not differetiable at t = 1.

Similarly, the Gaussian kernel constrained on spheres is also dot-product:

k(x,x′) = e−
∥x−x′∥22

2 = e−1+xTx′
= κ(xTx′),

where κ(t) = Cet. This time κ is analytic on the whole domain.
One can also construct new kernels by using existing kernels. Let k1, k2 are two kernels. Then,

• k(x,x′) = k1(x,x
′) + k2(x,x

′),

• k(x,x′) = ck1(x,x
′), for all c > 0,

• k(x,x′) = k1(x,x
′) + c for all c > 0,

• k(x,x′) = k1(x,x
′)k2(x,x

′),

• k(x,x′) = k1(f(x), f(x
′)) for any function f

1Also called inner-product kernels.

13

are also kernels. In particular, k(x,x′) = k1(x,x
′)k2(x,x

′) is kernel can be proved by verifying k is SPD,
which follows directly from the Schur product theorem: A ◦B is SPD if A and B are SPD. Here, ◦ denotes
the Hadamard product: (A ◦B)i,j = Ai,jBi,j .

Lastly, we remark that for a specific problem, choosing appropriate kernels is highly non-trivial. One
may need to incorporate the domain knowledge into the kernel design.

2.3 Representer theorem

Given a kernel k(·, ·), let Φ : X 7→ H be the associated feature map. such that k(x,x′) = ⟨Φ(x),Φ(x′)⟩.
Consider a generalized feature-based model:

f(x;β) = ⟨β,Φ(x)⟩,

where the parameter β ∈ H. Let ∥β∥ =
√
⟨β,β⟩. Consider the following regularized model:

R̂(β) = 1

2n

n∑
i=1

(
f(xi;β)− yi

)2
+ λr(∥β∥), (34)

where r : [0,∞) 7→ [0,∞) is a non-decreasing penalty function.

Theorem 2.5 (Representer theorem). Let β̂ the a minimizer of (34). Then, there must exist a1, . . . , an ∈ R
such that the function represented by β̂ has the form:

f(x; β̂) = ⟨β̂,Φ(x)⟩ =
n∑

i=1

aik(xi,x). (35)

Moreover, β̂ can be reached in the linear span of Φ(x1), . . . ,Φ(xn).

Proof. Let Vn = span{Φ(x1), . . . ,Φ(xn)} ⊂ H. For any β ∈ H, we can decompose it as follows β =
β∥ + β⊥, where β∥ ∈ Vn,β⊥ ∈ V ⊥

n . Hence, ∥β∥2 = ∥β∥∥2 + ∥β⊥∥2. Since r(·) is non-decreasing, we
have

r(∥β∥) ≥ r(∥β∥∥). (36)

On the other hand, for any xi,

f(xi;β) = ⟨β,Φ(xi)⟩ = ⟨β∥,Φ(xi)⟩+ ⟨β⊥,Φ(xi)⟩ = ⟨β∥,Φ(xi)⟩, (37)

where the last equality is due to β⊥ ∈ V ⊥
n . Combining (36) and (37), we have R̂(β̂) ≥ R̂(β̂∥). Let

β̂∥ =
∑n

i=1 aiΦ(xi). Then, the function represented can be written as

f(x; β̂) =
〈
β̂∥,Φ(x)

〉
=

n∑
i=1

ai ⟨Φ(xi),Φ(x)⟩ =
n∑

i=1

aik(xi,x).

This theorem generalizes Theorem 2.1 to general feature maps and regularizations, and in particular, it
works for the case of m = ∞. This theorem allows us to transform the infinite-dimensional optimization

14

problem (34) into a finite dimensional problem. In the literature, this theorem is called the representer
theorem, which plays a fundamental role in kernel methods.

Reduced regularized models. By the representer theorem, to solve (34), we only need to consider
β =

∑n
j=1 ajΦ(xj). In this case,

f(x;β) =

n∑
j=1

ajk(xj ,x)

and the corresponding ridge penality:

∥β∥2 =

〈
n∑

i=1

aiΦ(xi),
n∑

j=1

ajΦ(xj)

〉
=

n∑
i,j=1

aiajk(xi,xj) = aTKa,

which surprisingly is a squared ℓ2 norm weighted by the kernel matrix. As a comparison, the norm is
un-weighted in the original space.

The infinite-dimensional problem (34) becomes

R̂(a) = 1

2n

∑
i

∑
j

ajk(xj ,xi)− yi

2

+ λ r

√∑
i,j

aiajk(xi,xj)

=

1

2n
∥Ka− y∥22 + λ r

(√
aTKa

)
. (38)

Note that the kernel matrix K = (k(xi,xj)) is often referred to as the Gram matrix as well.
The popular kernel ridge regression (KRR) corresponds to r(t) = t2/2, where the reduced model be-

comes
R̂(a) = 1

2n
∥Ka− y∥22 +

λ

2
aTKa.

Similar to the standard ridge regression, KRR has a closed-form expression:

â =

(
1

n
K + λIn

)−1 1

n
y.

Lastly, we remark that for a specific kernel, the associated feature maps are not necessarily unique. But
the representer theorem shows that the solutions only depend on the kernel and is independent of the specific
choice of feature maps.

3 Random feature approximations

Let (Ω,F , π) be a probability space and φ : X × Ω 7→ R is a parametric feature. The hypothesis of a
random feature models is given by

f(x;β) =
1

m

m∑
j=1

βjφ(x;ωj), (39)

with {ωj}mj=1 be iid samples drawn from π. Here, φ(·;ω) is called the “random feature” since {ωj}mj=1 are
randomly sampled.

15

Ridge regression with random features is given by

min
β∈Rm

1

2n

n∑
i=1

 1

m

m∑
j=1

βjφ(xi;ωj)− yi

2

+
λ

m
∥β∥22. (40)

Here, the 1/m factor is added to enforce 1
m∥β∥

2
2 = O(1).

According to the representer theorem 2.5, (40) is equivalent to the kernel ridge regression with the
kernel:

km(x,x′) :=
1

m

m∑
j=1

φ(x;ωj)φ(x
′;ωj). (41)

Here, we impose a scaling factor 1/m into the expression of km. This manipulation allows us to take the
limit, while does not change the function represented. As m→∞, km converges to

k(x,x′) := Eω∼π[φ(x;ω)φ(x′;ω)], (42)

due to {ωj}
iid∼ π.

Notice that (41) is a Monte-Carlo approximation of (42), and the standard Monte-Carlo estimate tells us
that

km(x,x′)− k(x,x′) ∼ Varω[φ(x;ω)φ(x′;ω)]√
m

. (43)

In this way, the random feature model can be viewed as a Monte-Carlo/random approximations of kernel
methods.

Random feature approximations are usually applied for the large-scale dataset, where the sample size n
is huge, e.g, n = 106. For standard kernel methods, the memory to store the Gram matrix is O(n2) and the
computational cost to invert the Gram matrix is roughly O(n3). These complexities are often unacceptable
for large-scale dataset. By contrast, with random feature approximations, the storage and computational
cost are O(mn) and O(m2n), respectively. This is much smaller than that of standard kernel methods when
m≪ n.

In other words, as long as a kernel can be expressed in the expectation form (42), we can apply random
feature approximations and use the resulting random feature model (39) to solve the original problem. Then
a natural question is: What kind of kernel functions can can be written in the form (42)? Next, we provide
an answer to this question for translation-invariant kernels.

3.1 Random Fourier features

Here, we introduce the popular random Fourier features:

φ(x;ω) = eix
Tω.

Bochner theorem given below shows that any translation invariant kernel can be approximated by the random
Fourier features.

Theorem 3.1 (Bochner). A continuous kernel k(x,x′) = κ(x − x′) on Rd is semi-positive definite if and
only if κ(·) is the Fourier transform of a non-negative measure.

16

Assuming κ(·) to be the Fourier transform of a non-negative measure π, we have

k(x,x′) = κ(x− x′) =

∫
Rd

π(ω)eiω
T (x−x′)dω

=

∫
Rd

φ(x,ω)φ(x′,ω)dπ(ω)

=: ⟨Φ(x),Φ(x)⟩L2(π),

(44)

where Φ : X 7→ L2(π) with Φ(x) = φ(x; ·). Therefore, κ(x− x′) must be a kernel. Here, we only show a
proof of the direction that if κ(·) is the Fourier transform of a non-negative measure, then κ(x − x′) must
be a SDP kernel. For a full proof, we refer to [Rudin, 2017].

Table 1 lists some popular translation-invariant kernels and their Fourier transforms, which allows us to
approximate them with random Fourier features.

kernel name k(z) π(ω)

Gaussian e−∥z∥22/2 1
(2π)d/2

e−
∥ω∥22

2

Laplace e−∥z∥1 ∏d
j=1

1
π(1+ω2

j)

Table 1: Some popular translation-invariant kernels and their Fourier transforms. See
[Rahimi and Recht, 2007] for more examples.

Let us examine the specific Gaussian kernel. First, the Fourier transform tells us that

e−
∥x−y∥22

2 =
1

(2π)d/2

∫
Rd

e−
∥ω∥22

2 ei(x−y)·ωdω. (45)

Therefore,

e−
∥x−y∥22

2 = Eω∼N (0,Id)[e
iωTxe−iωTy]

= Eω∼N (0,Id)[cos(ω
Tx) cos(ωTy) + sin(ωTx) sin(ωTy)],

where the second equality is due to that k(·, ·) is real. In practice, instead of using eiω
Tx as the feature, one

often use

φ(x;ω) =

(
cos(ωTx)
sin(ωTx)

)
to keep all the operations in the real space. In a summary, the random feature approximation of Gaussian
kernel is given by

e−
∥x−y∥22

2 ≈ 1

m

m∑
j=1

φ(x;ωj)φ(y;ωj)

with {ωj}
iid∼ N (0, Id).

17

References

[Boyd et al., 2011] Boyd, S., Parikh, N., and Chu, E. (2011). Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers. Now Publishers Inc.

[Chen and Xu, 2020] Chen, L. and Xu, S. (2020). Deep neural tangent kernel and Laplace kernel have the
same RKHS. In International Conference on Learning Representations.

[Geifman et al., 2020] Geifman, A., Yadav, A., Kasten, Y., Galun, M., Jacobs, D., and Basri, R. (2020). On
the similarity between the Laplace and neural tangent kernels. arXiv preprint arXiv:2007.01580.

[Rahimi and Recht, 2007] Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel ma-
chines. In NIPS, volume 3, page 5. Citeseer.

[Rudin, 2017] Rudin, W. (2017). Fourier analysis on groups. Courier Dover Publications.

[Vershynin, 2018] Vershynin, R. (2018). High-dimensional probability: An introduction with applications
in data science, volume 47. Cambridge university press.

18

	Linear regression
	Ordinary least squares (OLS)
	Ridge regression
	Least absolute shrinkage and selection operator (Lasso)
	Compressed sensing
	Some analyses of Lasso
	Variable Selection
	Algorithms for Lasso

	Kernel methods
	Kernel Methods
	Examples of kernels
	Representer theorem

	Random feature approximations
	Random Fourier features

