
Mathematical Introduction to Machine Learning

Lecture 4: Unsupervised Learning I
November 17, 2024

Lecturer: Lei Wu Scribe: Lei Wu

A basic requirement for supervised learning is that the data must be labeled. In many applications,
labeling the data is significantly more expensive than obtaining raw unlabeled data. For example labeling
medical images requires well-trained physicians. This motivates us to develop models that can be used to
exploit unlabeled data. This is the task of unsupervised learning.

In unsupervised learning, we are given a set of unlabeled data S = {xi}ni=1 with xi drawn from an
underlying distribution µ∗, and the task is to discover some useful information about µ∗. The definition
of useful information may vary with the applications. In this chapter, we will cover the following three
categories of unsupervised learning tasks.

• Density estimation: Approximating the underlying probability distribution µ∗.

• Dimension reduction: The data may approximately concentrate on a set whose dimensionality is
much lower than that of the original space. The task of dimension reduction is to identify the effective
description of this low-dimensional structure.

• Clustering: If µ∗ is multi-modal, S can be decomposed into several clusters. Finding these clusters
is an important problem in many applications.

Among these tasks, density estimation is the most ambitious and the most challenging task since it aims to
learn the whole data distribution. By contrast, the objective of dimension reduction and clustering is limited
to finding some aspects of the distribution.

1 Density estimation

Let us start with density estimation. The original density estimation task is limited to the setting when µ∗ is
absolutely continuous with respect to the Lebesgue measure with density ρ∗ and the task is to approximate
ρ∗ using the samples {xi}ni=1. We will take a more general viewpoint of trying to approximate µ∗ regardless
whether it has a density or not.

An obvious candidate is given by the empirical distribution:

µ̂n(x) :=
1

n

n∑
i=1

δ(x− xi). (1)

However, we are not satisfied with µ̂n, since it generalizes badly on unseen samples in the sense that it cannot
provide meaningful prediction of their probability. Moreover, it is impossible to generate new samples from
µ̂n. Mathematically speaking, µ̂n is too singular and we want an approximation that is smoother such that
we can extrapolate to unseen data. This is typically achieved by adding regularization.

It is often the case that µ∗ is singular with respect to the Lebesgue measure and the singularity is usually
quite anisotropic. Consequently, adding the right regularizations is a highly nontrivial issue. Nevertheless,
we will introduce two types of density estimators, which work reasonably well when the input dimension d
is relatively small.

1

1.1 The histogram estimator

For simplicity, assume that the support of µ∗ is Id := [0, 1]d. Divide Id into the union of small cubes of
equal size h,

Id = ∪jBj .

The volume of each cube is hd. Let nj be the number of samples in S that fall into Bj . Then,
∑

j nj = n.
The histogram estimator is given by

ρ̂h(x) =
1

nhd

∑
j

nj1Bj (x), (2)

where 1Bj is the indicator function of Bj

1Bj (x) =

{
1 if x ∈ Bj

0 otherwise
(3)

Obviously, the histogram estimator is piecewise constant.
Consider the example µ∗ = 0.5N (0, 1) + 0.5N (3, 1) and we randomly draw n = 500 samples from

µ∗. Figure 1 shows the corresponding histogram estimator with h = 0.05. As can be seen, this piecewise
constant estimator is not ideal since µ∗ or ρ∗ is very smooth. This motivates us to consider improved
smoothness in the construction of density estimators. One possible approach is to replace the hard box (3)
with certain smoothed “probabilistic box”. One way of implementing this idea is to use the kernel density
estimator (KDE), a generalization of the histogram estimator.

5.0 2.5 0.0 2.5 5.0 7.50.00

0.05

0.10

0.15

0.20

De
ns

ity *

histgram

Figure 1: An illustration of the histogram estimator.

1.2 Kernel density estimator (KDE)

In KDE, we replace the delta function in (1) by a “smooth version”. To this end, we introduce the the
smoothing kernel function K : Rd 7→ R. K should satisfy the following properties:

• K(x) ≥ 0 for all x,

2

•
∫
K(x)dx = 1,

• K(x) = K(−x).

Let Kh(x) = h−dK(x/h). Then, Kh(·) → δ(·) as h → 0 in the sense that for any bounded continuous
function f

lim
h→0

∫
(Kh(x)− δ(x))f(x)dx = lim

h→0

∫
K(z)(f(hz)− f(0))dz

=

∫
K(z) lim

h→0
(f(hz)− f(0))dz = 0 (4)

The following is a list of popular smoothing kernels for d = 1.

• Box kernel: K(x) = 1[−1/2,1/2].

• Triangular kernel: K(x) = max(0, 1− |x|).

• Gaussian kernel: K(x) = 1
(2π)1/2

e−
x2

2

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Triangular
Guassian
Box

Figure 2: Various smoothing kernels for d = 1.

Figure 2 provides a visualization of these smoothing kernels. An obvious difference is their smoothness. Box
kernel is piecewise constant; triangular kernel is piecewise linear; Gaussian kernel is infinitely differentiable
in the whole space. When d > 1, one can construct the smoothing kernel using one-dimensional ones:

K(x) =
d∏

j=1

K(xj). (5)

We remark that the smoothing kernel constructed in (5) is isotropic. One can also construct anisotropic
smoothing kernels.

The kernel density estimator (KDE) is given by

ρ̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

n

n∑
i=1

1

hd
K

(
x− xi

h

)
. (6)

Using the properties of the smoothing kernel, it is easy to show that ρ̂h satisfies:

3

• ρ̂h(x) ≥ 0 for any x ∈ Rd.

•
∫
ρ̂h(x) dx = 1

n

∑n
i=1

∫
1
hdK

(
x−xi
h

)
dx = 1

n

∑n
i=1

∫
K(x′) dx′ = 1.

Therefore, ρ̂h is indeed a probability density function.
If we take the box kernel, KDE becomes an “adaptive" histogram estimator in the sense that the box

positions are adapted to the data. Note that the box positions in the histogram estimator are specified by the
uniform grids and independent of the data.

In KDE, there is an important hyper-parameter: the bandwidth h, which controls the smoothness of the
“smoothed delta function”. Obviously,

ρ̂h =
1

n

n∑
i=1

Kh(· − xi) →
1

n

n∑
i=1

δ(· − xi) as h → 0. (7)

When h is small, ρ̂h is close to the empirical distribution. When h is large, ρ̂h is nearly flat. Choosing the
right value of h is a key problem in KDE.

To see how the performance of KDE is affected by the bandwidth, we plot the KDE estimators for
varying bandwidths in Figure 3. Here, we randomly sample n = 500 points from µ∗ = 0.5N (0, 1) +
0.5N (3, 1). One can see that

• When h is too small, the estimator is extremely rugged.

• When h is too large, the estimator is too flat. In this case, it fails to identify the two modes of ρ∗.

• When h = 0.12, KDE recovers µ∗ pretty well.

0 5
0.0

0.1

0.2

0.3

De
ns

ity

h = 0.01

0 5
0.00

0.05

0.10

0.15

0.20
h = 0.12

5 0 5
0.00

0.05

0.10

0.15

0.20
h = 0.50

h
*

Figure 3: KDE with the Gaussian kernel with varying bandwidths. Here n = 500. The red curve corre-
sponds to the ground truth.

1.2.1 Error analysis

Let ρh(x) = ES [ρ̂h(x)], where ES means taking expectation with respect to the sampling of S = {xi}ni=1.
Then,

ρh(x) = ES

[
1

n

n∑
i=1

Kh (x− xi)

]
=

1

n

n∑
i=1

Exi [Kh (x− xi)]

4

= Ex′∼ρ∗ [Kh(x− x′)] =

∫
Kh(x− x′)ρ∗(x′) dx′. (8)

The error at any x ∈ Rd can be decomposed as follows.

ES |ρ̂h(x)− ρ∗(x)|2 = ES |ρ̂h(x)− ρh(x)|2 + ES |ρh(x)− ρ∗(x)|2

+ 2ES [(ρ̂h(x)− ρh(x))(ρh(x)− ρ∗(x))]

= ES |ρ̂h(x)− ρh(x)|2︸ ︷︷ ︸
variance

+ |ρh(x)− ρ∗(x)|2︸ ︷︷ ︸
bias

, (9)

where in the second equality we used ρh(x) = ES [ρ̂h(x)]. This is the standard bias-variance decomposition,
and we will estimate the two terms separately.

First we look at the bias term.

ρh(x)−ρ∗(x) =

∫
1

hd
K

(
x− x′

h

)
ρ∗(x′) dx′ − ρ∗(x) (use Eq.(8))

=

∫
K(z)ρ∗(x+ hz) dz− ρ∗(x)

=

∫
K(z)(ρ∗(x+ hz)− ρ∗(x)) dz (use

∫
K(x) dx = 1)

=

∫
K(z)

(
h⟨∇ρ∗(x), z⟩+ h2⟨z,∇2ρ∗(x)z⟩+ o(h2)

)
dz

= 0 + h2
∫

K(z)zT∇2ρ∗(x)z dz+ o(h2),

where in the last equality we used the fact that
∫
zK(z) dz = 0. Assume that C2 = maxx ∥∇2ρ∗(x)∥2 <

∞, C1 =
∫
K(z)∥z∥2 dz < ∞. Then, we have

|ρh(x)−ρ∗(x)| ≤ C1C2h
2. (10)

Next we consider the variance term. Let Zi = Kh(x − xi). Then, {Zi} are iid random variables with
Exi [Zi] = ρh(x). According to Eq. (8),

ES |ρ̂h(x)−ρh(x)|2 = ES

∣∣ 1
n

∑
i

(Zi − E[Zi])
∣∣2

= Var

(
1

n

∑
i

Zi

)
=

1

n
Var(Z1)

≤ 1

n
E[Z2

1] =
1

nh2d

∫
K2

(
x− x′

h

)
ρ∗(x′) dx′

=
1

nhd

∫
K2(z)ρ∗(x+ hz) dz (11)

Assume that supx ρ
∗(x) ≤ C,

∫
K2(z) dz ≤ C. Then,

ES |ρ̂h(x)−ρh(x)|2 ≤
C

nhd
. (12)

Combining (10) and (12), we have the following error estimate of KDE.

5

Theorem 1.1. Under the previous assumptions on ρ∗ and K, the mean squared error of ρ̂h satisfies

MSE(ρ̂h) := ES

∫
|ρ̂h(x)− ρ∗(x)|2 dx ≤ C

(
h4 +

1

nhd

)
. (13)

Consequently, the optimal choice of h satisfies hopt = Cn− 1
4+d and the corresponding optimal error rate is

bounded by

MSE(ρ̂hopt) ≤ C

(
1

n

) 4
4+d

. (14)

This error estimate reveals the fact that the KDE suffers from the curse of dimensionality.

1.2.2 Cross-validation

To find a more practical way of choosing h, we introduce a data-based approach to estimate the error∫
(ρ̂h(x)− ρ∗(x))2 dx =

∫
ρ̂h(x)

2 dx− 2

∫
ρ̂h(x)ρ

∗(x) dx+

∫
ρ∗(x)2 dx

=

∫
ρ̂h(x)

2 dx− 2Ex∼ρ∗ [ρ̂h(x)] +

∫
ρ∗(x)2 dx. (15)

The last term is a constant. Hence, we only need to estimate

R(h) :=

∫
ρ̂h(x)

2 dx− 2Ex∼ρ∗ [ρ̂h(x)]. (16)

The first term can be computed directly. The second term can be estimated by Monte-Carlo method if we
have in our hands a new dataset S′

R̂S′(h) :=

∫
ρ̂h(x)

2 dx− 2

|S′|
∑
x∈S′

ρ̂h(x). (17)

Note that ρ̂h is learned from the training set S and S′ are a new dataset. Thus S′ are independent of ρ̂h.
This independence is important to gurantee the smallness of the Monte-Carlo approximation:

1

|S′|
∑
x∈S′

ρ̂h(x)− Ex∼ρ∗ [ρ̂h(x)] ∼
√
Varx∼ρ∗ [ρ̂2n(x)]

|S′|
.

This motivates a simple validation method. Randomly split the data into two disjoint sets: S = S1 ∪S2.
Let ni = |Si|. Then n1 + n2 = n. The simple validation method for selecting h goes as follows.

• Calculate ρ̂h using the set S1.

• Estimate R(h) using S2 and Eq. (17).

• ĥopt = argminh R̂S2(h).

6

S1, S2 is called the training set and validation set, respectively. R̂S2(h) is usually called the validation error,
which is an estimate of the true error R(h) using the validation data.

The cross-validation method is a generalization of the proceeding procedure. A k-fold cross-validation
method splits the data into k disjoint subsets: S = ∪k

j=1Sj . Denote by ρ̂
(−j)
h the KDE constructed from

S \ Sj . Then, we estimate the error of ρ̂(−j)
h using Sj . Repeat this procedure for j = 1, . . . , k. The average

of the errors is the cross-validation error:

R̂cv(h) =
1

k

n∑
j=1

∫ ρ̂
(−j)
h (x)2 dx− 2

|Sj |
∑
x∈Sj

ρ
(−j)
h (x)

 . (18)

Then, return ĥopt = argminh R̂cv(h).

2 Dimension Reduction

In this section, we assume that the xi’s lie (approximately) on a low-dimensional subset. See Figure 4 for
some illustration. The task of dimension reduction is to identify the low-dimensional structure. Mathemat-
ically speaking, our objective is to look for a mapping f : Rd → Rk with k ≪ d, such that {f(xi)}ni=1

“preserves almost all the information” contained in {xi}di=1. Alternatively, we can also look for a mapping
g : Rk → Rd with k ≪ d such that the average distance between g(zi) and xi(i ∈ [n]) is minimized.

Figure 4: Illustration of the datasets that lie effectively on some low-dimensional subsets.

2.1 Principle component analysis (PCA)

PCA is by far the most popular linear dimension reduction method. Denote by X = (x1, . . . ,xn)
T ∈ Rn×d

the data matrix. In PCA we look for a k-dimensional affine subspace that best represents the n data points.
See Figure 5 for an illustration.

Define g by g(z) = Wz+ c with W ∈ Rd×k, z ∈ Rk, c ∈ Rd. The objective of PCA is to minimize

min
W,c,z1,...,zn

L(W, c, Z) =
n∑

i=1

∥xi − (Wzi + c)∥22. (19)

7

2 0 2
3

2

1

0

1

2

3

Figure 5: An illustration of PCA.

Notice that for any invertible matrix Q ∈ Rk×k, the transformation (W, {zi}) → (WQ, {Q−1zi}) leaves the
value of the objective function L invariant. Hence, we can assume without loss of generality that W TW =
Ik. We also assume that

∑n
i=1 zi = 0, since we can always absorb it into c.

First we take W to be fixed, and compute

∂L

∂c
= 2

n∑
i=1

(xi −Wzi − c) = 0 ⇒ c = x̄ :=
1

n

n∑
i=1

xi

∂L

∂zi
= 2W T (xi −Wzi − c) = 0 ⇒ zi = W T (xi − c)

Substituting them into (19), the objective becomes

n∑
i=1

∥xi − (Wzi + c)∥22 =
n∑

i=1

∥xi − (WW T (xi − c) + c)∥22

=
n∑

i=1

∥(I −WW T)(xi − x̄)∥22 (c = x̄)

=
n∑

i=1

(∥(xi − x̄)∥22 − ∥W T (xi − x̄)∥22)

Note that ∥W T (xi− x̄)∥22 = ∥WW T (xi− x̄)∥22, where the later is the orthogonal projection of xi− x̄ to
the subspace spanned by {w1,w2, . . . ,wk}. So PCA can also be formulated as being looking for a subspace
such that the total error after the projection is minimized. Figure 6 provides an illustration.

Therefore, PCA is equivalent to maximizing

n∑
i=1

(xi − x̄i)
TWW T (xi − x̄i) = Tr(WW T

∑
i

(xi − x̄i)(xi − x̄i)
T).

Let Σ̂n = 1
n

∑n
i=1(xi−x̄)(xi−x̄)T) be the empirical covariance matrix. The original problem is equivalent

to

max
WTW=Ik

tr(WW T Σ̂n) = max
WTW=Ik

tr(W T Σ̂nW). (20)

8

data
W

Figure 6: PCA: minimizing the total residual of the projection.

Let Σ̂n =
∑d

i=1 λiuiu
T
i (λ1 ≥ λ2 ≥ · · · ≥ λd) be the eigen-decomposition of Σ̂n . From the Rayleigh’s

variational principle, we conclude that wj = uj for j = 1, . . . , k and

max
WTW=Ik

tr(W T Σ̂nW) =
k∑

i=1

λk. (21)

In words, the solution of PCA is found in the top k eigenvectors of the empirical covariance matrix, which
are also called the principal components.

PCA as a low-rank approximation. Without loss of generality, assume that x̄ = 0 and rewrite the
original objective function as

min
WTW=Ik,z1,...,zn

n∑
i=1

∥xi −Wzi∥22 = min
WTW=Ik,Z∈Rk×n

∥X −WZ∥2F . (22)

Lemma 2.1. The formulation (22) is equivalent to

min
rank(Y)≤k,Y ∈Rn×d

∥X − Y ∥2F . (23)

Proof. Denote by Y ∗ the solution of (23). Consider the SVD decomposition Y ∗ = UΣV with U ∈
Rn×k, V T ∈ Rk×k. Then, W = U,Z = ΣV T is a solution of (22). Let (W,Z) be a solution of (22).
Then, X̂ = WZ must be a solution of (23), otherwise we can construct a better solution for (22) using the
SVD decomposition.

Notice that (23) can be written equivalently as

min ∥E∥2F
s.t. X = Y + E

rank(Y) ≤ k.

(24)

We can view this as a decomposition of X into the sum of a low-rank matrix and a small error matrix (in the
sense of Frobenius norm).

Robust PCA. The previous interpretation naturally lead to an extension: robust PCA [Candès et al., 2011].
The idea is to look for the following decomposition:

X = Y + E, (25)

9

where Y is low-rank and E is sparse. Figure 7 shows an application of robust PCA in video analysis.
The robust PCA problem is non-convex since both the sparsity and rank constraint are non-convex. In

practice, one usually considers a convex relaxation. As we have seen in Lasso, we can replace the ℓ0 norm
(i.e. the number of non-zero entries) used to measure sparsity by the ℓ1 norm. For the rank function, one
can use the following relaxation:

rank(L) = #{i : σi(L) ̸= 0} ⇒ ∥L∥∗ =
∑
i

σi(L), (26)

where ∥L∥∗ is called the nuclear norm of L. Therefore, the objective function of the relaxed problem
becomes

min
Y+E=X

∥Y ∥∗ + λ∥E∥1, (27)

where ∥E∥1 =
∑

i,j |Ei,j |. This problem can be solved using standard convex optimization algorithms
[Boyd et al., 2004].

Figure 7: Surveillance video as low rank plus sparse matrices: Left = low rank (middle) + sparse (right). The
background image leads to a rank-1 component and the occasional appearance of the customers contributes to the
sparse component .

2.2 Kernel PCA

The basic assumption of PCA is that the data concentrate on a low-dimensional linear subspace. This
assumption is quite restrictive for many applications, where the low-dimensional structure can be nonlinear
(see, e.g., the left of Figure 8 for an illustration). In this section, we introduce kernel PCA, a convenient way
of extending PCA to the nonlinear setting. It can be derived using the kernel trick we introduced previously
??.

Let k : Rd × Rd 7→ R be a kernel and the corresponding feature map is given by Φ : Rd 7→ RD. Then,

k(x,x′) = ⟨Φ(x),Φ(x′)⟩.

10

Figure 8: Semantic illustration of kernel PCA. Data points on the left lie approximately on a 1-dimensional curve. The
green line indicates the orthogonal projection. (Taken from Pattern Recognition and Machine Learning by Christopher
M. Bishop)

Here, we assume the feature space is RD instead of a general Hilbert space for simplicity. One can think of
D as being infinite.

We first map the data into the feature space:

{x1, . . . ,xn} 7→ {Φ(x1), . . . ,Φ(xn)}.

Assume that the data in the feature space concentrate on a low-dimensional linear subspace. We can apply
standard PCA in the feature space. Assume as before that 1

n

∑n
i=1Φ(xi) = 0. Let Σ = 1

n

∑n
i=1Φ(xi)Φ(xi)

T ∈
RD×D be the feature covariance matrix. Our objective becomes

max
WTW=Ik

W TΣW. (28)

The solution is given by the eigenvectors of Σ:

Σv = λv. (29)

Note that a vector w ∈ RD corresponds to a nonlinear function in the original space:

pw(x) = ⟨w,Φ(x)⟩.

Theorem 2.2 (Representer theorem). Let (λ,v) be the eigenpair of Σ. If λ ̸= 0, v can be expressed as a
linear combination of the features:

v =
n∑

i=1

αiΦ(xi).

Proof. By definition,

v =
1

λ
Σv =

1

λ

n∑
i=1

Φ(xi)Φ(xi)
Tv =

n∑
i=1

αiΦ(xi).

11

The above theorem suggests that learning v ∈ RD is equivalent to looking for α = (α1, . . . , αn)
T ∈ Rn.

This reduces the original D-dimensional problem to a n-dimensional problem. The principal component
corresponding to v is given by

pv(x) = ⟨v,Φ(x)⟩ = ⟨
n∑

i=1

αiΦ(xi),Φ(x)⟩ =
n∑

i=1

αik(xi,x). (30)

Obviously they are nonlinear functions.
Derivation of the kernel PCA. For simplicity, we focus on the case when k = 1, i.e., W = v ∈ RD.

Plugging v =
∑n

j=1 αjΦ(xj) into Eq. (29), we have

n∑
i=1

Φ(xi)Φ(xi)
T (

n∑
j=1

αjΦ(xj)) = λ
n∑

j=1

αjΦ(xj),

which leads to
n∑

i=1

Φ(xi)

n∑
j=1

k(xi,xj)αj = λ

n∑
j=1

αjΦ(xj).

Multiplying this with Φ(xs), we have

n∑
i=1

k(xs,xi)

n∑
j=1

k(xi,xj)αj = λ

n∑
j=1

αjk(xs,xj),

which leads to
Kα = λα.

Here, K = (k(xi,xj)) ∈ Rn×n is the kernel matrix.
The normalization goes as follows

∥v∥2 = 1 ⇒
m∑

i,j=1

αiαjΦ(xi)
TΦ(xj) = αTKα = 1 (31)

Using the fact that Kα = λα, we have

αTKα = λ∥α∥2 = 1 ⇒ ∥α∥2 = 1

λ
. (32)

In practice, we need to center the features by introducing:

Φ̃(xi) = Φ(xi)−
1

n

n∑
s=1

Φ(xs).

The corresponding kernel becomes:

k̃(xi,xj) =

(
Φ(xi)−

1

n

n∑
s=1

Φ(xs)

)T (
Φ(xj)−

1

n

n∑
s=1

Φ(xs)

)

12

= k(xi,xj)−
1

n

n∑
s=1

k(xi,xs)−
1

n

n∑
s=1

k(xs,xj) +
1

n2

n∑
s,t=1

k(xs,xt). (33)

Algorithm 1 summarizes kernel PCA. The extra factor 1/
√
λs in the last step accounts for the normal-

ization (32).

Algorithm 1 Kernel PCA

Require: {xi}ni=1 and the kernel k(·, ·)
1: Compute the kernel matrix K = (k(xi,xj)) ∈ Rn×n

2: Compute the centered kernel matrix:

K̃ = K − 1

n
EK − 1

n
KE +

1

n2
EKE,

where E is a n× n matrix with all entries being 1.
3: Perform the standard eigen-decomposition for K̃:

K̃α̃s = λsα̃s,

with ∥α̃s∥2 = 1.
4: return The s-th principal component is given by

ps(x) =
1√
λs

n∑
i=1

α̃s,ik(xi,x).

2.3 Autoencoder

Antoencoder is a general framework for dimension reduction. It consists of two components: the encoder f
and the decoder g. The basic idea is summarized as follows:

f : Rd 7→ Rk

g : Rk 7→ Rd

f, g = argmin

n∑
i=1

d(xi, g(f(xi))),

where d(·, ·) denotes a metric to measure the difference between x and its reconstruction x̃ = g(f(x)). The
following provides a semantic illustration

x ∈ Rd f−→ z ∈ Rk g−→ x̃ ∈ Rd. (34)

{zi = f(xi)} are called the latent codes, the corresponding Rk with k ≪ d is called the latent space.
If we choose f(x) = V Tx, g(z) = Uz, and d(x, x̃) = ∥x− x̃∥2. Then, the objective function becomes

min
U,V ∈Rd×k

n∑
i=1

∥xi − UV Txi∥2.

This recovers the standard PCA. However, autoencoder is more powerful than PCA since we can parame-
terize f, g using general nonlinear functions, such as deep neural networks.

13

2.4 Diffusion map

2.5 Random projection

The matrix W = (wi,j) ∈ Rk×d is said to be a random Gaussian matrix if wi,j
iid∼ N (0, 1). Consider the

random projection fW : Rd 7→ Rk given by

fW (x) :=
1√
k
Wx (35)

The following lemma states that this map is almost norm-preserving for reasonably large values of k.

Lemma 2.3 (Johnson-Lindenstrauss). Let x1, . . . ,xn be n samples in Rd. Given any δ ∈ (0, 1), let kε =
6 log(2n/δ)

ε2
. For any k ≥ kε, with probability 1− δ over the random sampling of W , we have

max
i∈[n]

∣∣∣∣∣∥
1√
k
Wxi∥22

∥xi∥22
− 1

∣∣∣∣∣ ≤ ε (36)

Proof. Without loss of generality, assume that ∥xi∥2 = 1. Let W = (w1, . . . ,wk)
T . Then wT

j x ∼ N (0, 1)
and

E[∥ 1√
k
Wx∥22] = E

1

k

k∑
j=1

|wT
j x|2 =

1

k

k∑
j=1

E |wT
j x|2 = 1.

By the concentration inequality,

P
{
|1
k

k∑
j=1

|wT
j x|2 − 1| ≥ ε

}
≤ 2e−

kε2

6 .

Taking the union bound over the n points , we have

P
{
max
i∈[n]

|1
k

k∑
j=1

|wT
j x|2 − 1| ≥ ε

}
≤ n2e−

kε2

6

Let the failure probability 2ne−kε2/6 ≤ δ. We then have k ≥ 6 log(2n/δ)
ε2

.

The following lemma states that we can project n d-dimensional points into a O(logn
ε2

)-dimensional
space and preserve all the pairwise distances within a factor of ε.

Lemma 2.4. Let x1, . . . ,xn be n samples in Rd. For any δ ∈ (0, 1), if k ≥ 6 log(2n2/δ)
ε2

, we have with prob.
1− δ

(1− ε)∥xi − xj∥ ≤ ∥fW (xi)− fW (xj)∥ ≤ (1 + ε)∥xi − xj∥.

Proof. Note that fW (xi)−fW (xj) = fW (xi−xj) since fW is linear. Applying the Johnson-Lindenstrauss
lemma to the set {xi − xj}ni,j (n2 points) completes the proof.

14

From the proof, we can see that the distance-preserving property holds as long as each entry of the
random matrix W is sampled from a sub-Gaussian distribution. This motivates the construction of sparse
random projection, which can accelerate the evaluation of the random projection. A typical example is the
one constructed by Achlioptas in [Achlioptas, 2003]:

wi,j =
√
3×

1 with prob. 1

6

0 with prob. 2
3

−1 with prob. 1
6 .

(37)

Random projections are simple, easy to implement and do not require any special property for the data
distribution. However, the reduced dimensionality using random projections is usually much higher than the
ones obtained using the special properties of the data distribution, such as PCA.

3 Clustering

The objective of clustering is to decompose the dataset S into disjoint subsets:

S = ∪K
k=1Ck, Ck ∩ Cj = ∅ ∀k ̸= j,

such that

• points within each cluster are similar to each other.

• points in different clusters are dissimilar to each other.

Each subset is called a cluster. This problem is particularly relevant when the underlying distribution µ∗ is
multi-modal. Figure 9 shows two examples, where the data consist of two clusters.

Figure 9: The data can be decomposed into two clusters.

Clustering has many applications. Here are two examples.

• Separating potential customers into different clusters in order to design the different products suited
for each group of customers

• Image segmentation: Breaking up the image into different regions. Figure 10 shows how the image
segmentation is used in autonomous driving.

To develop a clustering algorithm, the first issue is how to measure similarity or difference between two
data points. If the data points live in Rd, a natural measure is the Euclidean distance. For more complicated
data sets such as texts or behavior data, it is less obvious how to define similarity measures.

15

Figure 10: Autonomous driving. Clustering is used to help the system to identify and locate the vehicles and other
objects on the road.

3.1 The k-means algorithm

The k-means algorithm is based on minimizing the intra-cluster distances. Assume that we intend to break
the data into K clusters and let C1, C2, · · · , CK be the clusters. In the k-means algorithm, the value of K
needs to be specified beforehand. The objective function is defined to be:

I1 (C1, C2, · · · , CK) =
1

2

K∑
k=1

1

|Ck|
∑

xi,xj∈Ck

∥xi − xj∥2, (38)

where |Ck| is the cardinality of Ck. Let

αk =
1

|Ck|
∑

xj∈Ck

xj (39)

be the center of the cluster Ck. A second natural objective function is given by

I2 (C1, C2, · · · , CK) =

K∑
k=1

∑
xi∈Ck

∥xi −αk∥2. (40)

Lemma 3.1. I1 = I2.

Proof. Notice that ∑
xi,xj∈Ck

∥xi − xj∥2 =
∑

xi,xj∈Ck

(
∥xi∥2 + ∥xj∥2 − 2⟨xi,xj⟩

)
= 2|Ck|

∑
xi∈Ck

∥xi∥2 − 2⟨
∑

xi∈Ck

xi,
∑

xj∈Ck

xj⟩

= 2
(
|Ck|

∑
xi∈Ck

∥xi∥2 − |Ck|2 ∥αk∥2
)
.

∑
xi∈Ck

∥xi −αk∥2 =
∑

xi∈Ck

(
∥xi∥2 + ∥αk∥2 − 2⟨xi, αk⟩

)
=
∑

xi∈Ck

∥xi∥2 − |Ck| ∥αk∥2.

16

Hence,

I1 =
1

2

K∑
k=1

1

|Ck|
∑

xi,xj∈Ck

∥xi − xj∥2 =
1

2

∑
k

2Ck

Ck

∑
xi∈Ck

∥xi − ak∥2 = I2.

The k-means algorithm, given in Algorithm 2, proceeds by alternating between two steps. In the assign-
ment step, each data point is assigned to the cluster whose center is closest to that point. In the update step,
the center position of each cluster is updated using the new assignments.

Algorithm 2 k-means algorithm

Require: Number of clusters K and the initialization: {α(0)
k }

for t = 1, 2, . . . do
(1) Assignment step: For k = 1, . . . ,K, set

C
(t+1)
k := {xi : k = argmin

j=1,...,K
∥xi −α

(t)
j ∥}. (41)

(2) Update step: α(t+1)
k = 1

|C(t+1)
k |

∑
xj∈C

(t+1)
k

xj .

end for

The k-means algorithm assumes implicitly that underlying data has some linear structure. For the data
shown in the left figure of 9, k-means works very well. In fact, in this case k-means converges in a few
iterations, see Figure 11 for a visualization of the convergence process. The right figure of 9 shows an
example for which the k-means algorithm does not work. In this case we need some nonlinear clustering
methods.

0 1 2

0.5

0.0

0.5

1.0

1.5

t=0

0 1 2

0.5

0.0

0.5

1.0

1.5

t=1

0 1 2

0.5

0.0

0.5

1.0

1.5

t=2

0 1 2

0.5

0.0

0.5

1.0

1.5

t=4

Figure 11: An example shows how k-means converges in a few steps.

this description is a bit too abstract
The following is a nice property of the k-means algorithm.

Lemma 3.2. Let {C(t)
k } be the solution of the k-means algorithm at step t. Then we have

I2(C
(t)
1 , . . . , Ct

K) ≤ I2(C
(t−1)
1 , . . . , C

(t−1)
K).

17

Proof. Let α
(t)
k be the center of mass of the set C

(t)
k . For any k ∈ [K],

∑
xi∈C

(t)
k

∥xi − α
(t)
k ∥2 ≤∑

xi∈C
(t)
k

∥xi −α∥2 for any α ∈ Rd. Hence,

I2(C
(t)
1 , . . . , C

(t)
K) =

K∑
k=1

∑
xi∈C

(t)
k

∥xi −α
(t)
k ∥2 ≤

K∑
k=1

∑
xi∈C

(t)
k

∥xi −α
(t−1)
k ∥2.

The update procedure (41) implies that the new partition {C(t)
k } minimizes

∑K
k=1

∑
xi∈Ck

∥xi − α
(t−1)
k ∥.

Hence,

K∑
k=1

∑
xi∈C

(t)
k

∥xi −α
(t−1)
k ∥2 ≤

K∑
k=1

∑
xi∈C

(t−1)
k

∥xi −α
(t−1)
k ∥2

= I(C
(t−1)
1 , . . . , C

(t−1)
K).

The preceding lemma shows that the objective function for the k-means algorithm decreases monoton-
ically. It does not tell us whether the k-means algorithm converges to a global minimum. The objective
function I2 is non-convex and the convergence depends heavily on the initialization. Bad initializations may
cause convergence to bad local minima (see the exercise for an example). In practice, one often needs to
repeat the algorithm using different random initializations and pick the best solution.

3.2 Probabilistic Clustering

In k-means, we assign each sample to a single cluster. However, this type of description is not suited for the
kind of data shown in Figure 12, where the clusters are not well-separated. A better description in this case
is to define the “assignment” in a probabilistic fashion. Denote by pk the probability that a given sample
point belongs to the k-th cluster. Then

∑K
k=1 pk = 1 and pk ≥ 0.

Figure 12: A motivating example where the probabilistic clustering method is preferred.

18

3.2.1 Gaussian mixture models

Before proceeding to the clustering method, let us first introduce a model for the kind of data distribution
shown in Figure 12, the Gaussian mixture model (GMM). GMM assumes that the data are generated from
the distribution

p(x) =

K∑
k=1

πk N (x|µk,Σk). (42)

where
∑K

k=1 πk = 1 and πk ≥ 0, N (·|µk,Σk) is the Gaussian distribution. πk and N (·|µk,Σk) denote the
weight and distribution for the k-th component in the mixture, respectively. Figure 13 shows an example of
the density function of GMM with two mixtures.

4 3 2 1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

tiy

p(x)

Figure 13: p(x) = 0.3N (−2, 0.5) + 0.7N (1, 1)

The direct problem of GMM is to draw samples from (42). This can be done as follows.

• Step 1: Randomly sample a z ∈ {1, . . . ,K} with the probability distribution: p(z = k) = πk.

• Step 2: Generate a sample from the z-th component: N (·|µz,Σz).

The above procedure introduces a latent variable z such that

p(z = k) = πk, p(x|z) = N (x|µz,Σz). (43)

This leads to

p(x) =
∑
z

p(x|z)p(z) =
K∑
k=1

πk N (x|µk,Σk).

A natural question is: Which cluster (mixture) does a given sample x belong to?

• In the k-means algorithm, x is assigned to the cluster with the index

k(x) = argmink∈[K]∥x−αk∥.

19

• In GMM, the “label” is the posterior probability of z for a given x:

γx(k) := p(z = k|x) = p(x|z = k)p(z = k)

p(x)

=
πkϕ(x;µk,Σk)∑K
z=1 πzϕ(x;µz,Σz)

, (44)

where ϕ(·;µk,Σk) denotes the density function of N (µk,Σk). The soft label γx(k) denotes the
probability of x belonging to the k-th cluster.

Now we are ready to proceed to the inverse problem: Estimate the mixture model from a finite sample.
To simplify the derivation, we focus on the simplest case when d = 1. The extension to the case when d > 1
is straightforward.

We begin with a brief review of the maximum likelihood estimator (MLE) for the Gaussian distribution.
Let xi

iid∼ p(·|θ) := N (·;µ, σ). Then log-likelihood is defined to be

L(θ) = log
n∏

i=1

p(xi|θ) =
n∑

i=1

log

(
1√
2πσ

e−
(xi−µ)2

2σ

)

= −
n∑

i=1

|xi − µ|2

2σ
− n

2
log(2πσ). (45)

The MLE estimator can be found by solving:

∂L

∂µ
= −

n∑
i=1

xi − µ

σ
= 0 ⇒ µ̂ =

1

n

n∑
i=1

xi

∂L

∂σ
=

(xi − µ)2

2σ2
− n

2σ
= 0 ⇒ σ̂ =

1

n

n∑
i=1

(xi − µ̂)2.

Next we turn to the MLE for GMM. Assume xi
iid∼ p(·|θ) :=

∑K
k=1 πkN (·;µk, σk). The log-likelihood

is defined by

L(θ) = log

n∏
i=1

p(xi|θ) =
n∑

i=1

log

(
K∑
k=1

πk
1√
2πσk

e
− (xi−µk)2

2σk

)
. (46)

The parameters in the MLE estimator are the solution of the following system of equations:

∂L

∂µk
= −

n∑
i=1

πkϕ(xi;µk, σk)∑
z πzϕ(xi;µz, σz)

xi − µk

σk
= 0

∂L

∂σk
=

n∑
i=1

πkϕ(xi;µk, σk)∑
z πzϕ(xi;µz, σz)

(
(xi − µk)

2

2σ2
k

− 1

2σk

)
= 0

However, it is difficult to obtain closed-form solutions due to the term

πkϕ(xi;µk, σk)∑
z πzϕ(xi;µz, σz)

.

20

Notice that this term is exactly the soft label γx(k) defined in Eq. (44). If we pretend that the γxi(k)’s are
known, the MLE estimator is given by

µ̂k =

∑n
i=1 γxi(k)xi∑n
i=1 γxi(k)

=
1

Nk

n∑
i=1

γxi(k)xi

σ̂k =
1

Nk

n∑
i=1

γxi(k)(xi − µ̂k)
2

(47)

where Nk =
∑n

i=1 γxi(k). We can think of Nk as being the effective number of points assigned to the k-th
cluster.

To estimate the mixture proportion {πk}, consider the augmented Lagrangian J = L(θ)−λ
(∑K

k=1 πk − 1
)
.

Then,

∂J

∂πk
=

1

πk

n∑
i=1

πkϕ(xi;µk, σk)∑
z πzϕ(xi;µz, σz)

− λ =
1

πk
Nk − λ = 0

=⇒ πk =
Nk

λ
.

Substituting this back to the constraint, we have

K∑
k=1

πk =

K∑
k=1

Nk

λ
=

n

λ
= 1 ⇒ λ = n.

Hence, we have

πk =
Nk

n
(48)

However, we do not know the soft label γxi(k)’s. One way to solve this problem is to estimate it using
the current value of the parameters θ. This motivates the Expectation-Maximization (EM) algorithm for
GMM, shown in Algorithm 3.

21

Algorithm 3 EM algorithm for Gaussian mixture models

Require: Initialization: θ0 = {π0
k, µ

0
k, σ

0
k}

for t = 1, 2, . . . do
(1) E-step: Estimate the soft labels using the current value of θt = {πt

k, µ
t
k, σ

t
k}:

γtxi
(k) =

πt
kϕ(xi;µ

t
k, σ

t
k)∑

k π
t
kϕ(xi;µ

t
k, σ

t
k)
. (49)

(2) M-step: Let N t
k =

∑n
i=1 γ

t
xi
(k). Update the parameters by

µt+1
k =

1

N t
k

n∑
i=1

γtxi
(k)xi

σt+1
k =

1

N t
k

n∑
i=1

γtxi
(k)(xi − µt+1

k)2

πt+1
k =

N t
k

n
.

(50)

end for
return θt (the resulting parameters) and {γtxi

} (the soft labels).

3.3 General EM algorithm

The above idea can be extended to estimating parameters of a general latent variable model:

p(x, z|θ) = p(x|z, θ)p(z|θ), (51)

where x is observed and z is the unobserved latent variable.
Let us first provide a heuristic derivation of the EM algorithm for estimating θ from only the observed

samples x1, . . . ,xn. We begin with the case of only one sample. The MLE is given by maximizing

L(θ) = log p(x|θ) = log

(∫
p(x, z|θ) dz

)
. (52)

This is computationally challenging due to the integral inside the logarithm. By the analogy with the deriva-
tion of EM for GMM, if z is also known, we only need to maximize log p(x, z|θ). Thus the trouble lies
in that z is not known yet. To overcome this difficulty, we sample the z’s from p(z|x, θt) using the cur-
rent value of θt. This step is analogous to the step of computing the soft labels using current value of the
parameters in Algorithm 3. In expectation, we are maximizing

Q(θ|θt) := Ez|x,θt [log p(x, z|θ)]. (53)

The general EM algorithm is given in Algorithm 4. Note that similar to the case of GMM, the maximiza-
tion step usually has a closed-form solution for the most popular latent variable models. For this reason, the
EM algorithm is usually quite easy to implement.

22

Algorithm 4 General EM algorithm

for t = 1, 2, . . . do
(1) E-step: Q(θ|θt) = Ez|x,θt [log p(x, z|θ)]
(2) M-step: θt+1 = argmaxθ Q(θ|θt)

end for

Analysis of the EM algorithm.

Since p(x|θ)p(z|x, θ) = p(x, z|θ), we have the following decomposition of the log-likelihood:

L(θ) = log p(x|θ) = Ez|x,θt [log p(x|θ)]

= Ez|x,θt [log
p(x, z|θ)
p(z|x, θ)

]

= Ez|x,θt

[
log

(
p(x, z|θ)
p(z|x, θt)

p(z|x, θt)
p(z|x, θ)

)]
= Ez|x,θt

[
log

p(x, z|θ)
p(z|x, θt)

]
︸ ︷︷ ︸

Q(θ|θt)

+Ez|x,θt
[
log

p(z|x, θt)
p(z|x, θ)

]
︸ ︷︷ ︸

H(θ|θt)

, (54)

The first term is exactly the Q(θ|θt) term that appears in the EM algorithm (up to a constant). The second
term H(θ|θt) is the KL divergence between p(z|x, θ) and p(z|x, θt), which is always non-negative. Hence
the EM algorithm actually maximizes a lower bound of the log-likelihood L(θ) at each step. Moreover,
when it approaches convergence, the lower bound becomes closer and closer to the true log-likelihood since
H(θt+1|θt) → 0 as t → ∞.

Before proceeding to analyzing the convergence of the EM algorithm, we discuss some properties of the
Q function. Since

Q(θ|θ′) = Ez|x,θ′
[
log

p(x, z|θ)
p(z|x, θ′)

]
,

we have

• Q(θ|θ) = L(θ) since H(θ|θ) = 0.

• ∇θQ(θ|θ′)|θ′=θ = ∇θL(θ) since

∇θQ(θ|θ′)|θ′=θ = Ez|x,θ[∇ log p(x, z|θ)] =
∫

∇p(x, z|θ)
p(x, z|θ)

p(z|x, θ)dz

=

∫
∇p(x|θ)p(z|x, θ) + p(x|θ)∇p(z|x, θ)

p(x|θ)
dz

=
∇p(x|θ)
p(x|θ)

+

∫
∇p(z|x, θ)dz

= ∇ log p(x|θ) +∇
∫

p(z|x, θ)dz

= ∇θL(θ)

23

The above implies that Q(·|θt) is a lower bound of L(·) with the additional property that the function value
and first order derivative are the same as those of L(·) at θt. Figure 14 provides an illustration of the
relationship between Q(·|θt) and L(·).

8

6

4

2

0

tt + 1

L()
Q(| t)

Figure 14: An illustration of EM algorithms.

Theorem 3.3 (Monotonicity). Let θt be the solution of Algorithm 4 at the t-th step. We have L(θt+1) ≥
L(θt).

Proof. Using the decomposition (54), we have

L(θt+1)− L(θt) = Q(θt+1|θt) +H(θt+1|θt)︸ ︷︷ ︸
≥0

−(Q(θt|θt) +H(θt|θt))

≥ Q(θt+1|θt)−Q(θt|θt) ≥ 0, (55)

where the last inequality follows from the fact that θt+1 = argmaxθ Q(θ|θt).

Theorem 3.4 (Convergence to stationary points). Assume that Q(·|θ′) is C-smooth in the sense that for any
θ′

Q(θ2|θ′) ≥ Q(θ1|θ′) + ⟨∇Q(θ1|θ′), θ2 − θ1⟩ −
C

2
∥θ2 − θ1∥2.

Then, we have

min
t=0,1,...,T−1

∥∇L(θt)∥2 ≤ 1

T

T−1∑
t=0

∥∇L(θt)∥2 ≤ 2C(L(θT)− L(θ0))

T
.

Proof. Using the C-smoothness, we have

Q(θ|θt) ≥ Q(θt|θt) + ⟨∇Q(θt|θt), θ − θt⟩ − C

2
∥θ − θt∥2 (56)

Using the fact that ∇Q(θt|θt) = ∇L(θt)) and rearranging the right hand side of (56), we obtain

Q(θ|θt) ≥ Q(θt|θt) + 1

2C
∥∇L(θt)∥2 − C

2
∥θ − θt − 1

C
∇L(θt)∥2.

24

Let θ̄t+1 = θt + 1
C∇L(θt). Obviously we have

Q(θ̄t+1|θt) ≥ Q(θt|θt) + 1

2C
∥∇L(θt)∥2.

Since θt+1 = argminθ Q(θ|θt), we have

Q(θt+1|θt) ≥ Q(θ̄t+1|θt) ≥ Q(θt|θt) + 1

2C
∥∇L(θt)∥2.

Substituting this into Eq.(55), we have

L(θt+1)− L(θt) ≥ Q(θt+1|θt)−Q(θt|θt) ≥ 1

2C
∥∇L(θt)∥2.

⇒L(θT)− L(θ0) =
T∑
t=1

(L(θt)− L(θt−1)) ≥ 1

2C

T−1∑
t=0

∥∇L(θt)∥2.

Thus, we complete the proof.

Note that the above theorem only guarantees the convergence to stationary points.

References

[Achlioptas, 2003] Achlioptas, D. (2003). Database-friendly random projections: Johnson-lindenstrauss
with binary coins. Journal of computer and System Sciences, 66(4):671–687.

[Boyd et al., 2004] Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge
university press.

[Candès et al., 2011] Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component
analysis? Journal of the ACM (JACM), 58(3):1–37.

25

	Density estimation
	The histogram estimator
	Kernel density estimator (KDE)
	Error analysis
	Cross-validation

	Dimension Reduction
	Principle component analysis (PCA)
	Kernel PCA
	Autoencoder
	Diffusion map
	Random projection

	Clustering
	The k-means algorithm
	Probabilistic Clustering
	Gaussian mixture models

	General EM algorithm

