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1 Problem Setup

In machine learning, the most common objective function is the empirical risk

R̂(θ) =
1

n

n∑
i=1

`(h(xi; θ), yi). (1)

For GD, the cost of computing gradient in each step is O(n), which is extremely expansive when n is large,
e.g., n = 106. Stochastic gradient descent is proposed to resolve this issue.

To start, we consider a more general form, where the objective function admits an expectation

f(x) = Ew∼π[f(x;w)]. (2)

For the empirical risk, π = Unif([n]). The GD of optimizing (2) is given by

xt+1 = xt − ηt Ew∼π[∇f(xt;w)]. (3)

Stochastic gradient descent (SGD) iterates as follows

xt+1 = xt − ηt
1

B

B∑
j=1

∇f(xt;wj,t)︸ ︷︷ ︸
minibatch gradient

, (4)

where {w1,t, . . . , wB,t} are i.i.d. samples drawn from π. Here, B is a crucial hyperparameter and often
referred to as the batch size. The optimizer (4) is called (mini-batch) SGD.

Then some natural questions are:

• What is the difference between GD and SGD?

• How the choice of B and η affect the convergence behavior of SGD

– When B is large, the stochastic gradient is accurate; we can use a large learning rate?

– When B is small, the stochastic gradient is far from being accurate, and a small learning rate
should be used.

• Does SGD converge when B is a constant, i.e.g., B = 1?
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To understand these questions, it is more intuitive to rewrite (4) in the following form

xt+1 = xt − ηt (∇f(xt) + ξt) , (5)

where ξt is the noise induced by minibatch gradient, satisfying

E[ξt] = 0

E[ξtξ
>
t ] =

1

B
Ew[(∇f(xt;w)−∇f(xt))(∇f(xt;w)−∇f(xt))

>] =:
1

B
Σ(xt)

Remark 1.1. Comparing with (4), the formulation (5) is more general. One also generally refer (5) as SGD
as long as the gradient noise ξt has a zero mean. One often refers (4) as mini-batch SGD for clarity.

A phenomenological comparison between SGD and GD In Figure 1, we provide a visual comparison
between GD and SGD (with small and large batch sizes). It is not surprising that the trajectory of SGD
exhibits more fluctuation, although it does converge to global minima.

full batch
large batch
small batch

Figure 1: A visual illustration of how batch size affects SGD convergence.

Moreover, in Figure 2, we compare GD and SGD in terms of computational efficiency, as well as the
effects of learning rate and batch size on this efficiency. Specifically, we consider the problem of solving
linear regression:

min
w

1

n

n∑
i=1

(w>xi − yi)2,

where n = 200, xi
iid∼ N (0, A). Here A = HH> with H is randomly sampled by Hi,j

iid∼ N (0, 1).
We examine different learning rates and batch sizes, and the results are shown in Figure 2. Note that

the term “epoch” denotes a single pass through the entire dataset. For GD, each epoch corresponds to a
single iteration. However, for SGD, one epoch is equivalent to n/B iterations, where n is the total number
of samples in the dataset and B is the batch size. Thus, the number of epochs reflects the computational cost
required. We observe the following:

• In terms of number of epochs, SGD converges faster than GD.

• It is hard for SGD to reach high precision regime because of the noise.

• The convergence process consists of two phases: In the first phase, where ‖∇f(xt)‖ � ‖ξt‖, the
objective value decreases significantly. In the second phase, the noise dominates, and SGD no longer
converges. To further reduce the objective value, it may be necessary to decay the learning rate.
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Figure 2: A visual comparison between SGD and GD. Left: Change the learning rate. Middle: Change the
batch size. Right: Decay learning rate with ηt = η0/(t+ 1)α.

Remark 1.2. The minibatch gradient can be viewed as a stochastic approximation of the full-batch gradient.
It is similar to the Monte Carlo approximation, but with a key distinction: the convergence of SGD can
be guaranteed even when the batch size B is a constant, e.g., B = 1. We will come back to this issue in
Section 4.

2 Convergence analysis

Different from GD, SGD does not have a clear continuous-time limit. The analysis in this section will focus
on the discrete-time case. For brevity, we consider the general form (5) and let gt = ∇f(xt) + ξt be the
stochastic gradient.

In our analysis, we make the following assumptions about the objective function and gradient noise.

Assumption 2.1. Suppose that f ∈ C1(R) is L-smooth. We also assume that the gradient noise ξt and xt
are independent, and σt := E[‖ξt‖2] ≤ σ2 <∞.

Remark 2.2. The above noise assumption is commonly used in theoretical analysis. However, In practice,
two issues may arise: 1) the noise might be heavy-tailed, leading to E[‖ξt‖2] = +∞, and 2) the noise may
degenerate at the global minimum (see the homework for more details).

The following lemma provides the energy dissipation inequality for SGD, which is the starting point of
our convergence analysis.

Lemma 2.3 (One-step energy dissipation). Under Assumption 2.1, if ηt ≤ 1/L, then we have

E[f(xt+1)|xt] ≤ f(xt)−
ηt
2
‖∇f(xt)‖2 +

η2tLσ
2

2
. (6)

Proof. The smoothness implies

f(xt+1) = f(xt − ηtgt) ≤ f(xt) + ηt 〈∇f(xt),−ηtgt〉+
Lη2t

2
‖gt‖2.

Taking expectation and noticing E[‖gt‖2|xt] = E[‖ξt‖2] + ‖∇f(xt)‖2, we have

E[f(xt+1)|xt] ≤ f(xt)− ηt‖∇f(xt)‖2 +
η2tL

2
E[‖ξt‖2] +

η2tL

2
‖∇f(xt)‖2
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≤ f(xt)− ηt(1−
ηtL

2
)‖∇f(xt)‖2 +

η2tLσ
2

2
,

the last inequality follows from E[‖ξt‖2] ≤ σ2.

From this energy dissipation inequality, we can observe that if inft σt > 0, we must set ηt → 0 for
convergence.

Theorem 2.4. Suppose learning rates satisfy the Robbins-Monro condition [Robbins and Monro, 1951]:∑
t

ηt =∞,
∑
t

η2t <∞. (7)

Then, we have
min

t=0,1...,T
E ‖∇f(xt)‖2 → 0, as T →∞.

Proof. Applying telescoping sum to (6) gives∑T
t=0 ηt E ‖∇f(xt)‖2∑T

t=0 ηt
≤

2E[f(x0)− f(xT+1)] + Lσ2
∑T

t=0 η
2
t∑T

t=0 ηt

≤
2E[f(x0)− f(x∗)] + Lσ2

∑T
t=0 η

2
t∑T

t=0 ηt
.

Noticing
∑T

t=0 ηt E ‖∇f(xt)‖2∑T
t=0 ηt

≥ mint=0,...,T E[‖∇f(xt)‖2], we complete the proof.

Question: Is the condition
∑∞

t=0 ηt =∞ necessary?

2.1 A convex analysis

The convergence of SGD is similar as stated in the following theorem.

Theorem 2.5. Suppose that Assumption (2.1) holds and f is convex. Let x̄T be the average solution

x̄T =

T−1∑
t=0

ηt∑T−1
t=0 ηt

xt.

If ηt ≤ 1/L for any t ∈ N, then

E[f(x̄T )− f(x∗)] ≤
‖x0 − x∗‖2 + 2σ2

∑T−1
t=0 η

2
t

2
∑T

t=1 ηt
.

• Here we only consider the average solution x̄T instead of the last-iterate solution xT . Note that aver-
aging has a variance-reduction effect, and as a result, the convergence of x̄T is much more smooth and
the corresponding analysis is also much easier. On the contrary, xT oscillates much more significantly
and the convergence analysis of xT is more complicated.

• The Robins-Monro condition is very weak condition that is sufficient to ensure that f(x̄T ) → f(x∗)
as T →∞.
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• Considering the constant learning rate ηt = η, then the upper bound becomes

E[f(x̄T )− f(x∗)] ≤ ‖x0 − x
∗‖2

2Tη︸ ︷︷ ︸
GD decay

+ ησ2︸︷︷︸
noise effect

. (8)

This upper bound indicates that the dynamics of SGD consist of two distinct phases: a gradient-
dominated phase, where function value converges in O(1/(ηT )) and a noise-dominated phase, where
the function value fluctuate around O(ησ2). In particular, the learning rate η determines the balance
between these two phases.

• Taking the constant learning rate η = 1/
√
T yields the overall rate O(1/

√
T ). This, however, needs

to know T a priori. Considering ηt = 1/
√
t, we obtain the rate O(log T/

√
T ) without needing to

know T .

Proof. By the energy dissipation inequality (Lemma 2.3), we have

E[f(xt+1)− f(x∗)] ≤ E[f(xt)]− f(x∗)− ηt
2
E ‖∇f(xt)‖2 +

η2tLσ
2

2

≤ E[〈∇f(xt), xt − x∗〉]−
ηt
2
E ‖∇f(xt)‖2 +

η2tLσ
2

2

= − 1

2ηt

(
E[‖xt − ηt∇f(xt)− x∗‖2 − ‖xt − x∗‖2]

)
+
η2tLσ

2

2
,

where the second step follows from the convexity of f . Note that

E[‖xt+1 − x∗‖2] = E[‖xt − ηt∇f(xt)− ηtξt − x∗‖2]
= E[‖xt − ηt∇f(xt)− x∗‖2] + η2t E[‖ξt‖2]
≤ E[‖xt − ηt∇f(xt)− x∗‖2] + η2t σ

2.

Then,

E[f(xt+1)− f(x∗)] ≤ − 1

2ηt

(
E[‖xt+1 − x∗‖2 − ‖xt − x∗‖2]

)
+
ηt
2
σ2 +

Lη2t σ
2

2

≤ − 1

2ηt

(
E[‖xt+1 − x∗‖2 − ‖xt − x∗‖2]

)
+ ηtσ

2,

where we use ηtL ≤ 1. Therefore,

E[f(x̄T )− f(x∗)] ≤ 1∑T
t=1 ηt

T∑
t=1

ηt E[f(xt)− f(x∗)]

≤ 1

2
∑T

t=1 ηt

T∑
t=1

(
‖xt−1 − x∗‖2 − ‖xt − x∗‖2 + 2η2t σ

2
)

≤
‖x0 − x∗‖2 + 2σ2

∑T−1
t=0 η

2
t

2
∑T

t=1 ηt
,

where the first step follows from the convexity of f .
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Comparison with GD. The convergence rate of GD is O(1/T ). Therefore, SGD is slower than GD in
terms of number of iteration. However, in terms of computational efficiency, SGD can outperform GD.
Consider the batch size B = 1 and learning rate η = 1/

√
T ; under this condition, the converge rate of SGD

becomes O(1/
√
T ). Consequently, to achieve an error of ε, SGD requires Ω(1/ε2) iterations; while GD

needs only Ω(1/ε) iterations. However, in terms of computation cost, SGD and GD require Ω(1/ε2) and
Ω(n/ε), respectively. As long as, ε ≥ 1/n, SGD is more efficient.

2.2 A PL Analysis

Theorem 2.6 (Constant learning rate). Under Assumption (2.1), we further assume that f is µ-PL, i.e.,

‖∇f(x)‖2 ≥ 2µ(f(x)− f(x∗)).

Then

E[f(xT )]− f(x∗) ≤ (1− µη)T (f(x0)− f(x∗))︸ ︷︷ ︸
exponential decay

+
Lσ2

2µ
η︸ ︷︷ ︸

noise effect

.

We have the following observations.

• Still the SGD dynamics consists of two phases. When f(xt) is large with respect to η, the decay is
exponential, and this exponential decay comes from the GD step. When f(xt) is in the same order as
η, the decay induced by GD is dominated by the gradient noise. Consequently, we must reduce the
learning rate if we would like to further reduce f(xt).

• Taking η = 2 log(T )
µT , we obtain

E[f(xT )]− f(x∗) ≤ O
(

1 + log T

T

)
.

This rate is faster than O(1/
√
T ), the rate of the general convex case, but is significantly slower than

the rate of GD, which is exponential.

Proof. Plugging the PL condition into the energy dissipation inequality (Lemma 2.3) leads to

E[f(xt)]− f(x∗) ≤ E[f(xt)]− f(x∗)− η

2
‖∇f(xt)‖2 +

Lσ2η2

2

≤ E[f(xt−1)]− f(x∗)− µη(E[f(xt−1)]− f(x∗)) +
Lη2σ2

2

Let et = E[f(xt)]− f(x∗). Then,

et+1 ≤ (1− µη)et +
Lη2σ2

2

≤ (1− µη)t e0 +
Lη2σ2

2

t∑
k=0

(1− µη)t−k

≤ (1− µη)t e0 +
Lη2σ2

2

1

1− (1− µη)
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= (1− µη)t e0 +
Lσ2

2µ
η.

Note that setting η = 1/T means that we need to know the number of iterations a priori. The following
theorem shows that a similar convergence rate can be achieved with decaying learning rates.

Theorem 2.7 (Decay learning rate). Choosing the learning rate ηt = 1
µ(t+1) , we have

E[f(xT )]− f(x∗) ≤ Lσ2

2µ2
log(1 + T )

T
.

Proof. Still let et = E[f(xt)]− f(x∗). Then, by Lemma (2.3) and the PL condition, we have

et+1 ≤ (1− µηt) et +
η2tLσ

2

2
. (9)

Plugging ηt = 1/(µ(t+ 1)) yields,

et+1 ≤
tet
t+ 1

+
Lσ2

2µ2(t+ 1)2
.

Let ẽt = tet. Then,

ẽt+1 ≤ ẽt +
Lσ2

2µ2
1

1 + t
.

By telescoping sum, we have

ẽT ≤ ẽ0 +
Lσ2

2µ2

T−1∑
t=0

1

1 + t
≤ ẽ0 +

Lσ2

2µ2
log(1 + T ).

Noticing that eT = ẽT /T , we complete the proof.

Remark 2.8. The log T factors in above theorem can be removed by a refined analysis.

Summary. We summarize the implications of the above analysis as follows.

• SGD can converge by reducing learning rates.

• SGD convergences slower than GD in terms of number of iterations: O(1/T ) vsO(1/
√
T ) for convex

problems; O(e−T ) vs. O(1/T ) for PL problems.

• Figure 2 shows SGD actually converges faster in terms of number of epochs. Can we establish theo-
retical foundations for this phenomenon?

• Typically, SGD slows down the training only in the late training phase.
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3 Continuous-time Limit?

When η is small, the continuous-time courterpart of SGD is the following Ito-type stochastic differential
equation (SDE):

dXt = −∇f(Xt) +
√

2ηΣ(Xt) dWt, (10)

where (Wt)t≥0 is the Brownian motion and Σ(Xt) = E[ξtξ
T
t ] is the covariance of gradient noise. For

mini-batch SGD,
Σ(x) = Ew

[
(∇f(x;w)−∇f(x))(∇f(x;w)−∇f(x))T

]
.

Note that the stochastic term is O(
√
η). We have the following observation

• When η → 0, SGD converges to gradient flow. No stochasticity!!!

• When η is finite but small, the stochasticity can be modeled with Brownian motion. However, whether
this modeling is accurate or not highly depends on the problem.

• The closeness between SGD and SDE (10) only holds for a finite time. Their long-time behaviors can
be very different. We refer interested readers to [Li et al., 2019].

Remark 3.1. Currently, many works analyze the dynamical property of SDE (10) for training machine
learning models. However, whether the results can be generalized to SGD (in particular with large LR) or
not is still questionable.

4 Stochastic Approximation

First, let us briefly summarize key insights we gain from studying the convergence of SGD:

• Stochastic approximation enables us to reduce the computational cost per iteration.

• The impact of approximation noise can be mitigated by adjusting the learning rate at an appropriate
decay rate (following the Robins-Monro condition) to ensure convergence.

These two insights form the foundation of stochastic approximation [Robbins and Monro, 1951], a concept
that extends beyond SGD and can be applied in various contexts.

Stochastic Approximation (SA). Consider a general iteration

xt+1 = G(xt) = Ew∼πt [G(xt;w)]. (11)

The stochastic approximation is given by

w1,t, w2,t, . . . , wB,t
iid∼ πt

xt+1 = (1− ηt)xt+ηt
1

B

B∑
j=1

G(xt;wj,t),
(12)

The key idea in stochastic approximation is the introduction of a convex combination to mitigate the impact
of noise in the stochastic estimate. During the iteration, ηt is gradually reduced to zero, helping to diminish
the influence of noise and ensuring convergence to the desired solution.
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In particular, when B = 1,

xt+1 = (1− ηt)xt + ηtG(xt;wt), with wt ∼ πt. (13)

Compared with SGD, the iteration (11) is more general and SGD is a special case of (13). Let G(x) =
x− α∇f(x) with f(x) = Ew∼π[f(x;w)]. Then,

xt+1 = (1− ηt)xt + ηtG(xt;wt) = (1− ηt)xt + ηt(xt − α∇f(xt;wt))

= xt − αηt∇f(xt;wt),

which recovers SGD. Moreover, πt is not necessary fixed for different t’s.
The following theorems shows that when G is contractive, we have that xt converges to the fixed point

in a rate of O(1/t).

Theorem 4.1. Consider the stochastic approximation (13) and let ηt = 1
(1−α)(t+1) . If there exists a α ∈

(0, 1) such that ‖G(x)−G(x′)‖ ≤ α‖x− x′‖, then. Then, we have

E[‖xT − x∗‖2] ≤
σ2 log(1 + T )

(1 + T )
.

Proof. By definition,

xt+1 − x∗ = (1− ηt)(xt − x∗) + ηt(G(xt;wt)− x∗)
= (1− ηt)(xt − x∗) + ηt(G(xt)−G(x∗) + ξt).

Let ∆t = ‖xt − x∗‖, we have

E[∆2
t+1] ≤ E[(1− ηt)2∆2

t + 2(1− ηt)ηtα∆2
t + η2tα

2∆2
t ] + η2t σ

2

= (1− (1− α)ηt)
2 E[∆2

t ] + η2t σ
2

≤ (1− (1− α)ηt)E[∆2
t ] + η2t σ

2.

Then, we can complete the proof by following the proof of Theorem 2.7.

Stochastic EM. Consider the problem of learning a latent variable model:

maxL(θ) := log

∫
p(x, z; θ) dz. (14)

The EM iteration is
θt+1 = argmaxQ(θ|θt) = argmaxEz|x,θt [log p(x, z|θ)],

where the right-hand side is an expectation. The stochastic approximation is given by

zt ∼ p(·|x, θt)
θt+1 = (1− ηt)θt + ηt argmax

θ
log p(x, zt|θ).

For each step, the output is a convex combination between the last-step solution and the current estimate.
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The Log Derivative Trick. Still consider the optimization problem (14). But this time, we consider SGD
to solve it. First,

∇L(θ) =

∫
∇p(x, z; θ) dz∫
p(x, z; θ) dz

=

∫
p(x, z; θ)∇ log p(x, z; θ) dz∫

p(x, z; θ) dz

=

∫
p(z|x; θ)p(x; θ)∇ log p(x, z; θ) dz

p(x; θ)

= Ez|x,θ[∇ log p(x, z|θ)], (15)

where the second step is called the log derivative trick. The trick formulates the derivative of marginal
likelihood in an expectation form, facilitating the gradient’s estimation. Then, we can solve (14) using the
following SGD:

zt ∼ p(z|x, θt)
θt+1 = θt − ηt∇ log p(x, zt|θt).
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