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Outline

1 Fully connected networks (aka MLP)

2 Convolution neural networks (CNN)

3 Recurrent neural networks (RNN)

4 Symmetry-preserving neural networks
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The perceptron model: 1943-1957

• In 1943, Warren McCulloch and Walter Pitts
developed the perceptron algorithm:

f(x) =

{
1 if w · x + b > 0

0 otherwise
.

The perceptron is a simplified model of a
biological neuron

• In 1957, the first implementation was a
machine built in 1957 at the Cornell
Aeronautical Laboratory by Frank Rosenblatt,
funded by the United States Office of Naval
Research.
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Two-layer neural networks

In 1965, Alexey Ivakhnenko and Valentin Lapa developed the Multiplayer Perceptron
(MLP).

• A two-layer network defines function define a map from Rd to Rk

fm(x; θ) =
m∑
j=1

ajσ(bj · x + cj)

= Aσ(Bx + c),

where A ∈ Rk×m, B ∈ Rm×k, c ∈ Rm. Here,
θ = {A,B, c} are the trainable parameters.
• σ : R 7→ R is the (nonlinear) activation function, e.g. σ(z) = ez/(1 + ez)

(sigmoid). When z is a vector or matrix, σ(z) should be understood in an
element-wise manner.

• m denotes the number of neurons, which is also called the network width.
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An adaptive feature perspective

• Let ϕ(x; b, c) = σ(b · x + c). Two-layer neural networks can be written as

fm(x; θ) =

m∑
j=1

ajσ(bj · x + cj) =

m∑
j=1

ajϕ(x; bj , cj)

If {(bj , cj)}mj=1 keep fixed after the (random) initialization and only train the
outer coefficients {aj}mj=1, we obtain a random feature model.

• However, for neural networks, {(bj , cj)}mj=1 are learned from data. Thus, two-layer
neural networks can be interpreted as a specific type of adaptive feature methods.
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Multilayer fully-connected networks

• A L-layer network is defined as f(x; θ) = xL, with x0 = x and

x`+1 = σ(W `x` + b`), ` = 0, 1, . . . , L− 1. (1)

• It is also common to write f(·; θ) in a compositional form:

f(x; θ) = A(L) ◦ σ ◦ A(L−1) ◦ · · · ◦ σ ◦ A(1)(x),

with A(`)(z) = W `z + b`.

• θ = {W `, b`}` are the trainable parameters. W ` ∈ Rm`+1×m` and b` ∈ Rm`+1 are
called the weight and bias of `-layer, respectively.

• Layers 1, 2, . . . , L are the hidden layers, and 0 and L are called the input and
output layer, respectively. L and max{m1, . . . ,mL−1} are the depth and width,
respectively.
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Multilayer fully-connected networks (Cont’d)

• We call f(·; θ) a fully-connected neural networks since {W `} are dense matrices.

• They are also called multilayer perceptron (MLP) networks due to historical
reasons.

Figure 1: Play with MLP: https://playground.tensorflow.org.
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Activation Functions

Saturating Sigmoid 1
1+e−x

Tanh ex−e−x

ex+e−x

Non-saturating ReLU max(0, x)
Leaky ReLU max(ax, x), where a is a small value, e.g. 0.01

Parametric ReLU max(ax, x), with a learnable
Softplus ln(1 + ex)

GELU xΦ(x)
SiLU xσsigmoid(βx)

Table 1: Commonly used activation functions. ReLU stands for rectified linear unit. Φ(·) is the
CDF of N (0, 1). GELU and SiLU (aka Swish) belongs to the self-gated family: xφ(x) with φ
being a CDF.

• The Gaussian error linear unit (GELU) and sigmoid linear unit (SiLU) becomes
popular recently.
• Question: Why is ReLU not good choice for solving scientific computing

problems?
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Comparison of activation functions
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• Softplus, GELU, and SiLU can be viewed as smoothed versions of ReLU.
Currently, ReLU and ReLU variants are the most popular ones.

• The non-monotonic GELU and SiLU become very popular very recently.

• For saturating activation functions, σ′(z) ≈ 0 when |z| is relatively large. This is
bad for training.
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Universal Approximation Property (UAP)

Theorem 1 (Cybenko 1989)

Let Ω be a compact subset in Rd. Assume that σ is sigmoidal, i.e.

σ(t)→

{
1 t→ +∞
0 t→ −∞.

For any f ∈ C(Ω) and ε > 0, there exist a two-layer neural network
fm(x; θ) =

∑m
j=1 ajσ(bTj x + cj) such that

sup
x∈Ω
|f(x)− fm(x)| ≤ ε.

• The above theorem can be extended to general non-polynomial activation
functions, including all the commonly-used activation functions.
• The above theorem says that two-layer neural networks can approximate any

continuous function.
• Here, we only state theorem with the proof deferred to the advanced topics.
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Remarks

The universal approximation theorem is an analog of Weierstrass Theorem in
mathematical analysis which asserts that on compact domains, continuous functions
can be approximated by polynomials.

By itself, it does not explain the success of neural network approximations over
polynomial approximations (in high dimensions).
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Convolution Neural Networks

Question:

• Why are MLPs not well-suited for processing image or video inputs?
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Convolutional neural networks

Figure 2: LeNet-5 for MNIST dataset

• Convolutional networks are similar to fully connected networks,

f(x) = A(L) ◦ σ ◦ A(L−1) ◦ · · · ◦ σ ◦ A(1)x.

The only difference is that A(`)z = z ∗w` + b` is a convolutional transformation.
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History of CNNs

• In the 1950s-1960s, Hubel and Wiesel demonstrated that cat visual cortices
contain neurons responsive to specific small regions of the visual field (receptive
filed).

Figure 3: If you are interested in learning how the human brain processes visual signals, we
recommend visiting this link.
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History of CNNs

• In 1969, Kunihiko Fukushima introduced the first deep ReLU CNN, called
Neocognitron, featuring fixed filters:
• The “S-layer”: a weight-shared receptive field layer, later termed conv. layers.
• The “C-layer”: a downsampling layer.

But the filters are not learnable.

14 / 47



History of CNNs

• In 1989, Yann LeCun et al. utilized backpropagation to learn convolutional
filters for handwritten digit classification.

• In 1995, Yann LeCun introduced LeNet-5, a 7-layer CNN designed for classifying
high-resolution “32x32” handwritten digit images, which was adopted by NCR
for its check reading system.
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History of CNNs

• In 2012, AlexNet, developed by Alex Krizhevsky and Geoffrey Hinton, won the
ImageNet challenge with images of size 224x224x3. This ignited the era of
deep learning.
• In 2015, ResNet, developed by Kaiming He et al., enabled the training of very

deep (hundreds layers) CNNs.

14 / 47



1D Convolutional transform

• Consider the 1-D signal x = (x1, . . . , xn) ∈ Rn.

• Given a filter w ∈ Rk, a “valid” convolutional transform, y = x ∗w, defines a
linear map: Rn 7→ Rn−k+1 as follows

ys =
k∑
i=1

xs+iwi, ∀s = 1, · · · , n− k + 1.

• Matrix Form: The convolutional transform can be written in a matrix form. For
example, if w = (w1, w2, w3)> ∈ R3, we have


y1

y2
...

yn−3+1

 =


w1 w2 w3 · · · 0 0 0
0 w1 w2 w3 · · · 0 0
0 0 w1 w2 w3 · · · 0
...

...
...

. . .
. . .

. . . 0
0 0 0 · · · w1 w2 w3




x1

x2

x3
...
xn

 .

The matrix corresponds to general w ∈ Rk is given similarly.
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2D convolutional transform

We can similarly define the “valid” convolutional transform for x ∈ Rd×d. Then, the
filter w ∈ Rk×k is a small matrix. Let y = x ∗ w ∈ R(n−k+1)×(n−k+1), then

ys,t =

k∑
i,j=1

xs+i,t+jwi,j .

• Sliding window!

• Small filter size!
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Padding

• Padding: To simplify the design of architecture of networks, we usually hope the
output has the same dimension as the input. We can first appropriately pad zeros
in the boundary, then perform “valid” convolutional transform

• Visualization: x = (1, 2,−1, 1,−3) ∈ R5, w = (1, 0,−1)T ∈ R3. Then
y = x ∗ w = (−2, 2, 1, 2, 1) ∈ R5.
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Motivation to use convolutional transforms

• Convolutional transforms are widely used for data with spatial structures, such as
audio (1-D), image(2-D), video(3-D).

• We usually choose a small filter size k, e.g. 3, 5., to better capture the local
correlation (see, e.g., the following example). The global structures are captured
by stacking many layers of convolutional transforms.

Figure 3: Taken from https://developer.nvidia.com/discover/convolution.

• The fully-connected linear transform: Wx + b, is not easy to capture the local
structures.

18 / 47
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Motivation to use convolutional transforms (Cont’d)

• Translation invariance.

• The number of parameters to be learned for convolutional transforms are much
smaller than that of fully-connected linear transforms. It is also much efficient to
compute former than the latter.
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Channels

Assume the input is an image.

• Let h` denote output of the `-th layer. h` ∈ RW`×H`×Cl is a 3-order tensor. h` is
called a feature map with shape (width W`) × (height H`) × (channels C`).

• Consider the input h0. C0 = 1 for a grayscale image; C0 = 3 for a color image.
The different channels store different information.

• It is expected that as we go deeper, the information stored at different channels
becomes eventually “disentangled ”. For example, when extracting features from
an image of human, we would like that channel 1 represents ”eye”; channel 2
represents “leg”; channel 3 represents “hand”, etc.
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A convolutional layer

A convolutional layer performs the convolution transform along the width and height
dimensions and the fully-connected transform along the channel dimension.
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Convolutional layer (Cont’d)

• Let hi ∈ RWi×Hi×Ci and ho ∈ RWo×Ho×Co denote the input and output feature
map, respectively. The filter w ∈ Rk×k×Ci×Co is 4-order tensor and bias b ∈ RCo .

• Mathematically, a convolutional layer makes the following transform:

hot =

Ci∑
s=1

his ∗ ws,t + bt,

where

• ws,t ∈ Rk×k denotes the filter from the s-th channel of input to the t-th channel of
output.

• hot is the t-th channel of output feature map.
• his is the s-th channel of input feature map.
• “∗” denotes the convolution transform with an appropriate padding.
• bt is the bias corresponding to t-th channel of output feature map.

• Note that (w, b) will be learned from the data.
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• ws,t ∈ Rk×k denotes the filter from the s-th channel of input to the t-th channel of

output.
• hot is the t-th channel of output feature map.

• his is the s-th channel of input feature map.
• “∗” denotes the convolution transform with an appropriate padding.
• bt is the bias corresponding to t-th channel of output feature map.

• Note that (w, b) will be learned from the data.
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Pooling Layer

• Pooling (aka down-sampling): There are two types of pooling: max pooling
and average pooling.

• Pooling layer: RW×H×C 7→ R
W
k
×H

k
×C .

• Pooling is performed for each channel, with no across-channel mixing.
• No learnable parameters.

• Motivation:
• Decreasing the spatial dimension can reduce the memory usage. Hence, we can

increase the number of channels without running out of the GPU memory.
• For image classification problems, coarse graining does not lose too much category

information.
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A Closer Look at LeNet-5

• MNIST: Handwritten Digits, 60, 000 training examples, 10, 000 test examples.
Each sample is a 28× 28 grayscale image.

• Task: build a classifier: f(x) : R28×28×1 7→ R10, with fi(x) ∈ [0, 1] and∑10
i=1 fi(x) = 1.
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A Closer Look at LeNet-5

• LeNet-5: Convolutional layers + Fully-connected layers + Softmax.

︸ ︷︷ ︸
feature extractor (5× 5 filter)

︸ ︷︷ ︸
classifier

• The outputs before the softmax layer are usually called logits. Then, softmax
layer converts logits to a probability: Rk 7→ Rk pi(x) = exi∑k

i=1 e
xi
, which gives the

predicted probability over the classes.

• One useful principle: While decreasing the spatial dimension, increase the
number of channels.
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Figure 4: Taken from Kaiming He’s slide.
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AlexNet: 2012

Contribution:

• BIG LeNet!

• deep CNN, GPU Acceleration. (Jürgen Schmidhuber team did the same thing in
2011, but unfortunately their CNNs are trained for a small-scale dataset.)

• ReLU and ImageNet.
27 / 47
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VGG: 2014

• Small (3× 3) convolutional layer.

• Better architecture-design principles.
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Residual Networks (ResNets): 2015

Vanilla net

x`+1 = h(x`; θ`)

Residual net

x`+1 = h(x`; θ`) + x`

h(·; θl) can be a fully-connected or
convolutional neural network.

• In ResNets, we learn the residual h(·; θ`) instead of the full map Id + h(·; θ`).

• Residual and vanilla nets have the same expressivity: x = ReLU(x)− ReLU(−x).

• Skip connections can be more general, e.g. connecting the input to the output
directly.
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Recurrent neural networks
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Motivation

Sequence predictions:

• Speech-to-text and text-to-speech.

• Machine translation.

• Sentiment analysis.

• Caption generalization.

When both input and output are sequence, this task is called sequence-to-sequence
prediction.
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Abstraction:

• Input: x = (x1, x2, . . . , xT ) with xt ∈ Rdx .

• Output: y = (y1, y2, . . . , yT ) with yt ∈ Rdy .

• Target:
yt = Ht(x1, . . . , xt).

Non-Markovian process!
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Recurrent neural networks

• Code/Feature: h = (h1, h2, . . . , hT ), with ht ∈ Rdh encodes the information of
(x1, x2, . . . , xt) through

ht = f(xt, ht−1).

• Model output:
yt = g(yt−1, ht)

• Parameterization: Use fully or convolutional networks to parameterize f and g.

• Note that f and g are shared among all time t’s.
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Vanilla RNN

• Update Formulation:

ht = tanh(Whhht−1 +Whxxt)

yt = Wyhht

• Visualization:
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Long Short Term Memory (LSTM)

• Gate update: ftit
ot

 = sigmoid

Wfxt + Ufht−1 + bf
Wixt + Uiht−1 + bi
Woxt + Uoht−1 + bo



• Memory update:

ct = (1− ft)� ct−1 + it � tanh (Wcxt + Ucht−1 + bc)

ht = ot � ct

where ot, ft, it ∈ [0, 1] represent the output gate, forget gate and input gate,
respectively. � denotes the hadamard product.
• Key Factors:

• The extra state ct (aka cell) is used to store long-time memory. In contrast, ht store
short-time memory.

• Gate mechanism.
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Encoder-decoder structures

What if the output and input have different lengths?
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Geometric Deep Learning: Symmetry-Preserving Neural Networks

Consider an invariance group G, e.g., the permutation, translation, and rotation
groups. For any x ∈ X , suppose σ · x ∈ Ω for any σ ∈ G.

• Invariance: f : X d 7→ R is said to be G-invariant if f(σ · x) = f(x) for any
σ ∈ G.

• Equivariace: F : X d 7→ X d is said to be G-equivariant if F (σ · x) = σ · F (x) for
any σ ∈ G.

We will focus on constructing networks satisfying certain invariances.
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Permutation symmetry

• A function f : Rn×d 7→ R is said to be permutation invariant if

f(xσ(1), . . . ,xσ(n)) = f(x1, . . . ,xn), (2)

for any permutation σ ∈ Sn and x1, . . . ,xn ∈ Rd.

• We can also understand f as a function over the set {x1, . . . ,xn}.

Example:

• f(x1, . . . , xn) = max{x1, . . . , xn}.
• f(x1, . . . , xn) =

∑n
i=1 xi.
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Applications

• Point cloud.

• Wave functions of bosons in quantum physics.

• Energy function of a molecule. The energy should keep unchanged if we swap two
identical atoms.
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Deep set models

Given the one-particular feature extractor g : Rd 7→ Rm and φ : Rm 7→ R1, the deep
set model is given by

(x1, . . . ,xn) 7→ φ
( n∑
j=1

g(xj)
)

In practice, we can replace g and φ with neural nets. The corresponding models are
called deep sets).
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Approximation of permutation-invariant functions

• UAP guarantees that any continuous permutation-invariant function can be
approximated by neural networks. But the networks are not permutation invariant.

• Can we construct models that has UAP while preserving the symmetry?

The following theorem shows deep sets are universal 2.

Theorem 2 (Han et al. 2019)

Let f : Rn×d 7→ R be a permutation invariant and continuous differentiable function.
Let Ω be a compact subset of Rd. For any ε ∈ (0,

√
ndn−1/d), there exits

g : Rd 7→ Rm, φ : Rm 7→ R such that

sup
x∈Ω

∣∣∣f(x1, . . . ,xn)− φ
( n∑
j=1

g(xj)
)∣∣∣ ≤ ε,

where m, the number of feature variables, satisfies that m ≥ O
(

2n(nd)
nd
2

εndn!

)

2Universal approximation of symmetric and anti-symmetric functions
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Translation and rotation invariance

• Let X = (x1, . . . ,xn)> ∈ Rn×d. A function f : Rn×d 7→ R is said to be
translation invariant if

f(x1 + b, . . . ,xn + b) = f(x1, . . . ,xn), ∀b ∈ Rd,

and to be rotational invariant if

f(Ux1, . . . , Uxn) = f(x1, . . . ,xn),

for any rotational matrix U .

Note that the the translation and rotation are applied to each “particle”. The most
important application is molecular modeling:
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Network designing

• Let rc be a pre-specified cut-off radius. Define the neighbor of atom i by

Ni = {j ∈ [n] : ‖xj − xi‖ ≤ rc} ,

and ni = |Ni|.

• For each Ni, define

Ri := (xj1 − xi, . . . ,xjni
− xi)

T ∈ Rni×d

for jk ∈ Ni. Then, the matrix
Ωi = RTi Ri

is invariant with respect to both translation and rotation.
• Consider the function of the following form

f(x1, . . . ,xn) =

n∑
i=1

hi(Ωi).

It is obvious that f is invariant to translation and rotation.
• Parameterize {hi} with neural network models.
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The effect of symmetry preservation

Figure 5: The effect of symmetry preservation on testing accuracy.
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We refer to https://geometricdeeplearning.com/ for more
resources on this topic.
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Summary

• Fully-connected networks

• Convolutional networks

• Recurrent neural networks.

• Residual neural networks.

• Symmetry-preserving in crucial in practice.

Other important but uncovered architectures: Transformer (we will discuss it later),
Graph neural network.
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Reading:

• MLP: https://www.deeplearningbook.org/contents/mlp.html
• CNN:

• https://indoml.com/2018/03/07/

student-notes-convolutional-neural-networks-cnn-introduction/
• https://www.deeplearningbook.org/contents/convnets.html

• RNN: https://www.deeplearningbook.org/contents/rnn.html

• Geometric Deep Learning: https://geometricdeeplearning.com.
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