
On the Training of Neural Networks

Instructor: Lei Wu 1

Mathematical Introduction to Machine Learning

Peking University, Fall 2024

1School of Mathematical Sciences; Center for Machine Learning Research
1 / 51



Table of Contents

1 Backprop algorithm

2 Gradient vanishing/exploding

3 Adaptive learning rate optimizers

4 Regularization

2 / 51



The problem for computing gradients

• Consider a general network defined by the forward propagation:

x0 = x

x` = h(x`−1; θ`) for ` = 1, 2, . . . , L,

f(x; Θ) = xL,

where θ` denote the `-th layer’s parameters.

• WLOG, assuming we have only one pair of data (x, y), the loss is given by

E(Θ) = l(f(x; Θ), y).

• Task: Computing the gradients {
∂E

∂θ1
,
∂E

∂θ2
, · · · , ∂E

∂θL

}
• Why is this problem not trivial?

3 / 51



The problem for computing gradients

• Consider a general network defined by the forward propagation:

x0 = x

x` = h(x`−1; θ`) for ` = 1, 2, . . . , L,

f(x; Θ) = xL,

where θ` denote the `-th layer’s parameters.

• WLOG, assuming we have only one pair of data (x, y), the loss is given by

E(Θ) = l(f(x; Θ), y).

• Task: Computing the gradients {
∂E

∂θ1
,
∂E

∂θ2
, · · · , ∂E

∂θL

}
• Why is this problem not trivial?

3 / 51



The problem for computing gradients

• Consider a general network defined by the forward propagation:

x0 = x

x` = h(x`−1; θ`) for ` = 1, 2, . . . , L,

f(x; Θ) = xL,

where θ` denote the `-th layer’s parameters.

• WLOG, assuming we have only one pair of data (x, y), the loss is given by

E(Θ) = l(f(x; Θ), y).

• Task: Computing the gradients {
∂E

∂θ1
,
∂E

∂θ2
, · · · , ∂E

∂θL

}

• Why is this problem not trivial?

3 / 51



The problem for computing gradients

• Consider a general network defined by the forward propagation:

x0 = x

x` = h(x`−1; θ`) for ` = 1, 2, . . . , L,

f(x; Θ) = xL,

where θ` denote the `-th layer’s parameters.

• WLOG, assuming we have only one pair of data (x, y), the loss is given by

E(Θ) = l(f(x; Θ), y).

• Task: Computing the gradients {
∂E

∂θ1
,
∂E

∂θ2
, · · · , ∂E

∂θL

}
• Why is this problem not trivial?

3 / 51



The back-propagation algorithm

• By the chain rule,

∂E

∂θ`
=
∂x`

∂θ`
∂E

∂x`
=
∂h(x`−1; θ`)

∂θ`
∂E

∂x`
.

Define `-th layer’s gradient signal as δ` := ∂E
∂x` . Then, it can be recursively computed via

the chain rule:

δ`−1 =
∂x`

∂x`−1
∂E

∂x`
=
∂h(x`−1; θ`)

∂x`−1
δ`

δL =
∂l(y′, y)

∂y′

∣∣∣
y′=xL

.

• Note: Compute the red parts need to access the hidden states {x`}L`=0, which are
computed during the forward propagation. Keep in mind that storing these hidden
states requires significant memory. In particular, the memory required scales linearly with
the batch size.

4 / 51



The back-propagation algorithm

• By the chain rule,

∂E

∂θ`
=
∂x`

∂θ`
∂E

∂x`
=
∂h(x`−1; θ`)

∂θ`
∂E

∂x`
.

Define `-th layer’s gradient signal as δ` := ∂E
∂x` . Then, it can be recursively computed via

the chain rule:

δ`−1 =
∂x`

∂x`−1
∂E

∂x`
=
∂h(x`−1; θ`)

∂x`−1
δ`

δL =
∂l(y′, y)

∂y′

∣∣∣
y′=xL

.

• Note: Compute the red parts need to access the hidden states {x`}L`=0, which are
computed during the forward propagation. Keep in mind that storing these hidden
states requires significant memory. In particular, the memory required scales linearly with
the batch size.

4 / 51



A visualization of back-prop algorithm

When h(z; θ`) = A`σ`(z) + b`, we have ∂E
∂b`

= ∂E
∂x` and δ` = ∂E

∂A` satisfies

Forward Propagation

x0 = x

x` = A`σ(x`−1) + b`

Back Propagation

δL = l′(f, y)

δ`−1 = σ′(x`−1)� (A`)>δ`

5 / 51



Computational and memory cost analysis

Backprop algorithm is a smart way to implement the chain rule.
Consider a network of depth L, width m, and the batch size B.

The computational cost is O(Bm2L).

• Reducing the dependence on B and m is not difficult via parallelization. GPUs are
great!! Nvidia Tesla A100 has 6912 cores! RTX 4090 has 16384 cores!

Figure 1: (Left): 4090; (Right) A100.

• Reducing the dependence on L is challenging as the computation is essentially serial
when do forward and backward propagation.

6 / 51



Computational and memory cost analysis

Backprop algorithm is a smart way to implement the chain rule.
Consider a network of depth L, width m, and the batch size B.

The memory cost is O(BmL+m2L). The blue part is due to we need to store the hidden
state for computing gradient.

• Big memory is necessary for training large models. A100 has 80G memory while RTX
4090 has only 24G.

6 / 51



Computational and memory cost analysis

Backprop algorithm is a smart way to implement the chain rule.
Consider a network of depth L, width m, and the batch size B.

The memory cost is O(BmL+m2L). The blue part is due to we need to store the hidden
state for computing gradient.

• Big memory is necessary for training large models. A100 has 80G memory while RTX
4090 has only 24G.

For training large models, we can

• Buy A100 and H100 if you are rich (aka “money is all you need”)!

• Reduce the batch size.

• Design memory-efficient optimizers?

6 / 51



Gradient vanishing and how to
mitigate it

7 / 51



Gradient vanishing and exploding

• Gradient vanishing:

δ` = [σ′(x`)� (A`+1)T ][σ′(x`+1)� (A`+2)T ] · · · [σ′(xL−1)� (AL)T δL]

The value is approximately the multiplication of L− l term. If σ′(z`) < 1 or ‖A`‖2 < 1,
then δ` will be exponentially small.

• Roughly, δ` ≈ (σ′(x)‖A‖2)L−`. This implies that deep networks are harder to train
than shallow networks.

• More precisely, it is due to the disparity of gradient scales across different layers that
makes it challenging to select a single learning rate that works effectively for all layers
simultaneously. Recall the picture of defining condition number!!

Observation

The vanishing/exploding gradient is the major obstacle in training deep nets.

8 / 51



Gradient vanishing and exploding

• Gradient vanishing:

δ` = [σ′(x`)� (A`+1)T ][σ′(x`+1)� (A`+2)T ] · · · [σ′(xL−1)� (AL)T δL]

The value is approximately the multiplication of L− l term. If σ′(z`) < 1 or ‖A`‖2 < 1,
then δ` will be exponentially small.

• Roughly, δ` ≈ (σ′(x)‖A‖2)L−`. This implies that deep networks are harder to train
than shallow networks.

• More precisely, it is due to the disparity of gradient scales across different layers that
makes it challenging to select a single learning rate that works effectively for all layers
simultaneously. Recall the picture of defining condition number!!

Observation

The vanishing/exploding gradient is the major obstacle in training deep nets.

8 / 51



Gradient vanishing and exploding

• Gradient vanishing:

δ` = [σ′(x`)� (A`+1)T ][σ′(x`+1)� (A`+2)T ] · · · [σ′(xL−1)� (AL)T δL]

The value is approximately the multiplication of L− l term. If σ′(z`) < 1 or ‖A`‖2 < 1,
then δ` will be exponentially small.

• Roughly, δ` ≈ (σ′(x)‖A‖2)L−`. This implies that deep networks are harder to train
than shallow networks.

• More precisely, it is due to the disparity of gradient scales across different layers that
makes it challenging to select a single learning rate that works effectively for all layers
simultaneously. Recall the picture of defining condition number!!

Observation

The vanishing/exploding gradient is the major obstacle in training deep nets.

8 / 51



Gradient vanishing and exploding

• Gradient vanishing:

δ` = [σ′(x`)� (A`+1)T ][σ′(x`+1)� (A`+2)T ] · · · [σ′(xL−1)� (AL)T δL]

The value is approximately the multiplication of L− l term. If σ′(z`) < 1 or ‖A`‖2 < 1,
then δ` will be exponentially small.

• Roughly, δ` ≈ (σ′(x)‖A‖2)L−`. This implies that deep networks are harder to train
than shallow networks.

• More precisely, it is due to the disparity of gradient scales across different layers that
makes it challenging to select a single learning rate that works effectively for all layers
simultaneously. Recall the picture of defining condition number!!

Observation

The vanishing/exploding gradient is the major obstacle in training deep nets.

8 / 51



Alleviate gradient vanishing: activation function

• Saturating activation: For saturating activation function, when |z| > O(1), we have
σ′(z) ≈ 0. This is extremely bad for deep networks.

• Non-saturating activation: Use ReLU and its variants as the nonlinear activation
function.

9 / 51



Alleviate gradient vanishing: initialization

• Denote by x` the output of `-th layer: x`+1 = σ(W `x` + b`).

• Consider the commonly random initialization W `
i,j ∈ N (0, t2w), b`j = 0 (we will discuss why

Gaussian is preferred later) and the standard Gaussian input: x ∼ N (0, Id).

How should the initialization scale tw be chosen?

• Principle: Ensure the forward process avoids vanishing. Specifically, we aim to choose an
initialization such that

E[|x`i |2] = 1, ` ∈ [L], i ∈ [m`]

where x`i is the output of the i-th neuron of `-th layer.

10 / 51



Alleviate gradient vanishing: initialization

• Denote by x` the output of `-th layer: x`+1 = σ(W `x` + b`).

• Consider the commonly random initialization W `
i,j ∈ N (0, t2w), b`j = 0 (we will discuss why

Gaussian is preferred later) and the standard Gaussian input: x ∼ N (0, Id).

How should the initialization scale tw be chosen?

• Principle: Ensure the forward process avoids vanishing. Specifically, we aim to choose an
initialization such that

E[|x`i |2] = 1, ` ∈ [L], i ∈ [m`]

where x`i is the output of the i-th neuron of `-th layer.

10 / 51



Derivation

Consider ReLU NNs and we have at initialization that

E[|x`+1
i |2] = E

σ2(

m∑̀
j=1

W `
i,jx

`
j)


= Ex` Eξi,j∼N (0,1)

‖x`‖2t2wσ2

m∑̀
j=1

ξ`i,j x̂
`
j

∣∣∣x`


= Ex` Eζ∼N (0,1)

[
‖x`‖2t2wσ2(ζ)

∣∣x`]
= m`t2wEζ∼N (0,1)[σ

2(ζ)]. Assume E[|x`i |2] = 1, (1)

where the second step follows from the positive homogeneity of ReLU: σ(λz) = λσ(z) for any
λ ≥ 0 and z ∈ R.

11 / 51



Derivation (cont’d)

Note that Eζ∼N (0,1)[σ
2(ζ)] = 1√

2π

∫∞
0
z2e−z

2/2 dz = 1/2. Hence, to ensure E[|x`+1
i |2] = 1,

we can take

t2w =
2

m`
.

• The initialization W `
i,j

iid∼ N (0, 2/m`), bj = 0 is called Kaiming-He initialization, which
has become the default initialization for all the ReLU-like activation functions.

• Similarly, we can get t2w = 1/m` if σ(z) = z. This corresponds to the LeCun initialization.
LeCun initialization works pretty well for the tanh activation function, since tanh(z) ≈ z
when z is close to the origin.

• Similar argument can be used to derive the initialization for other activation functions.

• It is also common to use the uniform initialization: W `
i,j ∼ Unif[−t, t], where the specific

value of t can be derived similarly.

12 / 51



Derivation (cont’d)

Note that Eζ∼N (0,1)[σ
2(ζ)] = 1√

2π

∫∞
0
z2e−z

2/2 dz = 1/2. Hence, to ensure E[|x`+1
i |2] = 1,

we can take

t2w =
2

m`
.

• The initialization W `
i,j

iid∼ N (0, 2/m`), bj = 0 is called Kaiming-He initialization, which
has become the default initialization for all the ReLU-like activation functions.

• Similarly, we can get t2w = 1/m` if σ(z) = z. This corresponds to the LeCun initialization.
LeCun initialization works pretty well for the tanh activation function, since tanh(z) ≈ z
when z is close to the origin.

• Similar argument can be used to derive the initialization for other activation functions.

• It is also common to use the uniform initialization: W `
i,j ∼ Unif[−t, t], where the specific

value of t can be derived similarly.

12 / 51



Derivation (cont’d)

Note that Eζ∼N (0,1)[σ
2(ζ)] = 1√

2π

∫∞
0
z2e−z

2/2 dz = 1/2. Hence, to ensure E[|x`+1
i |2] = 1,

we can take

t2w =
2

m`
.

• The initialization W `
i,j

iid∼ N (0, 2/m`), bj = 0 is called Kaiming-He initialization, which
has become the default initialization for all the ReLU-like activation functions.

• Similarly, we can get t2w = 1/m` if σ(z) = z. This corresponds to the LeCun initialization.
LeCun initialization works pretty well for the tanh activation function, since tanh(z) ≈ z
when z is close to the origin.

• Similar argument can be used to derive the initialization for other activation functions.

• It is also common to use the uniform initialization: W `
i,j ∼ Unif[−t, t], where the specific

value of t can be derived similarly.

12 / 51



Derivation (cont’d)

Note that Eζ∼N (0,1)[σ
2(ζ)] = 1√

2π

∫∞
0
z2e−z

2/2 dz = 1/2. Hence, to ensure E[|x`+1
i |2] = 1,

we can take

t2w =
2

m`
.

• The initialization W `
i,j

iid∼ N (0, 2/m`), bj = 0 is called Kaiming-He initialization, which
has become the default initialization for all the ReLU-like activation functions.

• Similarly, we can get t2w = 1/m` if σ(z) = z. This corresponds to the LeCun initialization.
LeCun initialization works pretty well for the tanh activation function, since tanh(z) ≈ z
when z is close to the origin.

• Similar argument can be used to derive the initialization for other activation functions.

• It is also common to use the uniform initialization: W `
i,j ∼ Unif[−t, t], where the specific

value of t can be derived similarly.

12 / 51



Numerical illustration

In the following figure, we see that with the right initialization, we can avoid the
vanishing/exploding for both the forward and backward propagation at the initialization.

0 20 40 60 80 100
layer 

10 1

100

E b

101 x

t2
w = 2

m

0 20 40 60 80 100
layer 

10 15

10 12

10 9

10 6

10 3

100

E b

10 14

10 11

10 8

10 5

10 2

101

x

t2
w = 1

m

Figure 1: ReLU networks with L = 100,m` = 200 for all ` = 1, . . . , L− 1. Left: The case of
t2w = 2/m` (Kaiming-He initialization); Right: The case of t2w = 1/m` (LeCun initialization).

13 / 51



Why do we choose the random initialization with a large support?

1 We have an understanding for the size of the initialization.

2 We do not have an understanding for the directions we need.

1 Consider a two-layer neural network

f(x) =

m∑
i=1

ai σ
(
w>i x+ bi

)
.

If (ai,wi, bi) = (aj ,wj , bj) at initialization, then they will remain the same for all time
under gradient flow optimization.

2 We want ‘diverse’ initialization with many different vectors in many different directions, but
we do not know which directions are important.

3 Popular: random initialization with mean zero and appropriate variance.

3 We can explore other forms of initialization, e.g., the orthogonal initialization:
choosing W ` to be the multiple of an orthogonal matrix (if m`+1 = m`). Whether these
initialization overperform or underperform random Gaussian seems to be problem
dependent and is not fully understood.

14 / 51



Why do we choose the random initialization with a large support?

1 We have an understanding for the size of the initialization.

2 We do not have an understanding for the directions we need.

1 Consider a two-layer neural network

f(x) =

m∑
i=1

ai σ
(
w>i x+ bi

)
.

If (ai,wi, bi) = (aj ,wj , bj) at initialization, then they will remain the same for all time
under gradient flow optimization.

2 We want ‘diverse’ initialization with many different vectors in many different directions, but
we do not know which directions are important.

3 Popular: random initialization with mean zero and appropriate variance.

3 We can explore other forms of initialization, e.g., the orthogonal initialization:
choosing W ` to be the multiple of an orthogonal matrix (if m`+1 = m`). Whether these
initialization overperform or underperform random Gaussian seems to be problem
dependent and is not fully understood.

14 / 51



Why do we choose the random initialization with a large support?

1 We have an understanding for the size of the initialization.

2 We do not have an understanding for the directions we need.

1 Consider a two-layer neural network

f(x) =

m∑
i=1

ai σ
(
w>i x+ bi

)
.

If (ai,wi, bi) = (aj ,wj , bj) at initialization, then they will remain the same for all time
under gradient flow optimization.

2 We want ‘diverse’ initialization with many different vectors in many different directions, but
we do not know which directions are important.

3 Popular: random initialization with mean zero and appropriate variance.

3 We can explore other forms of initialization, e.g., the orthogonal initialization:
choosing W ` to be the multiple of an orthogonal matrix (if m`+1 = m`). Whether these
initialization overperform or underperform random Gaussian seems to be problem
dependent and is not fully understood.

14 / 51



Why do we choose the random initialization with a large support?

1 We have an understanding for the size of the initialization.

2 We do not have an understanding for the directions we need.

1 Consider a two-layer neural network

f(x) =

m∑
i=1

ai σ
(
w>i x+ bi

)
.

If (ai,wi, bi) = (aj ,wj , bj) at initialization, then they will remain the same for all time
under gradient flow optimization.

2 We want ‘diverse’ initialization with many different vectors in many different directions, but
we do not know which directions are important.

3 Popular: random initialization with mean zero and appropriate variance.

3 We can explore other forms of initialization, e.g., the orthogonal initialization:
choosing W ` to be the multiple of an orthogonal matrix (if m`+1 = m`). Whether these
initialization overperform or underperform random Gaussian seems to be problem
dependent and is not fully understood.

14 / 51



Alleviate the gradient vanishing: Skip connections

• Intuitively speaking, skip connections build
highways for the information propagation, such that
information does not need to go through the
convolutional, fully-connected, and activation layers.

• Mathematically,
• x`+1 = x` + h`(x

`)
• xL = x` +

∑L−1
i=` hi(x

i)

• ∂E
∂x` = ∂E

∂xL

(
1 +

∑L−1
i=`

∂hi(x
i)

∂x`

)
.

If the residual blocks {hi} are small, one can see
that the gradients are almost independent of the
depth. So the gradient is well-controlled.

• History: LSTM → Highway network → ResNet.

15 / 51

https://arxiv.org/abs/1505.00387


Alleviate the gradient vanishing: Skip connections

• Intuitively speaking, skip connections build
highways for the information propagation, such that
information does not need to go through the
convolutional, fully-connected, and activation layers.

• Mathematically,
• x`+1 = x` + h`(x

`)
• xL = x` +

∑L−1
i=` hi(x

i)

• ∂E
∂x` = ∂E

∂xL

(
1 +

∑L−1
i=`

∂hi(x
i)

∂x`

)
.

If the residual blocks {hi} are small, one can see
that the gradients are almost independent of the
depth. So the gradient is well-controlled.

• History: LSTM → Highway network → ResNet.

15 / 51

https://arxiv.org/abs/1505.00387


Numerical evidence

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r 
(%

)

 

 

plain-18
plain-34

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r 
(%

)

 

 

ResNet-18
ResNet-34

18-layer

34-layer
18-layer

34-layer

Figure 2: Training on ImageNet. Thin curves denote training error, and bold curves denote validation
error. This figure is taken from (Kaiming He et al., 2015).

16 / 51

https://arxiv.org/abs/1512.03385


Alleviate the gradient vanishing: Batch normalization

• Batch normalization(BN) is one of most effective method to alleviate the gradient
vanishing issue.

• A batch normalization layer define a map: BNγ,β : {x1, . . . ,xm} → {x̃1, . . . x̃m} through

µB ←
1

m

m∑
i=1

xi

σ2
B ←

1

m

m∑
i=1

(xi − µB)
2

x̂i ←
xi − µB√
σ2
B + ε

x̃i ← γx̂i + β ≡ BNγ,β (xi)

where γ, β are reintroduced to preserve the net-
work’s expressivity.

Figure 3: Left: Convolutional nets with
BN; Right: Convolutional without BN.

17 / 51



Alleviate the gradient vanishing: Batch normalization

• Batch normalization(BN) is one of most effective method to alleviate the gradient
vanishing issue.

• A batch normalization layer define a map: BNγ,β : {x1, . . . ,xm} → {x̃1, . . . x̃m} through

µB ←
1

m

m∑
i=1

xi

σ2
B ←

1

m

m∑
i=1

(xi − µB)
2

x̂i ←
xi − µB√
σ2
B + ε

x̃i ← γx̂i + β ≡ BNγ,β (xi)

where γ, β are reintroduced to preserve the net-
work’s expressivity.

Figure 3: Left: Convolutional nets with
BN; Right: Convolutional without BN.

17 / 51



Performance of BN

5M 10M 15M 20M 25M 30M
0.4

0.5

0.6

0.7

0.8

Inception

BN−Baseline

BN−x5

BN−x30

BN−x5−Sigmoid

Steps to match Inception

Figure 4: Validation accuracy of Inception and its batch-normalized variants, vs. the number of
training steps. BN-baseline: same as inception with BN layers added before each nonlinearity. BN-x5:
inception with batch normalization and the learning rate is increased by a factor 5, compared to the
baseline. BN-x30 is similar. This figure is taken from https://arxiv.org/pdf/1502.03167.pdf.

18 / 51

https://arxiv.org/pdf/1502.03167.pdf


Black magics: Batch normalization

BN is VERY useful for training very deep nets. But it also causes several strange issues.

• For networks with BN layers, we cannot use too small batch size, e.g. B = 1, where
the σB and µB are far away from the σ and µ, the ones over the whole dataset.)

• How do we compute σB and µB during the inference, where we may only have one
sample?

Use the following ones obtained from the moving average during the training:

σinf ← (1− α)σinf + ασtB (2)

µinf ← (1− α)µinf + αµtB , (3)

where σtB , µ
t
B are the statistics calculated at the t-th step of training.

19 / 51



Black magics: Batch normalization

BN is VERY useful for training very deep nets. But it also causes several strange issues.

• For networks with BN layers, we cannot use too small batch size, e.g. B = 1, where
the σB and µB are far away from the σ and µ, the ones over the whole dataset.)

• How do we compute σB and µB during the inference, where we may only have one
sample?

Use the following ones obtained from the moving average during the training:

σinf ← (1− α)σinf + ασtB (2)

µinf ← (1− α)µinf + αµtB , (3)

where σtB , µ
t
B are the statistics calculated at the t-th step of training.

19 / 51



Black magics: Batch normalization

BN is VERY useful for training very deep nets. But it also causes several strange issues.

• For networks with BN layers, we cannot use too small batch size, e.g. B = 1, where
the σB and µB are far away from the σ and µ, the ones over the whole dataset.)

• How do we compute σB and µB during the inference, where we may only have one
sample?

Use the following ones obtained from the moving average during the training:

σinf ← (1− α)σinf + ασtB (2)

µinf ← (1− α)µinf + αµtB , (3)

where σtB , µ
t
B are the statistics calculated at the t-th step of training.

19 / 51



Black magics: Batch normalization

BN is VERY useful for training very deep nets. But it also causes several strange issues.

• For networks with BN layers, we cannot use too small batch size, e.g. B = 1, where
the σB and µB are far away from the σ and µ, the ones over the whole dataset.)

• How do we compute σB and µB during the inference, where we may only have one
sample?
Use the following ones obtained from the moving average during the training:

σinf ← (1− α)σinf + ασtB (2)

µinf ← (1− α)µinf + αµtB , (3)

where σtB , µ
t
B are the statistics calculated at the t-th step of training.

19 / 51



Black magics: Batch normalization

Training and test disparity:

• At the training time, {σB , µB} are computed over the samples at the current batch.

• At the inference/testing time, {σinf, µinf} are fixed, which are approximations of the
statistics of whole dataset obtained by the exponential moving average during the training.

20 / 51



Layer normalization

• Let Z = (z1, . . . , zB)> ∈ RB×H be our feature map. The first and second dimensions
represent the batch and feature dimensions, respectively. 2

• A layer normalization (LN) layer define a map LNγ,β : {z1, . . . , zB} → {z̃1, . . . z̃B} as
follows

µi =
1

H

H∑
j=1

zi,j , σi =

√√√√ 1

H

H∑
j=1

(zi,j − µi)2 for i = 1, . . . , B, (4)

ẑi ← γ � zi − µi
σi

+ β, (5)

where the learnable rescaling factors γ,β ∈ RH .

• Unlike from BN, LN normalizes data along the feature dimension and performs rescaling in
an element-wise manner.

• Question: Is element-wise rescaling necessary for LN?

2For simplicity, we consider the feature map to have only one feature dimension. However, for models like
CNNs, H should be interpreted as the product of width, height, and channels.

21 / 51



Layer normalization

• Let Z = (z1, . . . , zB)> ∈ RB×H be our feature map. The first and second dimensions
represent the batch and feature dimensions, respectively. 2

• A layer normalization (LN) layer define a map LNγ,β : {z1, . . . , zB} → {z̃1, . . . z̃B} as
follows

µi =
1

H

H∑
j=1

zi,j , σi =

√√√√ 1

H

H∑
j=1

(zi,j − µi)2 for i = 1, . . . , B, (4)

ẑi ← γ � zi − µi
σi

+ β, (5)

where the learnable rescaling factors γ,β ∈ RH .

• Unlike from BN, LN normalizes data along the feature dimension and performs rescaling in
an element-wise manner.

• Question: Is element-wise rescaling necessary for LN?

2For simplicity, we consider the feature map to have only one feature dimension. However, for models like
CNNs, H should be interpreted as the product of width, height, and channels.

21 / 51



Layer normalization (cont’d)

• BN is often utilized in MLP and CNN, whereas LN is more frequently employed in training
RNNs and Transformers.

• LN is uniquely advantageous as it can be effectively applied even when the batch size is as
small as 1.

Figure 5: Taken from https://www.kaggle.com/code/halflingwizard/how-does-layer-normalization-work.

22 / 51

https://www.kaggle.com/code/halflingwizard/how-does-layer-normalization-work


Avoid gradient exploding: gradient clipping

• Let gt denote the stochastic gradient at step t.

• Replace gt with its clipped version: gt → clipγ(gt), where the clipping operator is defined
as

clipγ(g) = min

(
1,

γ

‖g‖

)
g

• In certain situations, element-wise clipping is more effective:

(
clipγ(g)

)
i

= min

(
1,

γ

|gi|

)
gi.

• Gradient clipping is widely used in training recurrent neural networks (RNNs) and
Transformer. One potential mechanism behind clipping is to mitigate the impact of
heavy-tailed noise. Recall that in the convergence analysis of SGD, convergence requires

E[|ξt|2] <∞.

What happens if the above condition is not met? Read: Why are adaptive methods
good for attention models?

23 / 51

https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf


Avoid gradient exploding: gradient clipping

• Let gt denote the stochastic gradient at step t.

• Replace gt with its clipped version: gt → clipγ(gt), where the clipping operator is defined
as

clipγ(g) = min

(
1,

γ

‖g‖

)
g

• In certain situations, element-wise clipping is more effective:

(
clipγ(g)

)
i

= min

(
1,

γ

|gi|

)
gi.

• Gradient clipping is widely used in training recurrent neural networks (RNNs) and
Transformer. One potential mechanism behind clipping is to mitigate the impact of
heavy-tailed noise. Recall that in the convergence analysis of SGD, convergence requires

E[|ξt|2] <∞.

What happens if the above condition is not met? Read: Why are adaptive methods
good for attention models?

23 / 51

https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf


Avoid gradient exploding: gradient clipping

• Let gt denote the stochastic gradient at step t.

• Replace gt with its clipped version: gt → clipγ(gt), where the clipping operator is defined
as

clipγ(g) = min

(
1,

γ

‖g‖

)
g

• In certain situations, element-wise clipping is more effective:

(
clipγ(g)

)
i

= min

(
1,

γ

|gi|

)
gi.

• Gradient clipping is widely used in training recurrent neural networks (RNNs) and
Transformer. One potential mechanism behind clipping is to mitigate the impact of
heavy-tailed noise. Recall that in the convergence analysis of SGD, convergence requires

E[|ξt|2] <∞.

What happens if the above condition is not met? Read: Why are adaptive methods
good for attention models?

23 / 51

https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf


Avoid gradient exploding: gradient clipping

• Let gt denote the stochastic gradient at step t.

• Replace gt with its clipped version: gt → clipγ(gt), where the clipping operator is defined
as

clipγ(g) = min

(
1,

γ

‖g‖

)
g

• In certain situations, element-wise clipping is more effective:

(
clipγ(g)

)
i

= min

(
1,

γ

|gi|

)
gi.

• Gradient clipping is widely used in training recurrent neural networks (RNNs) and
Transformer. One potential mechanism behind clipping is to mitigate the impact of
heavy-tailed noise. Recall that in the convergence analysis of SGD, convergence requires

E[|ξt|2] <∞.

What happens if the above condition is not met? Read: Why are adaptive methods
good for attention models?

23 / 51

https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf


Adaptive learning rate optimizers

24 / 51



Motivation

• Gradients across different layers have varying scales, making a single global learning rate
ineffective. Recall the picture behind the concept of condition number.

• Layer-wise learning rates! A great idea but hard to implement.

• Adaptive learning rates:

Automatically tune learning rates according to the gradient size of each
coordinate.

25 / 51



Adagrad

• Consider to minimize minx∈Rp f(x). Let gt be the t-th step (stochastic) gradient.

• SGD updates as follows
xt+1 = xt − ηgt.

• The adaptive gradient (Adagrad) method updates as follows

Gt+1 = Gt + g2t

xt+1 = xt − η
gt√

Gt+1 + ε
,

where ε ∼ 10−7 prevents the division by zero. All multiplication and division should be
understood in an element-wise manner.

• Note that where Gt =
∑t
s=0 g

2
t stores the magnitude of each coordinate.

• Issue: Gt is increasing monotonically. Thus, the effective learning rate is decreasing in
time.

26 / 51



Adagrad

• Consider to minimize minx∈Rp f(x). Let gt be the t-th step (stochastic) gradient.

• SGD updates as follows
xt+1 = xt − ηgt.

• The adaptive gradient (Adagrad) method updates as follows

Gt+1 = Gt + g2t

xt+1 = xt − η
gt√

Gt+1 + ε
,

where ε ∼ 10−7 prevents the division by zero. All multiplication and division should be
understood in an element-wise manner.

• Note that where Gt =
∑t
s=0 g

2
t stores the magnitude of each coordinate.

• Issue: Gt is increasing monotonically. Thus, the effective learning rate is decreasing in
time.

26 / 51



Adagrad

• Consider to minimize minx∈Rp f(x). Let gt be the t-th step (stochastic) gradient.

• SGD updates as follows
xt+1 = xt − ηgt.

• The adaptive gradient (Adagrad) method updates as follows

Gt+1 = Gt + g2t

xt+1 = xt − η
gt√

Gt+1 + ε
,

where ε ∼ 10−7 prevents the division by zero. All multiplication and division should be
understood in an element-wise manner.

• Note that where Gt =
∑t
s=0 g

2
t stores the magnitude of each coordinate.

• Issue: Gt is increasing monotonically. Thus, the effective learning rate is decreasing in
time.

26 / 51



Adagrad

• Consider to minimize minx∈Rp f(x). Let gt be the t-th step (stochastic) gradient.

• SGD updates as follows
xt+1 = xt − ηgt.

• The adaptive gradient (Adagrad) method updates as follows

Gt+1 = Gt + g2t

xt+1 = xt − η
gt√

Gt+1 + ε
,

where ε ∼ 10−7 prevents the division by zero. All multiplication and division should be
understood in an element-wise manner.

• Note that where Gt =
∑t
s=0 g

2
t stores the magnitude of each coordinate.

• Issue: Gt is increasing monotonically. Thus, the effective learning rate is decreasing in
time.

26 / 51



rProp

• To alleviate the “the gradients of different weights/layers are very different”, the rProp
(resilient prop) 3 algorithm proposes to update weights using only the sign of gradient.

xt+1 = xt − ηsign(∇f(xt)).

• All weights updates all of the same magnitude!
• It escapes from plateaus with tiny gradient quickly!

• Unfortunately, rProp does not work with minibatch gradients!

3M. Riedmiller, H. Braun, A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP
Algorithm. IJCNN 1993.

27 / 51



rProp

• To alleviate the “the gradients of different weights/layers are very different”, the rProp
(resilient prop) 3 algorithm proposes to update weights using only the sign of gradient.

xt+1 = xt − ηsign(∇f(xt)).

• All weights updates all of the same magnitude!
• It escapes from plateaus with tiny gradient quickly!

• Unfortunately, rProp does not work with minibatch gradients!

3M. Riedmiller, H. Braun, A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP
Algorithm. IJCNN 1993.

27 / 51



RMSProp

• RMSProp (Tieleman & Hinton, 2012) iterates as follows

vt+1 = βvt + (1− β)g2t

xt+1 = xt − η
gt√

vt+1 + ε
.

• If β = 0, gt = ∇f(xt) (i.e., the full-batch case), it becomes

xt+1 = xt − η
∇f(xt)√
|∇f(xt)|2 + ε

(rProp ).

It is the sign gradient descent (signGD) if ε = 0.

• RMSProp is originally proposed as a stochastic version of rProp in Hinton’s course slide.
[Q: Why is it non-trivial?]

28 / 51

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


RMSProp

• RMSProp (Tieleman & Hinton, 2012) iterates as follows

vt+1 = βvt + (1− β)g2t

xt+1 = xt − η
gt√

vt+1 + ε
.

• If β = 0, gt = ∇f(xt) (i.e., the full-batch case), it becomes

xt+1 = xt − η
∇f(xt)√
|∇f(xt)|2 + ε

(rProp ).

It is the sign gradient descent (signGD) if ε = 0.

• RMSProp is originally proposed as a stochastic version of rProp in Hinton’s course slide.
[Q: Why is it non-trivial?]

28 / 51

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


RMSProp

• RMSProp (Tieleman & Hinton, 2012) iterates as follows

vt+1 = βvt + (1− β)g2t

xt+1 = xt − η
gt√

vt+1 + ε
.

• If β = 0, gt = ∇f(xt) (i.e., the full-batch case), it becomes

xt+1 = xt − η
∇f(xt)√
|∇f(xt)|2 + ε

(rProp ).

It is the sign gradient descent (signGD) if ε = 0.

• RMSProp is originally proposed as a stochastic version of rProp in Hinton’s course slide.
[Q: Why is it non-trivial?]

28 / 51

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


ADAM 4 optimizer

1 Compute the (stochastic) gradient gt.

2 Estimate the first-order and second-order moment:

mt+1 = β1mt + (1− β1)gt

vt+1 = β2vt + (1− β2)g2t .

3 Bias correction:
mt+1 =

mt+1

1− βt1
, vt+1 =

vt+1

1− βt2
.

4 Update parameters:

xt+1 = xt − η
mt+1√
vt+1 + ε

.

Again, the square root and division are computed in coordinate-wise manner.

In a summary,

ADAM=RMSProp + momentum

4Adaptive momentum: https://arxiv.org/pdf/1412.6980.pdf
29 / 51



ADAM 4 optimizer

1 Compute the (stochastic) gradient gt.

2 Estimate the first-order and second-order moment:

mt+1 = β1mt + (1− β1)gt

vt+1 = β2vt + (1− β2)g2t .

3 Bias correction:
mt+1 =

mt+1

1− βt1
, vt+1 =

vt+1

1− βt2
.

4 Update parameters:

xt+1 = xt − η
mt+1√
vt+1 + ε

.

Again, the square root and division are computed in coordinate-wise manner.

In a summary,

ADAM=RMSProp + momentum

4Adaptive momentum: https://arxiv.org/pdf/1412.6980.pdf
29 / 51



ADAM 4 optimizer

1 Compute the (stochastic) gradient gt.

2 Estimate the first-order and second-order moment:

mt+1 = β1mt + (1− β1)gt

vt+1 = β2vt + (1− β2)g2t .

3 Bias correction:
mt+1 =

mt+1

1− βt1
, vt+1 =

vt+1

1− βt2
.

4 Update parameters:

xt+1 = xt − η
mt+1√
vt+1 + ε

.

Again, the square root and division are computed in coordinate-wise manner.

In a summary,

ADAM=RMSProp + momentum

4Adaptive momentum: https://arxiv.org/pdf/1412.6980.pdf
29 / 51



ADAM: Explanation

1 Common initialization: m0 = 0, v0 = 0. This causes mt and gt to be small for small t. If
E[g2t ] ≈ g2, then

E[vt] = (1− β2)

t∑
s=0

βs2 E[g2t−s] ≈ g2(1− βt2).

The bias-correction step is used to correct this initialization bias.

2 We can also initialize m0 = g0, v0 = g20 , for which the bias-correction step is not necessary.

3 Default hyperparameters in the original Adam paper are β1 = 0.9, β2 = 0.999, ε = 10−8.
The learning rate should be tuned experimentally in each problem.

4 There are (very recent) convergence results for ADAM both in the convex and non-convex
case. However, all these theoretical results are not interesting since they cannot explain
why ADAM converges faster than SGD.

30 / 51



ADAM: Explanation

1 Common initialization: m0 = 0, v0 = 0. This causes mt and gt to be small for small t. If
E[g2t ] ≈ g2, then

E[vt] = (1− β2)

t∑
s=0

βs2 E[g2t−s] ≈ g2(1− βt2).

The bias-correction step is used to correct this initialization bias.

2 We can also initialize m0 = g0, v0 = g20 , for which the bias-correction step is not necessary.

3 Default hyperparameters in the original Adam paper are β1 = 0.9, β2 = 0.999, ε = 10−8.
The learning rate should be tuned experimentally in each problem.

4 There are (very recent) convergence results for ADAM both in the convex and non-convex
case. However, all these theoretical results are not interesting since they cannot explain
why ADAM converges faster than SGD.

30 / 51



Continuous-time limits of ADAM

Let β1 = 1− ηγ1, β2 = 1− ηγ2. Then, taking η → 0, the limit becomes

ṁt = γ1(∇f(xt)−mt)

v̇t = γ2(|∇f(xt)|2 − vt)

ẋt = − mt√
vt + ε

Taking γ1, γ2 →∞, we obtain the signGD flow:

ẋt = − ∇f(xt)√
|∇f(xt)|2 + ε

.

31 / 51



A comparison of different optimizers

Figure 6: Taken from the original Adam paper https://arxiv.org/pdf/1412.6980.pdf.

32 / 51

https://arxiv.org/pdf/1412.6980.pdf


Summary

• Adam has become the de facto optimizer for training large neural networks.

• For smaller networks or tasks requiring high precision, consider using second-order
optimizers such as L-BFGS, K-FAC, or the Natural Gradient method.

33 / 51



Regularization

34 / 51



Over-parameterization in deep learning

• Neural networks often work in the over-parameterized regime, i.e., the number of samples
are much larger than data size.

35 / 51



Weight decay

• Let θt+1 = θt − ηht be the update of the algorithm A. The A+weight decay iterates as
follows

θt+1 = θt − η(ht + λθt) = (1− λη)θt − ηht.

• When A is SGD, it is equivalent to the squared `2 regularization as

∇
(
R̂(θ) +

λ

2
‖θ‖2

)
= ∇R̂(θ) + λθ.

• For other optimizers like ADAM, they are not equivalent. This issue was first
pointed out in https://openreview.net/pdf?id=rk6qdGgCZ and currently, Adam +
weight decay (AdamW) has become the default optimizers in training large language
models (LLMs), e.g., ChatGPT.

• Why weight decay is so useful in training LLMs is still unclear !!! [A research
topic!!]

You should always try it due to the simplicity.

36 / 51

https://openreview.net/pdf?id=rk6qdGgCZ


Weight decay

• Let θt+1 = θt − ηht be the update of the algorithm A. The A+weight decay iterates as
follows

θt+1 = θt − η(ht + λθt) = (1− λη)θt − ηht.
• When A is SGD, it is equivalent to the squared `2 regularization as

∇
(
R̂(θ) +

λ

2
‖θ‖2

)
= ∇R̂(θ) + λθ.

• For other optimizers like ADAM, they are not equivalent. This issue was first
pointed out in https://openreview.net/pdf?id=rk6qdGgCZ and currently, Adam +
weight decay (AdamW) has become the default optimizers in training large language
models (LLMs), e.g., ChatGPT.

• Why weight decay is so useful in training LLMs is still unclear !!! [A research
topic!!]

You should always try it due to the simplicity.

36 / 51

https://openreview.net/pdf?id=rk6qdGgCZ


Weight decay

• Let θt+1 = θt − ηht be the update of the algorithm A. The A+weight decay iterates as
follows

θt+1 = θt − η(ht + λθt) = (1− λη)θt − ηht.
• When A is SGD, it is equivalent to the squared `2 regularization as

∇
(
R̂(θ) +

λ

2
‖θ‖2

)
= ∇R̂(θ) + λθ.

• For other optimizers like ADAM, they are not equivalent. This issue was first
pointed out in https://openreview.net/pdf?id=rk6qdGgCZ and currently, Adam +
weight decay (AdamW) has become the default optimizers in training large language
models (LLMs), e.g., ChatGPT.

• Why weight decay is so useful in training LLMs is still unclear !!! [A research
topic!!]

You should always try it due to the simplicity.

36 / 51

https://openreview.net/pdf?id=rk6qdGgCZ


Weight decay

• Let θt+1 = θt − ηht be the update of the algorithm A. The A+weight decay iterates as
follows

θt+1 = θt − η(ht + λθt) = (1− λη)θt − ηht.
• When A is SGD, it is equivalent to the squared `2 regularization as

∇
(
R̂(θ) +

λ

2
‖θ‖2

)
= ∇R̂(θ) + λθ.

• For other optimizers like ADAM, they are not equivalent. This issue was first
pointed out in https://openreview.net/pdf?id=rk6qdGgCZ and currently, Adam +
weight decay (AdamW) has become the default optimizers in training large language
models (LLMs), e.g., ChatGPT.

• Why weight decay is so useful in training LLMs is still unclear !!! [A research
topic!!]

You should always try it due to the simplicity.

36 / 51

https://openreview.net/pdf?id=rk6qdGgCZ


Batch normalization

• BN is originally proposed to improve the training. In practice, it is found that BN can
also improve the generalization significantly.

• Always try it, since it improves both convergence and generalization.

• Why BN has regularization effect is still unclear now.

0 20 40 60 80 100
Epoch

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train w/o BN
Test w/o BN
Train w/ BN
Test w/ BN

37 / 51



Dropout: basic definition

Vanilla forward-prop

z`i = (w`
i )
>x`−1 + b`i

x`i = σ(z`i )

Dropout forward-prop

r`−1
i

iid∼ Bernoulli(p)

z`i = (w`
i )
>(r`−1 � x`−1) + b`i

x`i = σ(z`i )

• In each step, the dropping mask is randomly sampled. Hence, the masks can be different
in different steps.

• The drop ratio is given by 1− p.

38 / 51



Dropout: A stochastic approximation explanation

• Dropout defines a stochastic network F (x; ξ, θ) = f(x; ξ � θ), where ξ denotes the
dropping mask.

• Denote by π the distribution of the mask ξ. Then the dropout training goes as follows,

ξt ∼ π

θt+1 = θt − η∇θR̂(F (·; ξt, θt)), (6)

which is exactly SGD of batch size 1 for minimizing

R̂drop(θ) = Eξ∼π[R̂(F (·; ξ, θ))]. (7)

39 / 51



The ensemble viewpoint of dropout

• Let R̂(h) = 1
n

∑n
i=1(h(xi)− yi)2. Let Fθ(x) = Eξ[F (x; ξ, θ)] be the effective model.

• Then,

R̂drop(θ) =
1

n

n∑
i=1

Eξ(F (xi; ξ, θ)− yi)2

=
1

n

n∑
i=1

(Fθ(xi)− yi)2 +
1

n

n∑
i=1

Eξ(f(xi; ξ, θ)− F (xi; θ))
2

= R̂(Fθ) +Qp(θ),

where the Qp(·) term plays the role of regularization. Moreover,

Qp(θ)→ 0 as p→ 1.

40 / 51



The ensemble viewpoint of dropout

• By the above derivation, The dropout model is given by

Fθ(x) = Eξ[F (x; ξ, θ)],

which means that the effective model is an average/ensemble of sparse sub-networks.

• At training, stochastic approximation is applied. At testing, we can use Monte-Carlo
approximation:

Fθ(x) = Eξ[F (x; ξ, θ)] ≈ 1

m

m∑
j=1

F (x; ξj , θ).

41 / 51



The mean-field approximation

• MC approximation is reliable but computationally expensive. A more efficient way is the
mean-field approximation:

Eξ[F (x; ξ, θ)] ≈ F (x;Eξ[ξ], θ)] = f(x;E[ξ]� θ) = f(x; pθ).

• The error of mean-field approximation. Let µ = E[ξ]. For a general h ∈ C2,

E[h(ξ)] = Eξ[h(µ) + h′(µ)(ξ − µ) +O(|ξ − µ|2)]

= h(E[ξ]) +O(Var[ξ]).

• Why is the above error small enough?

42 / 51



The mean-field approximation

• MC approximation is reliable but computationally expensive. A more efficient way is the
mean-field approximation:

Eξ[F (x; ξ, θ)] ≈ F (x;Eξ[ξ], θ)] = f(x;E[ξ]� θ) = f(x; pθ).

• The error of mean-field approximation. Let µ = E[ξ]. For a general h ∈ C2,

E[h(ξ)] = Eξ[h(µ) + h′(µ)(ξ − µ) +O(|ξ − µ|2)]

= h(E[ξ]) +O(Var[ξ]).

• Why is the above error small enough?

42 / 51



The mean-field approximation

• MC approximation is reliable but computationally expensive. A more efficient way is the
mean-field approximation:

Eξ[F (x; ξ, θ)] ≈ F (x;Eξ[ξ], θ)] = f(x;E[ξ]� θ) = f(x; pθ).

• The error of mean-field approximation. Let µ = E[ξ]. For a general h ∈ C2,

E[h(ξ)] = Eξ[h(µ) + h′(µ)(ξ − µ) +O(|ξ − µ|2)]

= h(E[ξ]) +O(Var[ξ]).

• Why is the above error small enough?

42 / 51



Dropout performance

• Usually, dropout is only applied to fully connected layer.

• Improvement depends on the problem.

• Dropout training is much slower.

Figure 7: Taken from Dropout: A Simple Way to Prevent Neural Networks from Overfitting

43 / 51

https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf


Data argumentation

• Increase the amount of data by adding slightly modified copies.
• Typically, most image transformations do not change the label, such as cropping, rotation,

translation, resize, adding noise, Gaussian blurring.

44 / 51



Regularization in modern ML

• Traditional viewpoint: Add explicit regularization, e.g., Weight decay, batch/layer
normalization, dropout, data argumentation.

• Modern ML: A specific algorithm (with a specific initialization) only converges to certain
solution, which is called implicit regularization/bias.

• For convex problem, GD with small initialization nearly converges to minimum `2-norm
solution.

• For neural networks, the mechanism of implicit regularization is still puzzling due to the
non-convexity.

45 / 51



Regularization in modern ML

• Traditional viewpoint: Add explicit regularization, e.g., Weight decay, batch/layer
normalization, dropout, data argumentation.

• Modern ML: A specific algorithm (with a specific initialization) only converges to certain
solution, which is called implicit regularization/bias.

• For convex problem, GD with small initialization nearly converges to minimum `2-norm
solution.

• For neural networks, the mechanism of implicit regularization is still puzzling due to the
non-convexity.

45 / 51



Regularization in modern ML

• Traditional viewpoint: Add explicit regularization, e.g., Weight decay, batch/layer
normalization, dropout, data argumentation.

• Modern ML: A specific algorithm (with a specific initialization) only converges to certain
solution, which is called implicit regularization/bias.

• For convex problem, GD with small initialization nearly converges to minimum `2-norm
solution.

• For neural networks, the mechanism of implicit regularization is still puzzling due to the
non-convexity.

45 / 51



Implicit regularization

Figure 8: Taken from [Chiyuan Zhang, et al, ICLR2017]

46 / 51



GD

3 2 1 0 1 2 3 4

x

30

20

10

0

10

20

30

y

Fully connected network, width=40
data
2-layer
4-layer
6-layer
8-layer
10-layer
12-layer
complex

Figure 9: The algorithm is gradient descent (GD). Taken from (Wu, Zhu and E, 2017)

47 / 51



SGD noise

The following table is taken from https://arxiv.org/pdf/2109.14119.pdf.

• We can conclude that

SGD > GD
SGD ≥ GD + (sophisticated explicit regularization.)

• The SGD noise must impose certain implicit regularization effects. SGD with large LR and
small batch size is always preferred.

48 / 51

https://arxiv.org/pdf/2109.14119.pdf


Flat minima hypothesis (FMP)

The famous flat minima hypothesis (Hochreiter and Schmidhuber, 1995; Keskar et al.,
2016):
• SGD converges to flatter minima.
• Flatter minima generalize better.

Figure 10: The landscape for for θ(α) := (1− α)θSGD + αθGD. Taken from (Keskar et al., 2016).

49 / 51

https://proceedings.neurips.cc/paper/1994/file/01882513d5fa7c329e940dda99b12147-Paper.pdf


Flat minima hypothesis (FMP)

The famous flat minima hypothesis (Hochreiter and Schmidhuber, 1995; Keskar et al.,
2016):
• SGD converges to flatter minima.
• Flatter minima generalize better.

Figure 10: The landscape for for θ(α) := (1− α)θSGD + αθGD. Taken from (Keskar et al., 2016).

49 / 51

https://proceedings.neurips.cc/paper/1994/file/01882513d5fa7c329e940dda99b12147-Paper.pdf


Summary

• BackProp algorithm, Gradient vanishing/exploding phenomenon.
• Initialization, skip connections, batch normalization.
• Layer-wise learning rates, Adaptive learning rate methods.

• Explicit regularization: Weight decay, batch normalization, dropout, data augmentation.

• Implicit regularization: SGD and SGD noise.

50 / 51



Reading

• https://www.deeplearningbook.org/contents/optimization.html

• https://www.deeplearningbook.org/contents/regularization.html

51 / 51

https://www.deeplearningbook.org/contents/optimization.html
https://www.deeplearningbook.org/contents/regularization.html

