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The problem for computing gradients

® Consider a general network defined by the forward propagation:

0

r =X
2t =h'0%) for 0 =1,2,... L,
f(z;0) =2,

where 0¢ denote the (-th layer's parameters.
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where 0¢ denote the (-th layer's parameters.

WLOG, assuming we have only one pair of data (z,y), the loss is given by
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Task: Computing the gradients
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Why is this problem not trivial?
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The back-propagation algorithm

® By the chain rule,

OE dz* OE  Oh(z'1;0") OF

00 — 90t 9zt 06’ ozt

Define /-th layer's gradient signal as §¢ :=

%. Then, it can be recursively computed via
the chain rule:

oz OE _ Oh(z'1;0")

de-1 = oxt=1 09zt Oxt! o
5 = Wy'y)
L= — .
oy ly=ar
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The back-propagation algorithm

® By the chain rule,
OF _ oa' 0B _ 0hla' 10') 0F
o0t 00t Ozt 06° oxt’
Define /-th layer's gradient signal as §¢ := % Then, it can be recursively computed via
the chain rule:

oz OE _ Oh(z'1;0")

Or1 = 91 gzt Oxt—1 o
5 = Wy'y)
L= — .
Ay ly'=at

® Note: Compute the red parts need to access the hidden states {xe}eLZO, which are
computed during the forward propagation. Keep in mind that storing these hidden
states requires significant memory. In particular, the memory required scales linearly with
the batch size.
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A visualization of back-prop algorithm

When h(z;0%) = Aloy(z) + bf, we have % = % and §¢ = % satisfies

Forward Propagation Back Propagation
=z st =1U(fy)
xl _ Afo,(szl) + bE 5£71 — 0'/(17671) ® (AZ)T(SZ

x»”—l x{; 8{’—1 6{,
® Q.
. A
®
@
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Computational and memory cost analysis

Backprop algorithm is a smart way to implement the chain rule.
Consider a network of depth L, width m, and the batch size B.

The computational cost is O(Bm?L).

® Reducing the dependence on B and m is not difficult via parallelization. GPUs are
great!! Nvidia Tesla A100 has 6912 cores! RTX 4090 has 16384 cores!

RTX JO('AO/

Figure 1: (Left): 4090; (Right) A100.

® Reducing the dependence on L is challenging as the computation is essentially serial
when do forward and backward propagation.
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Computational and memory cost analysis

Backprop algorithm is a smart way to implement the chain rule.
Consider a network of depth L, width m, and the batch size B.

The memory cost is O(BmL + m?L). The blue part is due to we need to store the hidden
state for computing gradient.
® Big memory is necessary for training large models. A100 has 80G memory while RTX

4090 has only 24G.

For training large models, we can
® Buy A100 and H100 if you are rich (aka “money is all you need”)!
® Reduce the batch size.
® Design memory-efficient optimizers?
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Gradient vanishing and how to
mitigate it



Gradient vanishing and exploding

¢ Gradient vanishing:
6£ — [UI({,EZ) ® (A€+1)THO'I($€+1) ® (A£+2)T] . [O'I(QTL_l) ® (AL)TéL]

The value is approximately the multiplication of L — [ term. If o/(2*) < 1 or ||A¢|]2 < 1,
then 8¢ will be exponentially small.
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Gradient vanishing and exploding

¢ Gradient vanishing:
6£ — [UI(ZL‘Z) ® (AZ+1)THO'I($€+1) ® (A£+2)T] . [O'I(SUL_l) ® (AL)TéL]
The value is approximately the multiplication of L — [ term. If ¢/(2*) < 1 or ||A||]2 < 1,

then 8¢ will be exponentially small.

® Roughly, §° =~ (o/(z)||A||2)~~¢. This implies that deep networks are harder to train
than shallow networks.

® More precisely, it is due to the disparity of gradient scales across different layers that
makes it challenging to select a single learning rate that works effectively for all layers
simultaneously. Recall the picture of defining condition number!!

0.1 0.1 g@

Layer 1 Layer 2 Layer 3 Layer 4

Observation

The vanishing/exploding gradient is the major obstacle in training deep nets.
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Alleviate gradient vanishing: activation function

® Saturating activation: For saturating activation function, when |z| > O(1), we have
o'(z) ~ 0. This is extremely bad for deep networks.

® Non-saturating activation: Use RelLU and its variants as the nonlinear activation
function.
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Alleviate gradient vanishing: initialization

* Denote by x the output of /-th layer: x/T! = o(W*x* + b%).
® Consider the commonly random initialization Wﬁj e N(0,t2), b§ = 0 (we will discuss why

Gaussian is preferred later) and the standard Gaussian input: x ~ A(0, I).
How should the initialization scale ¢,, be chosen?
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Alleviate gradient vanishing: initialization

* Denote by x the output of /-th layer: x/T! = o(W*x* + b%).
® Consider the commonly random initialization ij e N(0,t2), b§ = 0 (we will discuss why

Gaussian is preferred later) and the standard Gaussian input: x ~ A(0, I).
How should the initialization scale ¢,, be chosen?

® Principle: Ensure the forward process avoids vanishing. Specifically, we aim to choose an

initialization such that
E[|lzf)?] =1, (el[L],ic [m"]

(3

where ¢ is the output of the i-th neuron of (-th layer.
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Derivation

Consider ReLU NNs and we have at initialization that

]EH [-1—12 —F O' Z L j

me

= By Ee, o | Ix1280% | Y&l 5af | ¢
j=1
:Exl ECNN(Ol |:||XP|| t2 2 )‘Xq
= m'EEcxonlo®(Q)] Assume Eflzf[?] = 1, (1)

where the second step follows from the positive homogeneity of ReLU: o(A\z) = Ao (z) for any
A>0and z € R.
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Derivation (cont’d)

Note that E¢r(0,1)[0”(¢)] = \/% [ 22¢7*"/2dz = 1/2. Hence, to ensure E[|zf![?] =1,
we can take

R

w mg.

® The initialization ij @N(O,Q/mg),bj = 0 is called Kaiming-He initialization, which
has become the default initialization for all the ReLU-like activation functions.
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Derivation (cont’d)

Note that E¢r(0,1)[0”(¢)] = \/% [ 22¢7*"/2dz = 1/2. Hence, to ensure E[|zf![?] =1,
we can take

R

w me'

® The initialization ij @N(O,Q/mg),bj = 0 is called Kaiming-He initialization, which
has become the default initialization for all the ReLU-like activation functions.

® Similarly, we can get t2 = 1/m" if o(z) = 2. This corresponds to the LeCun initialization.
LeCun initialization works pretty well for the tanh activation function, since tanh(z) =~ z
when z is close to the origin.

® Similar argument can be used to derive the initialization for other activation functions.

® It is also common to use the uniform initialization: W ~ Unif[—t, ], where the specific
value of ¢ can be derived similarly.
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Numerical illustration

In the following figure, we see that with the right initialization, we can avoid the
vanishing/exploding for both the forward and backward propagation at the initialization.
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Figure 1: ReLU networks with L = 100, m* = 200 for all ¢ =1,...,L — 1. Left: The case of

t2 = 2/m, (Kaiming-He initialization); Right: The case of t2 = 1/m, (LeCun initialization).
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Why do we choose the random initialization with a large support?

@ We have an understanding for the size of the initialization.
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Why do we choose the random initialization with a large support?

@ We have an understanding for the size of the initialization.
® We do not have an understanding for the directions we need.

@ Consider a two-layer neural network
flz) = Zaia(wjx—k bi).
i=1

If (a;, ws,b;) = (aj, wj,bj) at initialization, then they will remain the same for all time
under gradient flow optimization.

® We want ‘diverse’ initialization with many different vectors in many different directions, but
we do not know which directions are important.

©® Popular: random initialization with mean zero and appropriate variance.

©® We can explore other forms of initialization, e.g., the orthogonal initialization:
choosing W* to be the multiple of an orthogonal matrix (if 1 = my). Whether these
initialization overperform or underperform random Gaussian seems to be problem
dependent and is not fully understood.
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Alleviate the gradient vanishing: Skip connections
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® [ntuitively speaking, skip connections build
highways for the information propagation, such that
information does not need to go through the

convolutional, fully-connected, and activation layers.
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® [ntuitively speaking, skip connections build
highways for the information propagation, such that
information does not need to go through the
convolutional, fully-connected, and activation layers.

® Mathematically,
° $Z+1 — xé + hg(l‘z) .
ozt ="+ 3 hila?)
oE _ OE L—1 dh;(z?)
° 9zf — 9zl (1+Z7«=Z ozt )
If the residual blocks {h;} are small, one can see

that the gradients are almost independent of the
depth. So the gradient is well-controlled.

® History: LSTM — Highway network — ResNet.
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Numerical evidence
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Figure 2: Training on ImageNet. Thin curves denote training error, and bold curves denote validation
error. This figure is taken from (Kaiming He et al., 2015).
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Alleviate the gradient vanishing: Batch normalization

® Batch normalization(BN) is one of most effective method to alleviate the gradient
vanishing issue.
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Alleviate the gradient vanishing: Batch normalization

® Batch normalization(BN) is one of most effective method to alleviate the gradient

vanishing issue.

® A batch normalization layer define a map: BN, 5 : {x1, ..

1 m
uB < E;Xz

1

of *Z(Xz‘—us)
mi3

-~ Xi — 1B

X; < 7X; + 0 = BN, 5 (x;)

where ~, 5 are reintroduced to preserve the net-
work's expressivity.

[ Conv ] [ Conv ]

(Rav ] [Lrew |

Figure 3: Left: Convolutional nets with
BN; Right: Convolutional without BN.

o Xm} — {X1,...Xm} through
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Performance of BN

0.8
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Figure 4: Validation accuracy of Inception and its batch-normalized variants, vs. the number of
training steps. BN-baseline: same as inception with BN layers added before each nonlinearity. BN-x5

inception with batch normalization and the learning rate is increased by a factor 5, compared to the
baseline. BN-x30 is similar. This figure is taken from https://arxiv.org/pdf/1502.03167.pdf.
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Black magics: Batch normalization

BN is VERY useful for training very deep nets. But it also causes several strange issues.

® For networks with BN layers, we cannot use too small batch size, e.g. B =1, where
the op and up are far away from the o and p, the ones over the whole dataset.)
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Black magics: Batch normalization

BN is VERY useful for training very deep nets. But it also causes several strange issues.

® For networks with BN layers, we cannot use too small batch size, e.g. B =1, where
the op and up are far away from the o and p, the ones over the whole dataset.)

® How do we compute op and pp during the inference, where we may only have one
sample?
Use the following ones obtained from the moving average during the training:

O,inf — (1 o a)o,inf

Minf — (1 . a)luinf

+ aoly (2)
+ apfp, (3)

where o'y, 't are the statistics calculated at the ¢-th step of training.
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Black magics: Batch normalization

Training and test disparity:
® At the training time, {op, up} are computed over the samples at the current batch.

® At the inference/testing time, {0, ui"} are fixed, which are approximations of the
statistics of whole dataset obtained by the exponential moving average during the training.
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Layer normalization

® Let Z=(zy,...,2z5)" € RBXH be our feature map. The first and second dimensions
represent the batch and feature dimensions, respectively. 2
® A layer normalization (LN) layer define a map LNy g : {21,...,2p} = {Z1,...2p} as
follows
1 Xz H
:ﬁsz, = sz wi)2 fori=1,...,B, (4)
i=1 =1
X Z; — I
B —yo L, (5)

%

where the learnable rescaling factors v, 3 € R,

2For simplicity, we consider the feature map to have only one feature dimension. However, for models like
CNNs, H should be interpreted as the product of width, height, and channels.
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Layer normalization

® Let Z=(zy,...,2z5)" € RBXH be our feature map. The first and second dimensions
represent the batch and feature dimensions, respectively. 2
® A layer normalization (LN) layer define a map LNy g : {21,...,2p} = {Z1,...2p} as
follows
1 Xz H
:ﬁzzi’j’ = sz wi)2 fori=1,...,B, (4)
j=1 =1
X Z; — I
B —yo L, (5)

i
where the learnable rescaling factors v, 3 € R,
® Unlike from BN, LN normalizes data along the feature dimension and performs rescaling in

an element-wise manner.
® Question: Is element-wise rescaling necessary for LN?

2For simplicity, we consider the feature map to have only one feature dimension. However, for models like
CNNs, H should be interpreted as the product of width, height, and channels.
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Layer normalization (cont’d)

® BN is often utilized in MLP and CNN, whereas LN is more frequently employed in training
RNNs and Transformers.
® LN is uniquely advantageous as it can be effectively applied even when the batch size is as

small as 1.

Batch Normalization
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%

&
&
%

%

NAVAVAVAAAN
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Sentence Length

W
)

Figure 5: Taken from https://www.kaggle.com/code/halflingwizard/how-does-layer-normalization-work.

22/51


https://www.kaggle.com/code/halflingwizard/how-does-layer-normalization-work

Avoid gradient exploding: gradient clipping

® |et g; denote the stochastic gradient at step t.
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Avoid gradient exploding: gradient clipping

® |et g; denote the stochastic gradient at step t.

® Replace g; with its clipped version: g; — clip.,(g:), where the clipping operator is defined
as

. . Y
clip.,(¢g) = min <1, ) g
! gl

23/51


https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf

Avoid gradient exploding: gradient clipping

® |et g; denote the stochastic gradient at step t.

® Replace g; with its clipped version: g; — clip.,(g:), where the clipping operator is defined
as

. . Y
clip.,(¢g) = min <1, ) g
! gl

® In certain situations, element-wise clipping is more effective:

(clip, (g)), = min (1, 7) gi-

|9i|
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Avoid gradient exploding: gradient clipping

® |et g; denote the stochastic gradient at step t.

® Replace g; with its clipped version: g; — clip.,(g:), where the clipping operator is defined
as

. . Y
clip.,(¢g) = min <1, ) g
! gl

® In certain situations, element-wise clipping is more effective:

(clip, (g)), = min (1, 7) gi-

|9i|

® Gradient clipping is widely used in training recurrent neural networks (RNNs) and
Transformer. One potential mechanism behind clipping is to mitigate the impact of
heavy-tailed noise. Recall that in the convergence analysis of SGD, convergence requires

E[l& "] < oo.

What happens if the above condition is not met? Read: Why are adaptive methods
good for attention models?
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Adaptive learning rate optimizers



Motivation

® Gradients across different layers have varying scales, making a single global learning rate
ineffective. Recall the picture behind the concept of condition number.

® | ayer-wise learning rates! A great idea but hard to implement.

® Adaptive learning rates:

Automatically tune learning rates according to the gradient size of each
coordinate.
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Adagrad

® Consider to minimize mingcgrs f(z). Let g; be the t-th step (stochastic) gradient.

® SGD updates as follows
Ti+1 = Tt — NGt-
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® The adaptive gradient (Adagrad) method updates as follows

Gt+1 = Gt + gf
gt

Tt41 = Tt — N——F07———,
\/Gt+1 +e
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Adagrad

® Consider to minimize mingcgrs f(z). Let g; be the t-th step (stochastic) gradient.
® SGD updates as follows

Tt41 = Ty — NGt

® The adaptive gradient (Adagrad) method updates as follows

Gt-{-l = Gt + gf
gt

Tt41 = Tt — N——F07———,
\/Gt+1 +e

where £ ~ 10~7 prevents the division by zero. All multiplication and division should be
understood in an element-wise manner.

® Note that where G; = Zi:o g7 stores the magnitude of each coordinate.

® Issue: G is increasing monotonically. Thus, the effective learning rate is decreasing in
time.
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rProp

® To alleviate the “the gradients of different weights/layers are very different”, the rProp
(resilient prop) * algorithm proposes to update weights using only the sign of gradient.

T = 2 — nsign(Vf(x)).

® All weights updates all of the same magnitude!
® |t escapes from plateaus with tiny gradient quickly!

A

Plateau

Local Global
minimum minimum

3M. Riedmiller, H. Braun, A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP
Algorithm. IJCNN 1993.
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rProp

® To alleviate the “the gradients of different weights/layers are very different”, the rProp
(resilient prop) * algorithm proposes to update weights using only the sign of gradient.

T = 2 — nsign(Vf(x)).

® All weights updates all of the same magnitude!
® |t escapes from plateaus with tiny gradient quickly!

A

Plateau

\J

Local Global
minimum minimum

® Unfortunately, rProp does not work with minibatch gradients!

3M. Riedmiller, H. Braun, A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP
Algorithm. IJCNN 1993.
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RMSProp

® RMSProp (Tieleman & Hinton, 2012) iterates as follows

Vepr = Poe+ (1 — 5)9?
gt

Tiy1 = Tp — N———.
+ n,/vtﬂ +e€
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RMSProp

® RMSProp (Tieleman & Hinton, 2012) iterates as follows
vit1 = B+ (1 - B)g7
Gt

Ti41 = Tt — n\/ﬁ'
° If 6=0,g: = Vf(x:) (i.e., the full-batch case), it becomes
Ti41 = Tg — 1N
IV f(z)]? + ¢

It is the sign gradient descent (signGD) if € = 0.

—Vf(xt) (rProp ).
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RMSProp

® RMSProp (Tieleman & Hinton, 2012) iterates as follows
vit1 = B+ (1 - B)g7
Gt

T4l =T — N—F/——.
+ n e T &

° If 6=0,g: = Vf(x:) (i.e., the full-batch case), it becomes

—Vf(xt) (rProp ).

X =Tt —
t+1 t—17 |Vf(33t)|2+6

It is the sign gradient descent (signGD) if € = 0.

® RMSProp is originally proposed as a stochastic version of rProp in Hinton's course slide.

[Q: Why is it non-trivial?]
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ADAM * optimizer
@ Compute the (stochastic) gradient g;.

® Estimate the first-order and second-order moment:

myy1 = Bimy + (1 — B1)ge
Vpp1 = Pove + (1 — 32)91&2-

4Adaptive momentum: https://arxiv.org/pdf/1412.6980.pdf
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ADAM * optimizer

@ Compute the (stochastic) gradient g;.

® Estimate the first-order and second-order moment:

©® Bias correction:

myy1 = Bimy + (1 — B1)ge
Vpp1 = Pove + (1 — 32)91&2-

miy1 Vt+1

mt+1=1_5t7 Ut+1=1_5§-

4Adaptive momentum:

https://arxiv.org/pdf/1412.6980.pdf
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ADAM * optimizer

@ Compute the (stochastic) gradient g;.

® Estimate the first-order and second-order moment:

myy1 = Bimy + (1 — B1)ge
Vi1 = Povy + (1 — 32)91&2-

©® Bias correction:
mi+1 Vt+1

5 V41 = .
1- gt SR P

miy1 =

O Update parameters:
mMi41

VU1 + =

Again, the square root and division are computed in coordinate-wise manner.

Ti41 =Tt — 7

In a summary,

ADAM=RMSProp + momentum
4Adaptive momentum: https://arxiv.org/pdf/1412.6980.pdf
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ADAM: Explanation

@ Common initialization: mg = 0,v9 = 0. This causes m; and g; to be small for small ¢. If

E[g?] ~ g2, then
t

Efve] = (1 62) Y B5Elgi_,] ~ g*(1 - B3).

s=0
The bias-correction step is used to correct this initialization bias.

® We can also initialize mg = go, vo = g2, for which the bias-correction step is not necessary.
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ADAM: Explanation

@ Common initialization: mg = 0,v9 = 0. This causes m; and g; to be small for small ¢. If

E[g?] ~ g2, then
t

Efve] = (1 62) Y B5Elgi_,] ~ g*(1 - B3).

s=0
The bias-correction step is used to correct this initialization bias.
® We can also initialize mg = go, vo = g2, for which the bias-correction step is not necessary.

© Default hyperparameters in the original Adam paper are 3; = 0.9, 32 = 0.999,¢ = 1078,
The learning rate should be tuned experimentally in each problem.
© There are (very recent) convergence results for ADAM both in the convex and non-convex

case. However, all these theoretical results are not interesting since they cannot explain
why ADAM converges faster than SGD.
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Continuous-time limits of ADAM

Let 81 =1 —ny1, B2 =1 —ny2. Then, taking n — 0, the limit becomes

me =1 (Vf(ze) —my)
by = 2 (|V f () > = vr)

P —
e VUt + e
Taking 1,72 — oo, we obtain the signGD flow:
V()
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A comparison of different optimizers

10 MNIST Multilayer Neural Network + dropout

\\ — AdaGrad

\ — RMSProp
— SGDNesterov
W\ AdaDelta
Adam

training cost

!

i H
0 50 100 150 200
iterations over entire dataset

Figure 6: Taken from the original Adam paper https://arxiv.org/pdf/1412.6980.pdf.
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Summary

® Adam has become the de facto optimizer for training large neural networks.

Jlmmy Ba §7 FOLLOWING

University of Toronto
Verified email at cs.toronto.edu - Homepage

Neural Networks ~ Artificial Intelligence Machine Learning Deep Learning

TITLE CITED BY YEAR
Adam: A method for stochastic optimization 200955 2015
D Kingma, J Ba

International Conference on Learning Representations
Layer normalization 13270 2016

J Ba, JR Kiros, GE Hinton
Advances in NIPS 2016 Deep Learning Symposium, arXiv preprint arXiv:1607.06450

® For smaller networks or tasks requiring high precision, consider using second-order
optimizers such as L-BFGS, K-FAC, or the Natural Gradient method.
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Regularization



Over-parameterization in deep learning

® Neural networks often work in the over-parameterized regime, i.e., the number of samples

are much larger than data size.

CIFAR-10 # train: 50,000
Inception 1,649,402
Alexnet 1,387,786
MLP Ix512 1,209,866
ImageNet # train: ~1,200,000
Inception V4 42,681,353
Alexnet 61,100,840

Resnet-{18;152}

11,689,512;60,192,808

VGG-{11;19)}

132,863,336; 143,667,240
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Weight decay

® Let 0,41 = 0y — nh; be the update of the algorithm A. The A+weight decay iterates as
follows
9t+1 = 9,5 — n(ht + )\Ht) = (1 — /\’I’])Ht — ’I]ht

You should always try it due to the simplicity.
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® Let 0,41 = 0y — nh; be the update of the algorithm A. The A+weight decay iterates as
follows
9t+1 = 9,5 — ’I’](ht + )\Ot) = (1 — /\’I’])Ht — ’f]ht

e When A is SGD, it is equivalent to the squared ¢? regularization as

v (7%(9) + ;ne?) = VR(0) + ).

You should always try it due to the simplicity.
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Weight decay

® Let 0,41 = 0y — nh; be the update of the algorithm A. The A+weight decay iterates as

follows
9t+1 = 9,5 — ’I’](ht + )\Ot) = (1 — /\’I’])Ht — ’f]ht

e When A is SGD, it is equivalent to the squared ¢? regularization as
N A 9 A
V(R@O)+ §||0H = VR(0) + 6.

® For other optimizers like ADAM, they are not equivalent. This issue was first
pointed out in https://openreview.net/pdf7id=rk6qdGgCZ and currently, Adam +
weight decay (AdamW) has become the default optimizers in training large language
models (LLMs), e.g., ChatGPT.

You should always try it due to the simplicity.
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Weight decay

® Let 0,41 = 0y — nh; be the update of the algorithm A. The A+weight decay iterates as

follows
9t+1 = 9,5 — ’I’](ht + )\Ot) = (1 — /\’I’])Ht — ’f]ht

e When A is SGD, it is equivalent to the squared ¢? regularization as
N A 9 A
V(R@O)+ §||0H = VR(0) + 6.

® For other optimizers like ADAM, they are not equivalent. This issue was first
pointed out in https://openreview.net/pdf7id=rk6qdGgCZ and currently, Adam +
weight decay (AdamW) has become the default optimizers in training large language
models (LLMs), e.g., ChatGPT.

® Why weight decay is so useful in training LLMs is still unclear !!! [A research
topic!!]

You should always try it due to the simplicity.
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Batch normalization

® BN is originally proposed to improve the training. In practice, it is found that BN can

also improve the generalization significantly.

® Always try it, since it improves both convergence and generalization.

® Why BN has regularization effect is still unclear now.

Accuracy (%)

100+

801

60 1

401

20

e P mpA S SN S,
» ap AN T T T T
,"I" ‘l

= Train w/o BN
— = Test w/o BN
= Train w/ BN
== Test w/ BN

0 20 40 60 80 100
Epoch
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Dropout: basic definition

Vanilla forward-prop Dropout forward-prop
z=(wi) x4 rf=1 % Bernoulli(p)
;= o(z) Z=wHT (" ox") b

(a) Standard Neural Net (b) After applying dropout.

® In each step, the dropping mask is randomly sampled. Hence, the masks can be different

in different steps.

® The drop ratio is given by 1 — p.
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Dropout: A stochastic approximation explanation

® Dropout defines a stochastic network F'(x;&,0) = f(x;£ ® ), where £ denotes the
dropping mask.
® Denote by 7 the distribution of the mask £. Then the dropout training goes as follows,

& ~m

Oui1 = 0p = IVGR(E(56,00), (6)
which is exactly SGD of batch size 1 for minimizing

Rarop(0) = Eemrn [R(F(£,0))). (7)
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The ensemble viewpoint of dropout

o Let R(h) = LS ((h(w) — yi)?. Let Fy(x) = E¢[F(x;€,0)] be the effective model.
® Then,

7/?\'drop Z E& xu g 9 )

:;Zuve(xz ) Zlﬁg (2::6,0) — F(x:6))°

=R(Fy) +Qp(0),
where the Q,(-) term plays the role of regularization. Moreover,

Qpd) - 0asp—1.
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The ensemble viewpoint of dropout

® By the above derivation, The dropout model is given by
Fy(z) = Ee[F(2; €, 0)],

which means that the effective model is an average/ensemble of sparse sub-networks.

® At training, stochastic approximation is applied. At testing, we can use Monte-Carlo

approximation:
m

Fo(e) = Ee[F(:6,6)] ~ - >~ Fl;6;,6).

Jj=1
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The mean-field approximation

® MC approximation is reliable but computationally expensive. A more efficient way is the
mean-field approximation:

Be[F(z;€,0)] = F(x; Eel¢],0)] = f(2; E[§] © 0) = f(a;p0).

w W
Present with Always
probability p present

(a) At training time (b) At test time
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The mean-field approximation

® MC approximation is reliable but computationally expensive. A more efficient way is the
mean-field approximation:

Be[F(z;€,0)] = F(x; Eel¢],0)] = f(2; E[§] © 0) = f(a;p0).

w W
Present with Always
probability p present

(a) At training time (b) At test time

® The error of mean-field approximation. Let ;1 = E[¢]. For a general h € C?,

E[R(€)] = Ec[h(n) + I (n)(€ = 1) + O(€ — uf*)]
hE[E]) + O(Var[¢]).
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The mean-field approximation

® MC approximation is reliable but computationally expensive. A more efficient way is the

mean-field approximation:

Be[F(z;€,0)] = F(x; Eel¢],0)] = f(2; E[§] © 0) = f(a;p0).

w W
Present with Always
probability p present

(a) At training time (b) At test time

® The error of mean-field approximation. Let ;1 = E[¢]. For a general h € C?,

E[h(€)] = Eelh(1) + b (1)(§ — ) + O(I€ — uf2)]
= h(E[e]) + O(Varlé))-

® Why is the above error small enough?
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Dropout performance

® Usually, dropout is only applied to fully connected layer.
® |Improvement depends on the problem.
® Dropout training is much slower.

- Without dropout
, Iy, ,""“,-——‘-"‘\"‘N‘Q‘\/Ad/?’@‘hﬁé & A%

Classification Error %

0 200000 400000 600000 800000 1000000
Number of weight updates

Figure 7: Taken from Dropout: A Simple Way to Prevent Neural Networks from Overfitting
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Data argumentation

® Increase the amount of data by adding slightly modified copies.
® Typically, most image transformations do not change the label, such as cropping, rotation,
translation, resize, adding noise, Gaussian blurring.

w Original Image
w De-texturized
De-colorized

Edge Enhanced

Salient Edge Map

) Flip/Rotate
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Regularization in modern ML

¢ Traditional viewpoint: Add explicit regularization, e.g., Weight decay, batch/layer
normalization, dropout, data argumentation.
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® Modern ML: A specific algorithm (with a specific initialization) only converges to certain
solution, which is called implicit regularization/bias.
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Regularization in modern ML

¢ Traditional viewpoint: Add explicit regularization, e.g., Weight decay, batch/layer
normalization, dropout, data argumentation.

® Modern ML: A specific algorithm (with a specific initialization) only converges to certain
solution, which is called implicit regularization/bias.

® For convex problem, GD with small initialization nearly converges to minimum £5-norm
solution.

® For neural networks, the mechanism of implicit regularization is still puzzling due to the
non-convexity.

45/51



Implicit regularization

model #params randomcrop weight decay f(rain accuracy test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
Inception 1,649,402 no yes 100.0 86.03
no no 100.0 85.75
(fitting random labels) no no 100.0 9.78
1.0 R0 ) 0k ARk a8 Gtk 44 B € Rt a1
[
[
- 0.9
O oo
g
008
O
©

=0 test(Inception)

e—o train(Inception)

= test(Inception w/o BN)
train(Inception w/o BN)

o
~

0.6
) 0 5 10 15 20

Figure 8: Taken W qBR faINNG SRS, IcLR2017]
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GD

30
20

10

-10
-20

-30

Figure 9: The algorithm is gradient descent (GD). Taken from (Wu, Zhu and E, 2017)

Fully connected network, width=40

data
2-layer
4-layer
6-layer
8-layer
10-layer
12-layer
complex
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SGD noise

The following table is taken from https://arxiv.org/pdf/2109.14119.pdf.

Experiment Mini-batching | Epochs | Steps Modifications Val. Accuracy %
Baseline SGD v 300 117,000 - 95.70(+0.11)
Baseline FB X 300 300 - 75.42(£0.13)
FB train longer X 3000 3000 - 87.36(+1.23)
FB clipped X 3000 | 3000 clip 93.85(+0.10)
FB regularized X 3000 3000 clip+reg 95.36(=£0.07)
FB strong reg. X 3000 3000 clip+reg+bs32 95.67(+0.08)
FB in practice X 3000 3000 | clip+reg+bs32+shuffle | 95.91(=0.14)

Table 2: Summary of validation accuracies in percent on the CIFAR-10 validation dataset for each
of the experiments with data augmentations considered in Section 3. All validation accuracies are
averaged over 5 runs.

® We can conclude that

SGD > GD
SGD > GD + (sophisticated explicit regularization.)

® The SGD noise must impose certain implicit regularization effects. SGD with large LR and
small batch size is always preferred.
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Flat minima hypothesis (FMP)

The famous flat minima hypothesis (Hochreiter and Schmidhuber, 1995; Keskar et al.,
2016):

® SGD converges to flatter minima.

® Flatter minima generalize better.
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Flat minima hypothesis (FMP)

The famous flat minima hypothesis (Hochreiter and Schmidhuber, 1995; Keskar et al.,

2016):
® SGD converges to flatter minima.
® Flatter minima generalize better.

10

— Train
- - /Test
8 -

Cross Entropy
7

Figure 10: The landscape for for 6(«) := (1 — @)8sgp + abcp. Taken from (Keskar et al., 2016).
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Summary

® BackProp algorithm, Gradient vanishing/exploding phenomenon.

® |nitialization, skip connections, batch normalization.
® Layer-wise learning rates, Adaptive learning rate methods.

® Explicit regularization: Weight decay, batch normalization, dropout, data augmentation.
® Implicit regularization: SGD and SGD noise.
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Reading

® https://www.deeplearningbook.org/contents/optimization.html

® https://www.deeplearningbook.org/contents/regularization.html
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