High-Dimensional Distribution Learning with Generative Models

Instructor: Lei Wu¹

Mathematical Introduction to Machine Learning

Peking University, Fall 2024

¹School of Mathematical Sciences; Center for Machine Learning Research

Example: Generate natural images

Figure 1: images generated by BigGAN (Brock et al., 2018)

Example: Style transfer

Figure 2: Style transfers with pix2pix (Isola, et. al., 2017)

Example: Generate images from text description

Try this https://huggingface.co/spaces/stabilityai/stable-diffusion.

Example: Generate images from text description

Figure 3: Generated by https://beta.dreamstudio.ai with the prompt "Great wall in mountains, stars, Vincent van Gogh".

Distribution Learning

General goal: Given $\{x_i\}_{i=1}^n$ drawn from unknown ρ^* , "estimate" ρ^* using these samples.

Task:

- Estimate the likelihood (classical, density estimation).
- Generate new samples (generative model).

Figure 4: "What I cannot create, I do not understand!"

Distribution Learning

General goal: Given $\{x_i\}_{i=1}^n$ drawn from unknown ρ^* , "estimate" ρ^* using these samples.

Task:

- Estimate the likelihood (classical, density estimation).
- Generate new samples (generative model).

Mathematical problem: How can we efficiently model high-dimensional probability distribution (including parametrization and learning)?

Figure 4: "What I cannot create, I do not understand!"

History

• Gaussian mixture model, histogram estimator, and kernel density estimator. All these models take the following basis-expansion form:

$$\hat{f}_h(x;a,\mu) = \sum_{i=1}^m a_j k_h(x,\mu_i),$$

with $\sum_{j=1}^{m} a_j = 1$ and $a_j \ge 0$, $\forall j = 1, \dots, m$. Here *h* denotes the "bandwidth". • In modern ML tasks, ρ^* is a high-dimensional distribution.

• Classical linear methods all suffer from the curse of dimensionality in representing ρ^* .

• Represent prob. distributions through functions.

Density function: Let $V_{\theta} : \mathcal{X} \mapsto \mathbb{R}$ be a parametric potential energy function. Then, the Gibbs distribution:

$$p_{\theta}(x) = \frac{e^{-V_{\theta}(x)}}{\int e^{-V_{\theta}(x)} dx} = e^{-V_{\theta}(x)} / Z_{\theta}.$$

is a density function.

Density function: Let $V_{\theta} : \mathcal{X} \mapsto \mathbb{R}$ be a parametric potential energy function. Then, the Gibbs distribution:

$$p_{\theta}(x) = \frac{e^{-V_{\theta}(x)}}{\int e^{-V_{\theta}(x)} dx} = e^{-V_{\theta}(x)} / Z_{\theta}.$$

is a density function.

• Learning a distribution is reduced to learn a energy function V_{θ} . Hence, It is often referred as an energy-based model

(http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf).

- Z_θ = ∫ e^{-V_θ(x)} dx is the called *partition function*. We usually are unable to evaluate the density p_θ(x) since Z_θ is hard to compute.
- We can sample p_{θ} with MCMC sampler but this might be not efficient.

Transform-based models

Pushforward distribution: Let $Z \sim Q$ be a simple distribution, e.g., $Q = \mathcal{N}(0, I_D)$ and $Q = \text{Unif}([0, 1]^D)$. Let $G : \mathbb{R}^D \mapsto \mathbb{R}^d$ be a transform (also called **generator**). Then, the distribution P is generated through the transform G:

$$P = \mathsf{Law}(X), \ X = G_{\theta}(Z), \ Z \sim Q.$$

Transform-based models

Pushforward distribution: Let $Z \sim Q$ be a simple distribution, e.g., $Q = \mathcal{N}(0, I_D)$ and $Q = \text{Unif}([0, 1]^D)$. Let $G : \mathbb{R}^D \mapsto \mathbb{R}^d$ be a transform (also called **generator**). Then, the distribution P is generated through the transform G:

$$P = \mathsf{Law}(X), \ X = G_{\theta}(Z), \ Z \sim Q.$$

• In this modeling, the complex distribution P is generated from a simple distribution Q. Learning P is reduced to learn a generator G.

• We can use neural networks to parameterize G.

Transform-based models (cont'd)

• One can choose $D \ll d$. In such a case, P is a singular distribution without a density function. In particular, P concentrates on a D-dimensional sub-manifold in \mathbb{R}^d :

 $\mathsf{Supp}(P) = \mathsf{Range}(G).$

Transform-based models (cont'd)

 One can choose D ≪ d. In such a case, P is a singular distribution without a density function. In particular, P concentrates on a D-dimensional sub-manifold in ℝ^d:

 $\mathsf{Supp}(P) = \mathsf{Range}(G).$

- [Pros] It is fast to draw samples from P.
 - Draw z_1, \ldots, z_n independently from Q.
 - Then, $\{x_i = G(z_i)\}_{i=1}^n$ are i.i.d. samples from P.

Transform-based models (cont'd)

 One can choose D ≪ d. In such a case, P is a singular distribution without a density function. In particular, P concentrates on a D-dimensional sub-manifold in ℝ^d:

$$Supp(P) = Range(G).$$

- [Pros] It is fast to draw samples from P.
 - Draw z_1, \ldots, z_n independently from Q.
 - Then, $\{x_i = G(z_i)\}_{i=1}^n$ are i.i.d. samples from P.
- Computing expectation:

$$\mathbb{E}_{X \sim P}[f(X)] = \mathbb{E}_{Z \sim Q}[f(G(Z))] \approx \frac{1}{n} \sum_{i=1}^{n} f(G(z_i)).$$

The density of transform-based models

• By abuse of notation, let $Q(\cdot)$ denote the density function of Q. When d = D, X has the following density function:

$$P(x) = Q(G^{-1}(x)) |\det(\nabla G^{-1}(x))|.$$

The density of transform-based models

• By abuse of notation, let $Q(\cdot)$ denote the density function of Q. When d = D, X has the following density function:

$$P(x) = Q(G^{-1}(x)) |\det(\nabla G^{-1}(x))|.$$

• A simple derivation: For any testing function h, we have

$$\begin{split} \int h(x)P(x)\,\mathrm{d}x &= \int h(G(z))Q(z)\,\mathrm{d}z \qquad (\text{definition of push-forward distribution}) \\ &= \int h(y)Q(G^{-1}(y))\frac{\mathrm{d}z}{\mathrm{d}y}\,\mathrm{d}y \qquad (\text{change of variable}) \\ &= \int h(y)Q(G^{-1}(y))|\,\mathrm{det}\,\nabla G^{-1}(y)|\,\mathrm{d}y. \end{split}$$

Hence, $P(x) = Q(G^{-1}(x)) |\det \nabla G^{-1}(x)|.$

 This formula is useful when we would like to estimate likelihoods, or train the model via MLE.

How can we construct \boldsymbol{G} such that

• The $G^{-1}(x)$ and $\det \nabla G^{-1}(x)$ can be computed efficiently.

The flow-based models provide a principled approach to design this kind of G!

Flow-based models

Suppose $f_w : \mathbb{R}^d \mapsto \mathbb{R}^d$ be a simple invertible map. Flow-based models construct complex transforms through a "flow" of simple transform f_w by

$$G_{\theta} = f_{w_K} \circ f_{w_{K-1}} \circ \cdots \circ f_{w_1} : \mathbb{R}^d \mapsto \mathbb{R}^d,$$

where $\theta = (w_1, \ldots, w_K)$. It can be rewritten as

$$z_0 = z$$

$$z_t = f_{w_t}(z_{t-1}), \quad t = 1, \dots, K$$

$$G_{\theta}(z) = z_K$$

Flow-based models (cont'd)

• The inverse is computed with $G_{\theta}^{-1}(x) = f_{w_1}^{-1} \circ f_{w_2}^{-1} \circ \cdots \circ f_{w_K}^{-1}(x)$.

Flow-based models (cont'd)

- The inverse is computed with $G_{\theta}^{-1}(x) = f_{w_1}^{-1} \circ f_{w_2}^{-1} \circ \cdots \circ f_{w_K}^{-1}(x)$.
- Note that $|\det \nabla G_{\theta}^{-1}(x)| = 1/|\det \nabla G_{\theta}(z)|$ and

$$\det \nabla G_{\theta}(z) = \left(\det \frac{\mathrm{d}z_L}{\mathrm{d}z_{L-1}}\right) \left(\det \frac{\mathrm{d}z_L}{\mathrm{d}z_{L-1}}\right) \cdots \left(\det \frac{\mathrm{d}z_1}{\mathrm{d}z_0}\right)$$

Hence,

$$\log |\det \nabla_z G_\theta(z)| = \sum_{t=0}^{L-1} \log |\nabla f_{w_t}(z_{t-1})|$$

Flow-based models (cont'd)

- The inverse is computed with $G_{\theta}^{-1}(x) = f_{w_1}^{-1} \circ f_{w_2}^{-1} \circ \cdots \circ f_{w_K}^{-1}(x)$.
- Note that $|\det \nabla G_{\theta}^{-1}(x)| = 1/|\det \nabla G_{\theta}(z)|$ and

$$\det \nabla G_{\theta}(z) = \left(\det \frac{\mathrm{d}z_L}{\mathrm{d}z_{L-1}}\right) \left(\det \frac{\mathrm{d}z_L}{\mathrm{d}z_{L-1}}\right) \cdots \left(\det \frac{\mathrm{d}z_1}{\mathrm{d}z_0}\right)$$

Hence,

$$\log |\det \nabla_z G_\theta(z)| = \sum_{t=0}^{L-1} \log |\nabla f_{w_t}(z_{t-1})|$$

• Note that the computation cost of det $\nabla f_w(z)$ can as slow as $O(d^3)$. We need to design f_w such that its inverse and the determinant of Jacobian can be efficiently computed.

Variants of flow-based models

We choose f_w through the following criteria:

- It is easy to compute the inverse map: f_w^{-1} .
- It is efficient to compute the determinant: $|\det \nabla f_w|$.

Variants of flow-based models

We choose f_w through the following criteria:

- It is easy to compute the inverse map: f_w^{-1} .
- It is efficient to compute the determinant: $|\det \nabla f_w|$.

In the literature, there are many choices:

- Normalizing flow (Tabak & Vanden-Eijnden, 2010)
- NICE: nonlinear independent components estimation (Dinh et al., 2014)
- Real-NVP: real-valued Non-volume preserving (Dinh et al., 2017)
- Masked autogressive flow (Papamakarios et al., 2017)
- Inverse autogressive flow (Kingma et al., 2016)
- Continuous normalizing flow (CNF) (Chen et al., 2019).
- Diffusion model.

Variants of flow-based models

We choose f_w through the following criteria:

- It is easy to compute the inverse map: f_w^{-1} .
- It is efficient to compute the determinant: $|\det \nabla f_w|$.

We will only cover details of NICE and real-NVP, whose designing principle is to ensure:

 ∇f_w is lower triangular.

In this case, the computational cost is O(d).

Decompose z into two disjoint subsets: $z = (z_{1:s}, z_{s+1:d})$. Then, NICE proposes the following additive coupling transform x = f(z):

 $x_{1:s} = z_{1:s}$ $x_{s+1:d} = z_{s+1:d} + v(z_{1:s})$

Here $v: \mathbb{R}^s \mapsto \mathbb{R}^{d-s}$ can be parameterized with neural networks.

Decompose z into two disjoint subsets: $z = (z_{1:s}, z_{s+1:d})$. Then, NICE proposes the following additive coupling transform x = f(z):

 $x_{1:s} = z_{1:s}$ $x_{s+1:d} = z_{s+1:d} + v(z_{1:s})$

Here $v: \mathbb{R}^s \mapsto \mathbb{R}^{d-s}$ can be parameterized with neural networks.

• The inverse map: $z = f^{-1}(x)$ is given by

 $z_{1:s} = x_{1:s}$ $z_{s+1:d} = x_{s+1:d} - v(x_{1:s}).$

Decompose z into two disjoint subsets: $z = (z_{1:s}, z_{s+1:d})$. Then, NICE proposes the following additive coupling transform x = f(z):

 $x_{1:s} = z_{1:s}$ $x_{s+1:d} = z_{s+1:d} + v(z_{1:s})$

Here $v: \mathbb{R}^s \mapsto \mathbb{R}^{d-s}$ can be parameterized with neural networks.

• The inverse map: $z = f^{-1}(x)$ is given by

 $z_{1:s} = x_{1:s}$ $z_{s+1:d} = x_{s+1:d} - v(x_{1:s}).$

• The Jacobian is lower triangular:

$$\nabla_z f_w(z) = \begin{pmatrix} I_s & 0\\ \nabla v & I_{n-s}. \end{pmatrix}$$

Hence, $|\det \nabla_z f_w(z)| = 1$, i.e., the NICE implements volume-preserving transforms.

Decompose z into two disjoint subsets: $z = (z_{1:s}, z_{s+1:d})$. Then, NICE proposes the following additive coupling transform x = f(z):

 $x_{1:s} = z_{1:s}$ $x_{s+1:d} = z_{s+1:d} + v(z_{1:s})$

Here $v: \mathbb{R}^s \mapsto \mathbb{R}^{d-s}$ can be parameterized with neural networks.

• The inverse map: $z = f^{-1}(x)$ is given by

 $z_{1:s} = x_{1:s}$ $z_{s+1:d} = x_{s+1:d} - v(x_{1:s}).$

• The Jacobian is lower triangular:

$$\nabla_z f_w(z) = \begin{pmatrix} I_s & 0\\ \nabla v & I_{n-s} \end{pmatrix}$$

Hence, $|\det \nabla_z f_w(z)| = 1$, i.e., the NICE implements volume-preserving transforms.

• We do not need to compute the determinant of Jacobian for NICE. Great!! But the volume-preserving property also restricts the expressive power.

Real-NVP adds scaling factors to NICE:

$$x_{1:s} = z_{1:s}$$

$$x_{s+1:d} = z_{s+1:d} \odot e^{u(z_{1:s})} + v(z_{1:s}),$$

where $u, v : \mathbb{R}^s \mapsto \mathbb{R}^{d-s}$ are parameterized with neural networks. Here, \odot and e^z should be understood in an element-wise manner.

Real-NVP adds scaling factors to NICE:

$$x_{1:s} = z_{1:s}$$

$$x_{s+1:d} = z_{s+1:d} \odot e^{u(z_{1:s})} + v(z_{1:s}),$$

where $u, v : \mathbb{R}^s \mapsto \mathbb{R}^{d-s}$ are parameterized with neural networks. Here, \odot and e^z should be understood in an element-wise manner.

• The inverse map:

$$z_{1:s} = x_{1:s}$$

$$z_{s+1:d} = (x_{s+1:d} - v(x_{1:s})) \odot e^{-u(x_{1:s})}.$$

Real-NVP adds scaling factors to NICE:

$$x_{1:s} = z_{1:s}$$

$$x_{s+1:d} = z_{s+1:d} \odot e^{u(z_{1:s})} + v(z_{1:s}),$$

where $u, v : \mathbb{R}^s \mapsto \mathbb{R}^{d-s}$ are parameterized with neural networks. Here, \odot and e^z should be understood in an element-wise manner.

• The inverse map:

$$z_{1:s} = x_{1:s}$$

$$z_{s+1:d} = (x_{s+1:d} - v(x_{1:s})) \odot e^{-u(x_{1:s})}.$$

• The Jacobian:

$$\nabla f(z) = \begin{pmatrix} I_s & 0\\ * & \mathsf{diag}(e^{u(z_{1:s})}). \end{pmatrix}$$
$$\log |\det \nabla f(z)| = |\sum_{j=1}^{d-s} u_j(z_{1:s})|.$$

The computation cost is O(d).

Real-NVP adds scaling factors to NICE:

$$x_{1:s} = z_{1:s}$$

$$x_{s+1:d} = z_{s+1:d} \odot e^{u(z_{1:s})} + v(z_{1:s}),$$

where $u, v : \mathbb{R}^s \mapsto \mathbb{R}^{d-s}$ are parameterized with neural networks. Here, \odot and e^z should be understood in an element-wise manner.

• The inverse map:

$$z_{1:s} = x_{1:s}$$

$$z_{s+1:d} = (x_{s+1:d} - v(x_{1:s})) \odot e^{-u(x_{1:s})}.$$

• The Jacobian:

$$\nabla f(z) = \begin{pmatrix} I_s & 0\\ * & \mathsf{diag}(e^{u(z_{1:s})}). \end{pmatrix}$$
$$\log |\det \nabla f(z)| = |\sum_{j=1}^{d-s} u_j(z_{1:s})|.$$

The computation cost is O(d).

• Real-NVP is not volume-preserving.

• Note that the additive coupling transform leaves part of its input unchanged. To fix this issue, we need to exchange the role of two subsets for different steps.

Let $L(\cdot, \cdot)$ be a metric measuring the difference between two distributions. We expect

$$\min_{\theta} L(P_{\theta}, P^*).$$
(1)

Let $L(\cdot, \cdot)$ be a metric measuring the difference between two distributions. We expect

$$\min_{\theta} L(P_{\theta}, P^*). \tag{1}$$

But, we can only

$$\min_{\theta} L(P_{\theta}, \hat{P}_n) + \lambda_n R(\theta),$$
(2)

where $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta(\cdot - x_i)$ and $R(\cdot)$ denotes certain regularization.

Let $L(\cdot, \cdot)$ be a metric measuring the difference between two distributions. We expect

$$\min_{\theta} L(P_{\theta}, P^*). \tag{1}$$

But, we can only

$$\min_{\theta} L(P_{\theta}, \hat{P}_n) + \lambda_n R(\theta),$$
(2)

where $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta(\cdot - x_i)$ and $R(\cdot)$ denotes certain regularization.

• Different from supervised learning, choosing $L(\cdot, \cdot)$ is highly non-trivial. There are no such thing called fitting error at the *i*-th sample.

Let $L(\cdot, \cdot)$ be a metric measuring the difference between two distributions. We expect

$$\min_{\theta} L(P_{\theta}, P^*). \tag{1}$$

But, we can only

$$\min_{\theta} L(P_{\theta}, \hat{P}_n) + \lambda_n R(\theta),$$
(2)

where $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta(\cdot - x_i)$ and $R(\cdot)$ denotes certain regularization.

- Different from supervised learning, choosing $L(\cdot, \cdot)$ is highly non-trivial. There are no such thing called fitting error at the *i*-th sample.
- There are many variants of norm, divergence, distance for comparing two distributions:
 - P_{θ} may not have a density function, e.g., the transform-based models.
 - Computing the density of P_{θ} may be intractable or expensive, e.g., the energy-based models.

• Designing loss functions

What is a practical loss function?

• Consider the L^p distance:

$$\int |P_{\theta}(x) - \hat{P}_n(x)|^p \,\mathrm{d}x.$$

• The total variation:

 $TV(P_{\theta}, \hat{P}_n).$

What is a practical loss function?

• Consider the L^p distance:

$$\int |P_{\theta}(x) - \hat{P}_n(x)|^p \,\mathrm{d}x.$$

• The total variation:

 $TV(P_{\theta}, \hat{P}_n).$

We are unable to evaluate these losses since we only have samples x_1, \ldots, x_n from ρ^* .

A pratical choice of metric must be an expectation in \hat{P}_n ; otherwise, the metric is not computable.

Strong form

• Strong form: Need P_{θ} to have a density function.

$$KL(\hat{P}_n||P_\theta) = \int \log \frac{\hat{P}_n(x)}{P_\theta(x)} d\hat{P}_n(x)$$

= constant - $\mathbb{E}_{\hat{P}_n}[\log P_\theta(x)]$
= constant - $\frac{1}{n} \sum_{i=1}^n \log P_\theta(x_i)$ (3)

- It is equivalent to maximizing the likelihood.
- In fact, (3) is the only practical density-based loss (homework).

Weak form

Weak Form: View P as a linear functional over certain function classes.

$$L(P,P') = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_P[f] - \mathbb{E}_{P'}[f] \right)$$
(4)

Here f is called the test function and \mathcal{F} is the set of test functions.

Weak form

Weak Form: View P as a linear functional over certain function classes.

$$L(P, P') = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_P[f] - \mathbb{E}_{P'}[f] \right)$$
(4)

Here f is called the test function and \mathcal{F} is the set of test functions.

Intuitively speaking, weak metrics measure the differences of two distributions by comparing their "generalized" moments .

Weak form

Weak Form: View P as a linear functional over certain function classes.

$$L(P, P') = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_P[f] - \mathbb{E}_{P'}[f] \right)$$
(4)

Here f is called the test function and \mathcal{F} is the set of test functions.

Intuitively speaking, weak metrics measure the differences of two distributions by comparing their "generalized" moments .

There are many different choices of moments class.

- $\mathcal{F} = \{x, x^2, x^3, \dots, \} \rightarrow$ the classic moment methods.
- $\mathcal{F} = \{ \|f\|_{L^{\infty}} \leq 1 \} \rightarrow$ the total variation norm.
- $\mathcal{F} = \{ \|f\|_{\mathsf{Lip}} \leq 1 \} \rightarrow \mathsf{the 1-Wasserstein metric.}$
- $\mathcal{F} =$ unit ball in RKHS space \rightarrow the maximum mean discrepancy distance.
- $\mathcal{F} =$ neural networks (with certain constraints) \rightarrow the neural distance.

The models

Loss functions:

• Strong: log-likelihood

$$\min_{P} - \mathbb{E}_{P^*}[\log P(x)].$$

• Weak: dual norm

$$\min_{P} \max_{f \in \mathcal{F}} \left(\mathbb{E}_{P}[f] - \mathbb{E}_{P^*}[f] \right).$$

Representations:

- Generator/Pushforward: P = G # Q.
- Potential/Gibbs: $P = e^{-V} / \int e^{-V} dQ$.

The models

Loss functions:

• Strong: log-likelihood

$$\min_{P} - \mathbb{E}_{P^*}[\log P(x)].$$

• Weak: dual norm

$$\min_{P} \max_{f \in \mathcal{F}} \left(\mathbb{E}_{P}[f] - \mathbb{E}_{P^{*}}[f] \right).$$

Representations:

- Generator/Pushforward: P = G # Q.
- Potential/Gibbs: $P = e^{-V} / \int e^{-V} dQ$.

Combinations: Different combinations lead to diffent models.

- Weak metric + generator = GAN (Generative adversarial network):
- Strong metric: Variational autoencoder (VAE), normalizing flow, diffusion-based generative model, autoregressive models, etc.

Generative adversarial network (GAN)

Rename the test function as the discriminator D.

• Weak formulation of Jensen-Shannon divergence (symmetrized KL):

$$JS(P, P') = \frac{1}{2} D_{KL} \left(P || \frac{P + P'}{2} \right) + \frac{1}{2} D_{KL} \left(P' || \frac{P + P'}{2} \right)$$
$$= \sup_{q} \left(\mathbb{E}_{P} [\log q(x)] + \mathbb{E}_{P'} [\log(1 - q(x))] \right)$$

where the supremum is taken with all measurable functions $q : \mathbb{R}^d \mapsto [0, 1]$.

Generative adversarial network (GAN)

Rename the test function as the discriminator D.

• Weak formulation of Jensen-Shannon divergence (symmetrized KL):

$$JS(P, P') = \frac{1}{2} D_{KL} \left(P || \frac{P + P'}{2} \right) + \frac{1}{2} D_{KL} \left(P' || \frac{P + P'}{2} \right)$$
$$= \sup_{q} \left(\mathbb{E}_{P} [\log q(x)] + \mathbb{E}_{P'} [\log(1 - q(x))] \right)$$

where the supremum is taken with all measurable functions $q : \mathbb{R}^d \mapsto [0, 1]$. • Neural network formulation:

$$L(P, P') = \sup_{D} \left(\mathbb{E}_{P}[\log(1 - D(x))] + \mathbb{E}_{P'}[\log D(x)] \right),$$

where $D: \mathbb{R}^d \mapsto (0,1)$ is a neural network. It is essentially a binary classifier.

Generative adversarial network (GAN)

Rename the test function as the discriminator D.

• Weak formulation of Jensen-Shannon divergence (symmetrized KL):

$$JS(P, P') = \frac{1}{2} D_{KL} \left(P || \frac{P + P'}{2} \right) + \frac{1}{2} D_{KL} \left(P' || \frac{P + P'}{2} \right)$$
$$= \sup_{q} \left(\mathbb{E}_{P} [\log q(x)] + \mathbb{E}_{P'} [\log(1 - q(x))] \right)$$

where the supremum is taken with all measurable functions $q: \mathbb{R}^d \mapsto [0, 1]$.

• Neural network formulation:

$$L(P, P') = \sup_{D} \left(\mathbb{E}_{P}[\log(1 - D(x))] + \mathbb{E}_{P'}[\log D(x)] \right),$$

where $D:\mathbb{R}^d\mapsto (0,1)$ is a neural network. It is essentially a binary classifier.

• Consider the generative model P = G # Q. Then, the problem becomes a minimax problem:

$$\min_{G} \max_{D} \left(\mathbb{E}_{z \sim Q}[\log(1 - D(G(z)))] + \frac{1}{n} \sum_{i=1}^{n} \log D(x_i) \right).$$

GAN: The original game motivation

A game between the generator and discriminator:

- Discriminator: Distinguish the fake and real data.
- Generator: generate fake data G(z) such that $\{G(z)\}_z$ are undistinguishable with the real data $\{x_i\}_i.$

Choose test functions as constraint neural networks.

$$\min_{\theta_1 \in U} \max_{\theta_2} \left(\mathbb{E}_z[f_{\theta_1}(G_{\theta_2}(z))] - \frac{1}{n} \sum_{i=1}^n f_{\theta_1}(x_i) \right)$$
(5)

- Both f_{θ_1} and G_{θ_2} are neural networks.
- In the original Wasserstein GAN, $U = \{\theta : \max_i |\theta_i| \le \delta\}$ with the δ tunned for each problems.
- There are many other choices of U, such as gradient penalty, spectral normalization, etc.

Evaluate our models

In supervised learning, we evaluate our model by using a test dataset. However, for unsupervised learning models, it is hard to evaluate the model's goodness.

Evaluate our models

In supervised learning, we evaluate our model by using a test dataset. However, for unsupervised learning models, it is hard to evaluate the model's goodness.

Weak metrics:

- Human judgement.
- Wasserstein W_2 metric: Computation suffers from the curse of dimensionality.
- Frechet inception distance: Approximating W_2 with only means and covariances.

Evaluate our models

In supervised learning, we evaluate our model by using a test dataset. However, for unsupervised learning models, it is hard to evaluate the model's goodness.

Weak metrics:

- Human judgement.
- Wasserstein W_2 metric: Computation suffers from the curse of dimensionality.
- Frechet inception distance: Approximating W_2 with only means and covariances.

Strong metrics:

- Log-likelihood.
- Inception score: Let C(x) be an ImageNet classifier. If C(x) has small entropy on x, then the classifier is confident about the label of x. This implies that x looks like an image (at least for C(x)).

• Strong form:

$$\min_{\theta} - \sum_{i} \log p_{\theta}(x_i)$$

Train with SGD/ADAM.

• Weak form:

$$\min_{\theta_2} \max_{\theta_1} \left(\mathbb{E}_{x \sim \hat{P}_n}[D(x; \theta_1)] - \mathbb{E}_z[D(G(z; \theta_2); \theta_1)] \right)$$

This is not a standard optimization but a minimax problem.

$$\min_{\theta_2} \max_{\theta_1} \left(\mathbb{E}_{x \sim \hat{P}_n}[D(x; \theta_1)] - \mathbb{E}_z[D(G(z; \theta_2); \theta_1)] \right)$$

Each step $(\theta_1(t), \theta_2(t)) \mapsto (\theta_1(t+1), \theta_2(t+1))$ updates as follows.

$$\min_{\theta_2} \max_{\theta_1} \left(\mathbb{E}_{x \sim \hat{P}_n}[D(x; \theta_1)] - \mathbb{E}_z[D(G(z; \theta_2); \theta_1)] \right)$$

Each step $(\theta_1(t), \theta_2(t)) \mapsto (\theta_1(t+1), \theta_2(t+1))$ updates as follows.

• Maximization-step: Let $\theta_1(t,0) = \theta_1(t)$.

$$\min_{\theta_2} \max_{\theta_1} \left(\mathbb{E}_{x \sim \hat{P}_n}[D(x; \theta_1)] - \mathbb{E}_z[D(G(z; \theta_2); \theta_1)] \right)$$

Each step $(\theta_1(t), \theta_2(t)) \mapsto (\theta_1(t+1), \theta_2(t+1))$ updates as follows.

- Maximization-step: Let $\theta_1(t,0) = \theta_1(t)$.
 - For $k = 1, \ldots, m$, randomly sample $z_{1,k}, \ldots, z_{B,k}$ and update the generator as follows

$$\theta_1(t,k) = \theta_1(t,k-1) + \eta_1 \nabla_{\theta_1} \left(\frac{1}{B_1} \sum_i D(x_i;\theta_1(t)) - \frac{1}{B_2} \sum_j D(G(z_j;\theta_2(t));\theta_1(t,k-1)) \right)$$

$$\min_{\theta_2} \max_{\theta_1} \left(\mathbb{E}_{x \sim \hat{P}_n}[D(x; \theta_1)] - \mathbb{E}_z[D(G(z; \theta_2); \theta_1)] \right)$$

Each step $(\theta_1(t), \theta_2(t)) \mapsto (\theta_1(t+1), \theta_2(t+1))$ updates as follows.

- Maximization-step: Let $\theta_1(t,0) = \theta_1(t)$.
 - For $k = 1, \ldots, m$, randomly sample $z_{1,k}, \ldots, z_{B,k}$ and update the generator as follows

$$\theta_1(t,k) = \theta_1(t,k-1) + \eta_1 \nabla_{\theta_1} \left(\frac{1}{B_1} \sum_i D(x_i;\theta_1(t)) - \frac{1}{B_2} \sum_j D(G(z_j;\theta_2(t));\theta_1(t,k-1)) \right)$$

• Return $\theta_1(t+1) = \theta_1(t,m)$.

$$\min_{\theta_2} \max_{\theta_1} \left(\mathbb{E}_{x \sim \hat{P}_n}[D(x; \theta_1)] - \mathbb{E}_z[D(G(z; \theta_2); \theta_1)] \right)$$

Each step $(\theta_1(t), \theta_2(t)) \mapsto (\theta_1(t+1), \theta_2(t+1))$ updates as follows.

- Maximization-step: Let $\theta_1(t,0) = \theta_1(t)$.
 - For $k = 1, \ldots, m$, randomly sample $z_{1,k}, \ldots, z_{B,k}$ and update the generator as follows

$$\theta_1(t,k) = \theta_1(t,k-1) + \eta_1 \nabla_{\theta_1} \left(\frac{1}{B_1} \sum_i D(x_i;\theta_1(t)) - \frac{1}{B_2} \sum_j D(G(z_j;\theta_2(t));\theta_1(t,k-1)) \right)$$

- Return $\theta_1(t+1) = \theta_1(t,m)$.
- Minimization-step: Update the discriminator:

$$\theta_2(t+1) = \theta_2(t) - \eta_2 \nabla_{\theta_2} \left(\frac{1}{B} \sum_j D(G(z_{j,k}; \theta_2(t,k)); \theta_1(t)) \right),$$

where $\{x_i\}$ and $\{z_j\}$ are the minibatch samples.

Issues

• The training of weak models is very unstable, in particular when the maximization step is updated only a few steps—a choice preferred in practice. Moreover, we do not have a good criterion to monitor the training progress since the weak norm cannot be estimated in a reasonable way.

Issues

- The training of weak models is very unstable, in particular when the maximization step is updated only a few steps—a choice preferred in practice. Moreover, we do not have a good criterion to monitor the training progress since the weak norm cannot be estimated in a reasonable way.
- Mode collapse: Are there metrics that can detect the mode collapse?

Figure 5: Left: Images from [Zhao et al., 2017] Energy-based GAN

Distribution learning: Normalizing flow, GAN, etc.

- Representation:
 - Energy-based models
 - Transform-based models: flow-based models (NICE, real-NVP, etc.)
- Loss designing:
 - Strong form: MLE/KL-divergence;
 - Weak form: The choice of test functions.
- Evaluation: Weak and strong metrics.

Note: Variational Autoencoders (VAEs) are important generative models but are not covered in this slide. Additionally, we will dedicate a separate lecture to discussing diffusion models.

Questions to Aid Understanding

- What are the advantages and disadvantages of weak models?
- What are the advantages and disadvantages of strong models?
- Training flow-based model is still challenging. Why?

Supplementary Wasserstein metric

• Define a distance between two sets of points $\{\mathbf{x}_i\}_{i=1}^n$ and $\{\mathbf{y}_j\}_{i=1}^n$:

$$\min_{\pi \in S_n} \sqrt{\frac{1}{n} \sum_{i=1}^n \left\| \mathbf{x}_i - \mathbf{y}_{\pi(i)} \right\|^2}$$

• Generalize to probability measures P and Q : the matching becomes a joint distribution $\pi(\mathbf{x},\mathbf{y})$

$$\Pi(P,Q) := \left\{ \pi \in \mathcal{P}\left(\mathbb{R}^d \times \mathbb{R}^d\right), \pi_{\mathbf{x}} = P, \pi_{\mathbf{y}} = Q \right\}$$

Define the Wasserstein metric W_p

$$W_p(P,Q) := \min_{\pi \in \Pi(P,Q)} \left(\mathbb{E}_{\pi(\mathbf{x},\mathbf{y})} \left[\|\mathbf{x} - \mathbf{y}\|^p \right] \right)^{1/p}$$

• For W_1 , we have the Kantorovich-Rubinstein theorem:

$$W_1(P,Q) = \sup_{\|f\|_{Lip} \le 1} \mathbb{E}_P[f] - \mathbb{E}_Q[f]$$

Duality holds for W_n in general, but the formula for W_1 is simplest.