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Example: Generate natural images

Figure 1: images generated by BigGAN (Brock et al., 2018)
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https://openreview.net/forum?id=B1xsqj09Fm

Example: Style transfer
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Figure 2: Style transfers with pix2pix (Isola, et.
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https://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf

Example: Generate images from text description

Try this https://huggingface.co/spaces/stabilityai/stable-diffusion.
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https://huggingface.co/spaces/stabilityai/stable-diffusion

Example: Generate images from text description

Figure 3: Generated by https://beta.dreamstudio.ai with the prompt “Great wall in mountains,
stars, Vincent van Gogh”.
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https://beta.dreamstudio.ai

Distribution Learning

General goal: Given {z;}!", drawn from unknown p*,
“estimate” p* using these samples.

Task:
® Estimate the likelihood (classical, density estimation).
® Generate new samples (generative model).

L]

Figure 4: “What | cannot create,
| do not understand!”
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Distribution Learning

General goal: Given {z;}!", drawn from unknown p*,
“estimate” p* using these samples.

Task:
® Estimate the likelihood (classical, density estimation).

® Generate new samples (generative model).

Mathematical problem: How can we efficiently model
high-dimensional probability distribution (including
parametrization and learning)?

L]

Figure 4: “What | cannot create,
| do not understand!”
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History

® Gaussian mixture model, histogram estimator, and kernel density estimator. All these
models take the following basis-expansion form:

n(z;a, ) Zajkhxuz

with Z;nzl aj=1anda; >0, Vj=1,...,m. Here h denotes the “bandwidth”.
® In modern ML tasks, p* is a high-dimensional distribution.

® (Classical linear methods all suffer from the curse of dimensionality in representing p*.
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How do we represent distribution?

» Represent prob. distributions through functions.
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Energy-based models

Density function: Let Vp : X — R be a parametric potential energy function. Then, the
Gibbs distribution:

e—Vg(z) B N
pe(q;) = m —e Ve ( )/ZG

is a density function.
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http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf

Energy-based models

Density function: Let Vp : X — R be a parametric potential energy function. Then, the

Gibbs distribution:
e—Vo(x)

pe(q;) = m — e—Ve(r)/ZG.

is a density function.
® |earning a distribution is reduced to learn a energy function Vy. Hence, It is often referred

as an energy-based model
(http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf).

* Zy = [e Vo) dz is the called partition function. We usually are unable to evaluate the
y
density pg(z) since Zy is hard to compute.
® We can sample pg with MCMC sampler but this might be not efficient.
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http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf

Transform-based models

Pushforward distribution: Let Z ~ Q be a simple distribution, e.g., Q@ = N(0,Ip) and
Q = Unif([0,1]P). Let G : RP ~ R9 be a transform (also called generator). Then, the
distribution P is generated through the transform G:

P=Llaw(X), X =Go(2), Z ~Q.
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Transform-based models

Pushforward distribution: Let Z ~ @ be a simple distribution, e.g., @ = N(0,Ip) and
Q = Unif([0,1]P). Let G : RP — R? be a transform (also called generator). Then, the

distribution P is generated through the transform G:

P=Llaw(X), X =Go(2), Z ~Q.

® In this modeling, the complex distribution P is generated from a simple distribution Q.

Learning P is reduced to learn a generator G.

generated distribution

true data distribution

P(x)

unit gaussian

generative
model
(neural net)

image space

*._|loss| .7

image space

® We can use neural networks to parameterize G.
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Transform-based models (cont’d)

® One can choose D < d. In such a case, P is a singular distribution without a density
function. In particular, P concentrates on a D-dimensional sub-manifold in R¢:

Supp(P) = Range(G).
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Transform-based models (cont’d)

® One can choose D < d. In such a case, P is a singular distribution without a density
function. In particular, P concentrates on a D-dimensional sub-manifold in R¢:

Supp(P) = Range(G).

® [Pros] It is fast to draw samples from P.

® Draw z1,..., 2, independently from Q.
® Then, {z; = G(z)}i=, are i.i.d. samples from P.
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Transform-based models (cont’d)

® One can choose D < d. In such a case, P is a singular distribution without a density
function. In particular, P concentrates on a D-dimensional sub-manifold in R¢:

Supp(P) = Range(G).

® [Pros] It is fast to draw samples from P.

® Draw z1,..., 2, independently from Q.
® Then, {z; = G(z)}i=, are i.i.d. samples from P.

e Computing expectation:

Exp[f(X)] = Bzl (G(2)] = = 3 (G)
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The density of transform-based models
® By abuse of notation, let Q(-) denote the density function of Q. When d = D, X has the

following density function:

P(x) = Q(G™(2))| det(VG™ (2))].
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The density of transform-based models

® By abuse of notation, let Q(-) denote the density function of Q. When d = D, X has the
following density function:

P(x) = Q(G™(2))| det(VG™ (2))].

® A simple derivation: For any testing function h, we have

/h(x)P(x) dz = /h(G(z))Q(z) dz (definition of push-forward distribution)

dz

- /h(y)Q(G’l(y))d—y dy  (change of variable)

— [ M)QG )] det VG )l dy,
Hence, P(z) = Q(G~!(x))| det VG~ (z)|.

® This formula is useful when we would like to estimate likelihoods, or train the model via
MLE.
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How can we construct G such that
® The G~1(x) and det VG~ (z) can be computed efficiently.

The flow-based models provide a principled approach to design this kind of G!
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Flow-based models

Suppose f,, : R? — R? be a simple invertible map. Flow-based models construct complex

transforms through a “flow” of simple transform f,, by

Gg :fwKOfwK71 ) ..ofwl :RdHRd’
where 6 = (w1,...,wg). It can be rewritten as
zZ0 — %
2t = fuw,(2t-1), t=1,....K
Go(z) = 2K

/jl(zo) @ - fz Zi-1) @fz+l z;)

2o ~ po(2o) Zi ~ pi(zi)

@:x
AM

ZKg ~ PK(ZK
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Flow-based models (cont’d)

* The inverse is computed with G, ' (z) = folo folo - o fol(a).

15/35



Flow-based models (cont’d)

* The inverse is computed with G, ' (z) = f;!o o-- o ful(z).
* Note that |det VG, ' (z)| = 1/|det VGy(z)| and

_ dzp, dz;
det VGy(z) = ( dzL X ( dZL—1) <det dzo) .

Hence,

log | det V,Gy(2)| = Zlog|Vfwt (zt—1)]

t=0
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Flow-based models (cont’d)

* The inverse is computed with G, ' (z) = f;!o o-- o ful(z).
* Note that |det VG, ' (z)| = 1/|det VGy(z)| and

_ dzp, dz;
det VGy(z) = ( dzL X ( dZL—1) <det dzo) .

log | det V,Gy(2)| = Zlog|Vfwt (zt—1)]

t=0

Hence,

® Note that the computation cost of det V f,,(z) can as slow as O(d®). We need to design
fw such that its inverse and the determinant of Jacobian can be efficiently computed.
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Variants of flow-based models
We choose f,, through the following criteria:

® |t is easy to compute the inverse map: f;!.

e |t is efficient to compute the determinant: |det V f,|.
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Variants of flow-based models

We choose f,, through the following criteria:

It is easy to compute the inverse map: f, .
It is efficient to compute the determinant: | det V f,].

In the literature, there are many choices:

Normalizing flow (Tabak & Vanden-Eijnden, 2010)

NICE: nonlinear independent components estimation (Dinh et al., 2014)
Real-NVP: real-valued Non-volume preserving (Dinh et al., 2017)
Masked autogressive flow (Papamakarios et al., 2017)

Inverse autogressive flow (Kingma et al., 2016)

Continuous normalizing flow (CNF) (Chen et al., 2019).

Diffusion model.
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Variants of flow-based models

We choose f,, through the following criteria:
® |t is easy to compute the inverse map: f;!.

e |t is efficient to compute the determinant: |det V f,,|.

We will only cover details of NICE and real-NVP, whose designing principle is to ensure:
V f. is lower triangular.

In this case, the computational cost is O(d).

16/35



NICE (Non-linear Independent Component Estimation)

Decompose z into two disjoint subsets: z = (21.5, 2s+1:.4). Then, NICE proposes the following
additive coupling transform x = f(z):

T1:s = Z1:s

Ts4+1:d = Zs+1:d + U(Zl:s)

Here v : R® — R%~% can be parameterized with neural networks.
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NICE (Non-linear Independent Component Estimation)

Decompose z into two disjoint subsets: z = (21.5, 2s+1:.4). Then, NICE proposes the following

additive coupling transform x = f(z):

T1:s = Z1:s
Ls+1:d = Rs+1:d + U(Zl:s)
Here v : R® — R%~% can be parameterized with neural networks.
® The inverse map: z = f~!(z) is given by
Z1:s = T1:s
Zs+1:d = Ts41:d — 'U(xl:s)-

® The Jacobian is lower triangular:

Vefuw(z) = (év In:)

Hence, | det V. f,,(2)] = 1, i.e., the NICE implements volume-preserving transforms.

® We do not need to compute the determinant of Jacobian for NICE. Great!! But the
volume-preserving property also restricts the expressive power.
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Real-NVP (Real-valued Non-Volume Preserving)

Real-NVP adds scaling factors to NICE:
T1:s = Z1:s
Ts+1:d = Zs+1:d®6u(Z1:b) + v(zlzs)v

where u, v : R® — R?% are parameterized with neural networks. Here, ® and e* should be
understood in an element-wise manner.
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Real-NVP (Real-valued Non-Volume Preserving)

Real-NVP adds scaling factors to NICE:
T1:s = Z1:s
Ls+1:d — Zerl:d@fi'lt(Zl:b) + v(zlzs)v

where u, v : R® — R?% are parameterized with neural networks. Here, ® and e* should be
understood in an element-wise manner.

® The inverse map:
Z1:s = T1:s

Zs+1:d = ($s+1:d — ’u(xlzs)) ® e~ u(@s)
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Real-NVP (Real-valued Non-Volume Preserving)

Real-NVP adds scaling factors to NICE:
T1:s = Z1:s
Ls+1:d — Zerl:d@eu(zl:b) + v(zlzs)v

where u, v : R® — R?% are parameterized with neural networks. Here, ® and e* should be
understood in an element-wise manner.

® The inverse map:
Z1:s = T1:s
Zotr1id = (Toy1:d — 0(T15)) © €400,

® The Jacobian:
I 0
Viz)= <* diag(eu(zl:s)).>
d—s
log|det Vf(2)] = |ZUj(Zl;s)|.
j=1

The computation cost is O(d).
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Real-NVP (Real-valued Non-Volume Preserving)

Real-NVP adds scaling factors to NICE:
T1:s = Z1:s
Lst1:d = Zerl:dG’fiu(zl:b) + v(zlzs)v

where u, v : R® — R?% are parameterized with neural networks. Here, ® and e* should be
understood in an element-wise manner.

® The inverse map:
Z1:s = T1:s
Zotr1id = (Toy1:d — 0(T15)) © €400,

® The Jacobian:
I 0
Viz)= <* diag(eu(zlzs)).>
d—s
log|det Vf(2)] = |ZUj(Zl;s)|.
j=1

The computation cost is O(d).
® Real-NVP is not volume-preserving.
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Remarks

® Note that the additive coupling transform leaves part of its input unchanged. To fix this
issue, we need to exchange the role of two subsets for different steps.
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The choice of loss function

Let L(-,-) be a metric measuring the difference between two distributions. We expect

min Z(Py, P*). (1)
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The choice of loss function

Let L(-,-) be a metric measuring the difference between two distributions. We expect
min L(Fp, P*). (1)

But, we can only

Inain L(PG; Pn) + /\nR(‘g), (2)

where P, = LS 18(-— ;) and R(-) denotes certain regularization.
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min L(Fp, P*). (1)

But, we can only

Inain L(PG; Pn) + /\nR(‘g), (2)

where P, = LS 18(-— ;) and R(-) denotes certain regularization.

e Different from supervised learning, choosing L(-,-) is highly non-trivial. There are no
such thing called fitting error at the i-th sample.
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The choice of loss function

Let L(-,-) be a metric measuring the difference between two distributions. We expect
min L(Fp, P*). (1)

But, we can only

n?bin L(PG; Pn) + /\nR(‘g), (2)

where P, = LS 18(-— ;) and R(-) denotes certain regularization.
e Different from supervised learning, choosing L(-,-) is highly non-trivial. There are no
such thing called fitting error at the i-th sample.
® There are many variants of norm, divergence, distance for comparing two distributions:

® P, may not have a density function, e.g., the transform-based models.
® Computing the density of Py may be intractable or expensive, e.g., the energy-based models.
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« Designing loss functions
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What is a practical loss function?

® Consider the L? distance:

[ 17 - Aol a.

TV (Py, P,).

® The total variation:
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What is a practical loss function?

® Consider the L? distance:
[ 170te) ~ Bua)p s

TV (Py, P,).

® The total variation:

We are unable to evaluate these losses since we only have samples z1, ..., z, from p*.

A pratical choice of metric must be an expectation in Pn; otherwise, the metric is not
computable.
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Strong form

® Strong form: Need P to have a density function.

KL(P,170) = | 1og J;Ejji aB, (z)

= constant — Ep, [log Py()]

1 n
= tant — — log Py(x;
constan - Z og Py(x;)

i=1

® |t is equivalent to maximizing the likelihood.

® In fact, (3) is the only practical density-based loss (homework).
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Weak form

Weak Form: View P as a linear functional over certain function classes.

L(P,P') = sup (Ep(f1 =Ep[f]) (4)

Here f is called the test function and F is the set of test functions.
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Here f is called the test function and F is the set of test functions.

Intuitively speaking, weak metrics measure the differences of two distributions by comparing
their “generalized” moments .
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Weak form

Weak Form: View P as a linear functional over certain function classes.

L(P,P') = sup (Ep(f1 =Ep[f]) (4)

Here f is called the test function and F is the set of test functions.
Intuitively speaking, weak metrics measure the differences of two distributions by comparing
their “generalized” moments .

There are many different choices of moments class.
o F={x,2% 23, ...,} — the classic moment methods.
o F={|fllree <1} — the total variation norm.
o F={]fllup <1} — the 1-Wasserstein metric.
® F = unit ball in RKHS space — the maximum mean discrepancy distance.

® F = neural networks (with certain constraints) — the neural distance.
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The models

Loss functions:
® Strong: log-likelihood
mFi)n — Ep-«[log P(z)].

® Weak: dual norm
i E —Ep- .
ml;nrfnea}c( plf] p+[f])
Representations:
® Generator/Pushforward: P = G#Q.

® Potential /Gibbs: P =¢""/ [e7V dQ.
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The models

Loss functions:
® Strong: log-likelihood
mFi)n — Ep-«[log P(z)].

® \Weak: dual norm

minmax (Ep[f] - Ep-[f]).

Representations:
® Generator/Pushforward: P = G#Q.
® Potential /Gibbs: P =¢""/ [e7V dQ.
Combinations: Different combinations lead to diffent models.
® Weak metric 4+ generator = GAN (Generative adversarial network):

® Strong metric: Variational autoencoder (VAE), normalizing flow, diffusion-based
generative model, autoregressive models, etc.
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Generative adversarial network (GAN)

Rename the test function as the discriminator D.

® Weak formulation of Jensen-Shannon divergence (symmetrized KL):

/!

2
= sup (Eplog q(x)] +Ep[log(1 ~ q(x)ﬂ)

where the supremum is taken with all measurable functions ¢ : R% + [0, 1].
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Generative adversarial network (GAN)

Rename the test function as the discriminator D.

® Weak formulation of Jensen-Shannon divergence (symmetrized KL):

/!

2
= sup (Eplog q(x)] +Ep[log(1 ~ q(x)ﬂ)

where the supremum is taken with all measurable functions ¢ : R% + [0, 1].

® Neural network formulation:

L(P,P') = sup (Ep[log(1 — D(z))] + Epr[log D(z)]),

where D : R+ (0,1) is a neural network. It is essentially a binary classifier.
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Generative adversarial network (GAN)

Rename the test function as the discriminator D.

® Weak formulation of Jensen-Shannon divergence (symmetrized KL):

/!

2
= sup (Eplog q(x)] +Ep[log(1 ~ q(x)ﬂ)

where the supremum is taken with all measurable functions ¢ : R% + [0, 1].
® Neural network formulation:

L(P,P') = sup (Ep[log(1 — D(z))] + Epr[log D(z)]),

where D : R+ (0,1) is a neural network. It is essentially a binary classifier.

® Consider the generative model P = G#(). Then, the problem becomes a minimax

problem:
mén max (EZNQ[log(l — D(G(2)))] + % Z;log D(xl)> .
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GAN: The original game motivation

A game between the generator and discriminator:
® Discriminator: Distinguish the fake and real data.
® Generator: generate fake data G(z) such that {G(z)}, are undistinguishable with the real
data {z;};.
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Wasserstein GAN

Choose test functions as constraint neural networks.

min max < 21f0,(Go,(2))] — — Z fo, (x; ) (5)

0.€U 02

® Both fy, and Gp, are neural networks.

® In the original Wasserstein GAN, U = {6 : max; |0;| < 6} with the § tunned for each
problems.

® There are many other choices of U, such as gradient penalty, spectral normalization, etc.
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Evaluate our models

In supervised learning, we evaluate our model by using a test dataset. However, for
unsupervised learning models, it is hard to evaluate the model's goodness.
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In supervised learning, we evaluate our model by using a test dataset. However, for
unsupervised learning models, it is hard to evaluate the model's goodness.

Weak metrics:
® Human judgement.
® Wasserstein W5 metric: Computation suffers from the curse of dimensionality.

® Frechet inception distance: Approximating W5 with only means and covariances.
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Evaluate our models

In supervised learning, we evaluate our model by using a test dataset. However, for
unsupervised learning models, it is hard to evaluate the model's goodness.

Weak metrics:
® Human judgement.
® Wasserstein W5 metric: Computation suffers from the curse of dimensionality.

® Frechet inception distance: Approximating W5 with only means and covariances.

Strong metrics:
® |og-likelihood.

® Inception score: Let C'(z) be an ImageNet classifier. If C'(z) has small entropy on z, then
the classifier is confident about the label of 2. This implies that x looks like an image (at
least for C'(x)).
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Training procedure

® Strong form:
. 1 .
memf E og pe(x;)

Train with SGD/ADAM.

® Weak form:
min max (IEIN 5 [D(361)] — Eo[D(G(2:65); 91)])

25 01

This is not a standard optimization but a minimax problem.
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Solve the minimax problem

min max (Emwﬁ,n [D(x:0,)] — E.[D(G(2; 05); 91)])

62 01

Each step (0:1(t),02(t)) — (61(t + 1),62(t + 1)) updates as follows.

31/35



Solve the minimax problem

min max (Emwﬁ,n [D(x:0,)] — E.[D(G(2; 05); 91)])

723 61
Each step (0:1(t),02(t)) — (61(t + 1),62(t + 1)) updates as follows.
® Maximization-step: Let 0;(¢,0) = 61(¢).
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Solve the minimax problem

min max (Emwﬁ,n [D(x:0,)] — E.[D(G(2; 05); 91)])

92 91
Each step (0:1(t),02(t)) — (01(t 4+ 1),62(t + 1)) updates as follows.
® Maximization-step: Let 0;(¢,0) = 61(¢).
® For k=1,...,m, randomly sample 21, ..., 2B,x and update the generator as follows

01(t, k) = 0:(t,k—1)+m Ve, ( ZD x; 01 (t ZD (25 62(t) el(mk—l)))

® Return 01(t 4+ 1) = 01(t, m).
® Minimization-step: Update the discriminator:

0a(+1) = 02(0) = 12V, | 35 37 D(Gz1:02(0, ) 0:0) |

where {z;} and {z;} are the minibatch samples.
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Issues

® The training of weak models is very unstable, in particular when the maximization
step is updated only a few steps—a choice preferred in practice.
Moreover, we do not have a good criterion to monitor the training progress since the weak
norm cannot be estimated in a reasonable way.
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Issues

® The training of weak models is very unstable, in particular when the maximization
step is updated only a few steps—a choice preferred in practice.
Moreover, we do not have a good criterion to monitor the training progress since the weak
norm cannot be estimated in a reasonable way.

®* Mode collapse: Are there metrics that can detect the mode collapse?

~= GAN output Your GAN
in paper output

Figure 5: Left: Images from [Zhao et al., 2017] Energy-based GAN
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Summary

Distribution learning: Normalizing flow, GAN, etc.
® Representation:

® Energy-based models
® Transform-based models: flow-based models (NICE, real-NVP, etc.)

® Loss designing:
® Strong form: MLE/KL-divergence;
® Weak form: The choice of test functions.

® Evaluation: Weak and strong metrics.

Note: Variational Autoencoders (VAEs) are important generative models but are not covered
in this slide. Additionally, we will dedicate a separate lecture to discussing diffusion models.
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Questions to Aid Understanding

® What are the advantages and disadvantages of weak models?
® What are the advantages and disadvantages of strong models?
® Training flow-based model is still challenging. Why?
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Supplementary Wasserstein metric

* Define a distance between two sets of points {x;};_; and {y;}"_, :

min (|23 iy |
res, ni:l % Yﬂ'(z)

® Generalize to probability measures P and @ : the matching becomes a joint distribution
m(x,y)
I(P,Q) = {reP (R xRY) ,mx = P,y = Q}

Define the Wasserstein metric W,

. 1/
Wp(Pv Q) = werl_?(llng) (E‘n'(x,y) [”X - YHP]) g

® For W7, we have the Kantorovich-Rubinstein theorem:

Wi(P,Q) = sup Ep[f] - Eqlf]

Iflleip<1

Duality holds for W,, in general, but the formula for W7 is simplest.

35/35



