High-Dimensional Distribution Learning
with Generative Models

Instructor: Lei Wu !

Mathematical Introduction to Machine Learning

Peking University, Fall 2024

1School of Mathematical Sciences; Center for Machine Learning Research

1/35

Example: Generate natural images

Figure 1: images generated by BigGAN (Brock et al., 2018)

2/35

https://openreview.net/forum?id=B1xsqj09Fm

Example: Style transfer

Labels to Street Scene

output
Aerial to Map P

output

Figure 2: Style transfers with pix2pix (Isola, et.

Labels to Facade BW to Color

oput
Day to Night

input output

Edges to Photo

-

input

output

output

3/35

https://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf

Example: Generate images from text description

Try this https://huggingface.co/spaces/stabilityai/stable-diffusion.

4/35

https://huggingface.co/spaces/stabilityai/stable-diffusion

Example: Generate images from text description

Figure 3: Generated by https://beta.dreamstudio.ai with the prompt “Great wall in mountains,
stars, Vincent van Gogh”.

5/35

https://beta.dreamstudio.ai

Distribution Learning

General goal: Given {z;}!", drawn from unknown p*,
“estimate” p* using these samples.

Task:
® Estimate the likelihood (classical, density estimation).
® Generate new samples (generative model).

L]

Figure 4: “What | cannot create,
| do not understand!”

6/35

Distribution Learning

General goal: Given {z;}!", drawn from unknown p*,
“estimate” p* using these samples.

Task:
® Estimate the likelihood (classical, density estimation).

® Generate new samples (generative model).

Mathematical problem: How can we efficiently model
high-dimensional probability distribution (including
parametrization and learning)?

L]

Figure 4: “What | cannot create,
| do not understand!”

6/35

History

® Gaussian mixture model, histogram estimator, and kernel density estimator. All these
models take the following basis-expansion form:

n(z;a,) Zajkhxuz

with Z;nzl aj=1anda; >0, Vj=1,...,m. Here h denotes the “bandwidth”.
® In modern ML tasks, p* is a high-dimensional distribution.

® (Classical linear methods all suffer from the curse of dimensionality in representing p*.

7/35

How do we represent distribution?

» Represent prob. distributions through functions.

8/35

Energy-based models

Density function: Let Vp : X — R be a parametric potential energy function. Then, the
Gibbs distribution:

e—Vg(z) B N
pe(q;) = m —e Ve ()/ZG

is a density function.

9/35

http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf

Energy-based models

Density function: Let Vp : X — R be a parametric potential energy function. Then, the

Gibbs distribution:
e—Vo(x)

pe(q;) = m — e—Ve(r)/ZG.

is a density function.
® |earning a distribution is reduced to learn a energy function Vy. Hence, It is often referred

as an energy-based model
(http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf).

* Zy = [e Vo) dz is the called partition function. We usually are unable to evaluate the
y
density pg(z) since Zy is hard to compute.
® We can sample pg with MCMC sampler but this might be not efficient.

9/35

http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf

Transform-based models

Pushforward distribution: Let Z ~ Q be a simple distribution, e.g., Q@ = N(0,Ip) and
Q = Unif([0,1]P). Let G : RP ~ R9 be a transform (also called generator). Then, the
distribution P is generated through the transform G:

P=Llaw(X), X =Go(2), Z ~Q.

10/35

Transform-based models

Pushforward distribution: Let Z ~ @ be a simple distribution, e.g., @ = N(0,Ip) and
Q = Unif([0,1]P). Let G : RP — R? be a transform (also called generator). Then, the

distribution P is generated through the transform G:

P=Llaw(X), X =Go(2), Z ~Q.

® In this modeling, the complex distribution P is generated from a simple distribution Q.

Learning P is reduced to learn a generator G.

generated distribution

true data distribution

P(x)

unit gaussian

generative
model
(neural net)

image space

*._|loss| .7

image space

® We can use neural networks to parameterize G.

10/35

Transform-based models (cont’d)

® One can choose D < d. In such a case, P is a singular distribution without a density
function. In particular, P concentrates on a D-dimensional sub-manifold in R¢:

Supp(P) = Range(G).

11/35

Transform-based models (cont’d)

® One can choose D < d. In such a case, P is a singular distribution without a density
function. In particular, P concentrates on a D-dimensional sub-manifold in R¢:

Supp(P) = Range(G).

® [Pros] It is fast to draw samples from P.

® Draw z1,..., 2, independently from Q.
® Then, {z; = G(z)}i=, are i.i.d. samples from P.

11/35

Transform-based models (cont’d)

® One can choose D < d. In such a case, P is a singular distribution without a density
function. In particular, P concentrates on a D-dimensional sub-manifold in R¢:

Supp(P) = Range(G).

® [Pros] It is fast to draw samples from P.

® Draw z1,..., 2, independently from Q.
® Then, {z; = G(z)}i=, are i.i.d. samples from P.

e Computing expectation:

Exp[f(X)] = Bzl (G(2)] = = 3 (G)

11/35

The density of transform-based models
® By abuse of notation, let Q(-) denote the density function of Q. When d = D, X has the

following density function:

P(x) = Q(G™(2))| det(VG™ (2))].

12/35

The density of transform-based models

® By abuse of notation, let Q(-) denote the density function of Q. When d = D, X has the
following density function:

P(x) = Q(G™(2))| det(VG™ (2))].

® A simple derivation: For any testing function h, we have

/h(x)P(x) dz = /h(G(z))Q(z) dz (definition of push-forward distribution)

dz

- /h(y)Q(G’l(y))d—y dy (change of variable)

— [M)QG)] det VG)l dy,
Hence, P(z) = Q(G~!(x))| det VG~ (z)|.

® This formula is useful when we would like to estimate likelihoods, or train the model via
MLE.

12/35

How can we construct G such that
® The G~1(x) and det VG~ (z) can be computed efficiently.

The flow-based models provide a principled approach to design this kind of G!

13/35

Flow-based models

Suppose f,, : R? — R? be a simple invertible map. Flow-based models construct complex

transforms through a “flow” of simple transform f,, by

Gg :fwKOfwK71) ..ofwl :RdHRd’
where 6 = (w1,...,wg). It can be rewritten as
zZ0 — %
2t = fuw,(2t-1), t=1,....K
Go(z) = 2K

/jl(zo) @ - fz Zi-1) @fz+l z;)

2o ~ po(2o) Zi ~ pi(zi)

@:x
AM

ZKg ~ PK(ZK

14/35

Flow-based models (cont’d)

* The inverse is computed with G, ' (z) = folo folo - o fol(a).

15/35

Flow-based models (cont’d)

* The inverse is computed with G, ' (z) = f;!o o-- o ful(z).
* Note that |det VG, ' (z)| = 1/|det VGy(z)| and

_ dzp, dz;
det VGy(z) = (dzL X (dZL—1) <det dzo) .

Hence,

log | det V,Gy(2)| = Zlog|Vfwt (zt—1)]

t=0

15/35

Flow-based models (cont’d)

* The inverse is computed with G, ' (z) = f;!o o-- o ful(z).
* Note that |det VG, ' (z)| = 1/|det VGy(z)| and

_ dzp, dz;
det VGy(z) = (dzL X (dZL—1) <det dzo) .

log | det V,Gy(2)| = Zlog|Vfwt (zt—1)]

t=0

Hence,

® Note that the computation cost of det V f,,(z) can as slow as O(d®). We need to design
fw such that its inverse and the determinant of Jacobian can be efficiently computed.

15/35

Variants of flow-based models
We choose f,, through the following criteria:

® |t is easy to compute the inverse map: f;!.

e |t is efficient to compute the determinant: |det V f,|.

16/35

Variants of flow-based models

We choose f,, through the following criteria:

It is easy to compute the inverse map: f, .
It is efficient to compute the determinant: | det V f,].

In the literature, there are many choices:

Normalizing flow (Tabak & Vanden-Eijnden, 2010)

NICE: nonlinear independent components estimation (Dinh et al., 2014)
Real-NVP: real-valued Non-volume preserving (Dinh et al., 2017)
Masked autogressive flow (Papamakarios et al., 2017)

Inverse autogressive flow (Kingma et al., 2016)

Continuous normalizing flow (CNF) (Chen et al., 2019).

Diffusion model.

16/35

Variants of flow-based models

We choose f,, through the following criteria:
® |t is easy to compute the inverse map: f;!.

e |t is efficient to compute the determinant: |det V f,,|.

We will only cover details of NICE and real-NVP, whose designing principle is to ensure:
V f. is lower triangular.

In this case, the computational cost is O(d).

16/35

NICE (Non-linear Independent Component Estimation)

Decompose z into two disjoint subsets: z = (21.5, 2s+1:.4). Then, NICE proposes the following
additive coupling transform x = f(z):

T1:s = Z1:s

Ts4+1:d = Zs+1:d + U(Zl:s)

Here v : R® — R%~% can be parameterized with neural networks.

17/35

NICE (Non-linear Independent Component Estimation)

Decompose z into two disjoint subsets: z = (21.5, 2s+1:.4). Then, NICE proposes the following
additive coupling transform x = f(z):

T1:s = Z1:s

Ts4+1:d = Zs+1:d + U(Zl:s)

Here v : R® — R%~% can be parameterized with neural networks.
® The inverse map: z = f~!(z) is given by

Z1:s = T1:s

Zs+1:d = Ts41:d — 'U(xl:s)-

17/35

NICE (Non-linear Independent Component Estimation)

Decompose z into two disjoint subsets: z = (21.5, 2s+1:.4). Then, NICE proposes the following
additive coupling transform x = f(z):

T1:s = Z1:s

Ts4+1:d = Zs+1:d + U(Zl:s)

Here v : R® — R%~% can be parameterized with neural networks.
® The inverse map: z = f~!(z) is given by

Z1:s = T1:s

Zs+1:d = Ts41:d — 'U(l'l:s)-

® The Jacobian is lower triangular:

Vefuw(z) = (év In(is)

Hence, | det V. f,,(2)] = 1, i.e., the NICE implements volume-preserving transforms.

17/35

NICE (Non-linear Independent Component Estimation)

Decompose z into two disjoint subsets: z = (21.5, 2s+1:.4). Then, NICE proposes the following

additive coupling transform x = f(z):

T1:s = Z1:s
Ls+1:d = Rs+1:d + U(Zl:s)
Here v : R® — R%~% can be parameterized with neural networks.
® The inverse map: z = f~!(z) is given by
Z1:s = T1:s
Zs+1:d = Ts41:d — 'U(xl:s)-

® The Jacobian is lower triangular:

Vefuw(z) = (év In:)

Hence, | det V. f,,(2)] = 1, i.e., the NICE implements volume-preserving transforms.

® We do not need to compute the determinant of Jacobian for NICE. Great!! But the
volume-preserving property also restricts the expressive power.

17/35

Real-NVP (Real-valued Non-Volume Preserving)

Real-NVP adds scaling factors to NICE:
T1:s = Z1:s
Ts+1:d = Zs+1:d®6u(Z1:b) + v(zlzs)v

where u, v : R® — R?% are parameterized with neural networks. Here, ® and e* should be
understood in an element-wise manner.

18/35

Real-NVP (Real-valued Non-Volume Preserving)

Real-NVP adds scaling factors to NICE:
T1:s = Z1:s
Ls+1:d — Zerl:d@fi'lt(Zl:b) + v(zlzs)v

where u, v : R® — R?% are parameterized with neural networks. Here, ® and e* should be
understood in an element-wise manner.

® The inverse map:
Z1:s = T1:s

Zs+1:d = ($s+1:d — ’u(xlzs)) ® e~ u(@s)

18/35

Real-NVP (Real-valued Non-Volume Preserving)

Real-NVP adds scaling factors to NICE:
T1:s = Z1:s
Ls+1:d — Zerl:d@eu(zl:b) + v(zlzs)v

where u, v : R® — R?% are parameterized with neural networks. Here, ® and e* should be
understood in an element-wise manner.

® The inverse map:
Z1:s = T1:s
Zotr1id = (Toy1:d — 0(T15)) © €400,

® The Jacobian:
I 0
Viz)= <* diag(eu(zl:s)).>
d—s
log|det Vf(2)] = |ZUj(Zl;s)|.
j=1

The computation cost is O(d).

18/35

Real-NVP (Real-valued Non-Volume Preserving)

Real-NVP adds scaling factors to NICE:
T1:s = Z1:s
Lst1:d = Zerl:dG’fiu(zl:b) + v(zlzs)v

where u, v : R® — R?% are parameterized with neural networks. Here, ® and e* should be
understood in an element-wise manner.

® The inverse map:
Z1:s = T1:s
Zotr1id = (Toy1:d — 0(T15)) © €400,

® The Jacobian:
I 0
Viz)= <* diag(eu(zlzs)).>
d—s
log|det Vf(2)] = |ZUj(Zl;s)|.
j=1

The computation cost is O(d).
® Real-NVP is not volume-preserving.

18/35

Remarks

® Note that the additive coupling transform leaves part of its input unchanged. To fix this
issue, we need to exchange the role of two subsets for different steps.

19/35

The choice of loss function

Let L(-,-) be a metric measuring the difference between two distributions. We expect

min Z(Py, P*). (1)

20/35

The choice of loss function

Let L(-,-) be a metric measuring the difference between two distributions. We expect
min L(Fp, P*). (1)

But, we can only

Inain L(PG; Pn) + /\nR(‘g), (2)

where P, = LS 18(-— ;) and R(-) denotes certain regularization.

20/35

The choice of loss function

Let L(-,-) be a metric measuring the difference between two distributions. We expect
min L(Fp, P*). (1)

But, we can only

Inain L(PG; Pn) + /\nR(‘g), (2)

where P, = LS 18(-— ;) and R(-) denotes certain regularization.

e Different from supervised learning, choosing L(-,-) is highly non-trivial. There are no
such thing called fitting error at the i-th sample.

20/35

The choice of loss function

Let L(-,-) be a metric measuring the difference between two distributions. We expect
min L(Fp, P*). (1)

But, we can only

n?bin L(PG; Pn) + /\nR(‘g), (2)

where P, = LS 18(-— ;) and R(-) denotes certain regularization.
e Different from supervised learning, choosing L(-,-) is highly non-trivial. There are no
such thing called fitting error at the i-th sample.
® There are many variants of norm, divergence, distance for comparing two distributions:

® P, may not have a density function, e.g., the transform-based models.
® Computing the density of Py may be intractable or expensive, e.g., the energy-based models.

20/35

« Designing loss functions

21/35

What is a practical loss function?

® Consider the L? distance:

[17 - Aol a.

TV (Py, P,).

® The total variation:

22/35

What is a practical loss function?

® Consider the L? distance:
[170te) ~ Bua)p s

TV (Py, P,).

® The total variation:

We are unable to evaluate these losses since we only have samples z1, ..., z, from p*.

A pratical choice of metric must be an expectation in Pn; otherwise, the metric is not
computable.

22/35

Strong form

® Strong form: Need P to have a density function.

KL(P,170) = | 1og J;Ejji aB, (z)

= constant — Ep, [log Py()]

1 n
= tant — — log Py(x;
constan - Z og Py(x;)

i=1

® |t is equivalent to maximizing the likelihood.

® In fact, (3) is the only practical density-based loss (homework).

23/35

Weak form

Weak Form: View P as a linear functional over certain function classes.

L(P,P') = sup (Ep(f1 =Ep[f]) (4)

Here f is called the test function and F is the set of test functions.

24/35

Weak form

Weak Form: View P as a linear functional over certain function classes.

L(P,P') = sup (Ep(f1 =Ep[f]) (4)

Here f is called the test function and F is the set of test functions.

Intuitively speaking, weak metrics measure the differences of two distributions by comparing
their “generalized” moments .

24/35

Weak form

Weak Form: View P as a linear functional over certain function classes.

L(P,P') = sup (Ep(f1 =Ep[f]) (4)

Here f is called the test function and F is the set of test functions.
Intuitively speaking, weak metrics measure the differences of two distributions by comparing
their “generalized” moments .

There are many different choices of moments class.
o F={x,2% 23, ...,} — the classic moment methods.
o F={|fllree <1} — the total variation norm.
o F={]fllup <1} — the 1-Wasserstein metric.
® F = unit ball in RKHS space — the maximum mean discrepancy distance.

® F = neural networks (with certain constraints) — the neural distance.

24/35

The models

Loss functions:
® Strong: log-likelihood
mFi)n — Ep-«[log P(z)].

® Weak: dual norm
i E —Ep- .
ml;nrfnea}c(plf] p+[f])
Representations:
® Generator/Pushforward: P = G#Q.

® Potential /Gibbs: P =¢""/ [e7V dQ.

25/35

The models

Loss functions:
® Strong: log-likelihood
mFi)n — Ep-«[log P(z)].

® \Weak: dual norm

minmax (Ep[f] - Ep-[f]).

Representations:
® Generator/Pushforward: P = G#Q.
® Potential /Gibbs: P =¢""/ [e7V dQ.
Combinations: Different combinations lead to diffent models.
® Weak metric 4+ generator = GAN (Generative adversarial network):

® Strong metric: Variational autoencoder (VAE), normalizing flow, diffusion-based
generative model, autoregressive models, etc.

25/35

Generative adversarial network (GAN)

Rename the test function as the discriminator D.

® Weak formulation of Jensen-Shannon divergence (symmetrized KL):

/!

2
= sup (Eplog q(x)] +Ep[log(1 ~ q(x)ﬂ)

where the supremum is taken with all measurable functions ¢ : R% + [0, 1].

26/35

Generative adversarial network (GAN)

Rename the test function as the discriminator D.

® Weak formulation of Jensen-Shannon divergence (symmetrized KL):

/!

2
= sup (Eplog q(x)] +Ep[log(1 ~ q(x)ﬂ)

where the supremum is taken with all measurable functions ¢ : R% + [0, 1].

® Neural network formulation:

L(P,P') = sup (Ep[log(1 — D(z))] + Epr[log D(z)]),

where D : R+ (0,1) is a neural network. It is essentially a binary classifier.

26/35

Generative adversarial network (GAN)

Rename the test function as the discriminator D.

® Weak formulation of Jensen-Shannon divergence (symmetrized KL):

/!

2
= sup (Eplog q(x)] +Ep[log(1 ~ q(x)ﬂ)

where the supremum is taken with all measurable functions ¢ : R% + [0, 1].
® Neural network formulation:

L(P,P') = sup (Ep[log(1 — D(z))] + Epr[log D(z)]),

where D : R+ (0,1) is a neural network. It is essentially a binary classifier.

® Consider the generative model P = G#(). Then, the problem becomes a minimax

problem:
mén max (EZNQ[log(l — D(G(2)))] + % Z;log D(xl)> .

26/35

GAN: The original game motivation

A game between the generator and discriminator:
® Discriminator: Distinguish the fake and real data.
® Generator: generate fake data G(z) such that {G(z)}, are undistinguishable with the real
data {z;};.

27/35

Wasserstein GAN

Choose test functions as constraint neural networks.

min max < 21f0,(Go,(2))] — — Z fo, (x;) (5)

0.€U 02

® Both fy, and Gp, are neural networks.

® In the original Wasserstein GAN, U = {6 : max; |0;| < 6} with the § tunned for each
problems.

® There are many other choices of U, such as gradient penalty, spectral normalization, etc.

28/35

Evaluate our models

In supervised learning, we evaluate our model by using a test dataset. However, for
unsupervised learning models, it is hard to evaluate the model's goodness.

29/35

Evaluate our models

In supervised learning, we evaluate our model by using a test dataset. However, for
unsupervised learning models, it is hard to evaluate the model's goodness.

Weak metrics:
® Human judgement.
® Wasserstein W5 metric: Computation suffers from the curse of dimensionality.

® Frechet inception distance: Approximating W5 with only means and covariances.

29/35

Evaluate our models

In supervised learning, we evaluate our model by using a test dataset. However, for
unsupervised learning models, it is hard to evaluate the model's goodness.

Weak metrics:
® Human judgement.
® Wasserstein W5 metric: Computation suffers from the curse of dimensionality.

® Frechet inception distance: Approximating W5 with only means and covariances.

Strong metrics:
® |og-likelihood.

® Inception score: Let C'(z) be an ImageNet classifier. If C'(z) has small entropy on z, then
the classifier is confident about the label of 2. This implies that x looks like an image (at
least for C'(x)).

29/35

Training procedure

® Strong form:
. 1 .
memf E og pe(x;)

Train with SGD/ADAM.

® Weak form:
min max (IEIN 5 [D(361)] — Eo[D(G(2:65); 91)])

25 01

This is not a standard optimization but a minimax problem.

30/35

Solve the minimax problem

min max (Emwﬁ,n [D(x:0,)] — E.[D(G(2; 05); 91)])

62 01

Each step (0:1(t),02(t)) — (61(t + 1),62(t + 1)) updates as follows.

31/35

Solve the minimax problem

min max (Emwﬁ,n [D(x:0,)] — E.[D(G(2; 05); 91)])

723 61
Each step (0:1(t),02(t)) — (61(t + 1),62(t + 1)) updates as follows.
® Maximization-step: Let 0;(¢,0) = 61(¢).

31/35

Solve the minimax problem

min max (Emwﬁ,n [D(x:0,)] — E.[D(G(2; 05); 91)])

92 91
Each step (0:1(t),02(t)) — (01(t 4+ 1),62(t + 1)) updates as follows.
® Maximization-step: Let 0;(¢,0) = 61(¢).
® For k=1,...,m, randomly sample 21, ..., 2B,x and update the generator as follows

01(t, k) = 0:(t,k—1)+m Ve, < ZD xi;01(t ZD (2j; 0a(t) el(mk—l)))

31/35

Solve the minimax problem

min max (Emwﬁ,n [D(x:0,)] — E.[D(G(2; 05); 91)])

92 91
Each step (0:1(t),02(t)) — (01(t 4+ 1),62(t + 1)) updates as follows.
® Maximization-step: Let 0;(¢,0) = 61(¢).
® For k=1,...,m, randomly sample 21, ..., 2B,x and update the generator as follows

01(t, k) = 0:(t,k—1)+m Ve, < ZD xi;01(t ZD (2j; 0a(t) el(mk—l)))

® Return 01(t 4+ 1) = 01(t, m).

31/35

Solve the minimax problem

min max (Emwﬁ,n [D(x:0,)] — E.[D(G(2; 05); 91)])

92 91
Each step (0:1(t),02(t)) — (01(t 4+ 1),62(t + 1)) updates as follows.
® Maximization-step: Let 0;(¢,0) = 61(¢).
® For k=1,...,m, randomly sample 21, ..., 2B,x and update the generator as follows

01(t, k) = 0:(t,k—1)+m Ve, (ZD x; 01 (t ZD (25 62(t) el(mk—l)))

® Return 01(t 4+ 1) = 01(t, m).
® Minimization-step: Update the discriminator:

0a(+1) = 02(0) = 12V, | 35 37 D(Gz1:02(0,) 0:0) |

where {z;} and {z;} are the minibatch samples.

31/35

Issues

® The training of weak models is very unstable, in particular when the maximization
step is updated only a few steps—a choice preferred in practice.
Moreover, we do not have a good criterion to monitor the training progress since the weak
norm cannot be estimated in a reasonable way.

32/35

Issues

® The training of weak models is very unstable, in particular when the maximization
step is updated only a few steps—a choice preferred in practice.
Moreover, we do not have a good criterion to monitor the training progress since the weak
norm cannot be estimated in a reasonable way.

®* Mode collapse: Are there metrics that can detect the mode collapse?

~= GAN output Your GAN
in paper output

Figure 5: Left: Images from [Zhao et al., 2017] Energy-based GAN

32/35

Summary

Distribution learning: Normalizing flow, GAN, etc.
® Representation:

® Energy-based models
® Transform-based models: flow-based models (NICE, real-NVP, etc.)

® Loss designing:
® Strong form: MLE/KL-divergence;
® Weak form: The choice of test functions.

® Evaluation: Weak and strong metrics.

Note: Variational Autoencoders (VAEs) are important generative models but are not covered
in this slide. Additionally, we will dedicate a separate lecture to discussing diffusion models.

33/35

Questions to Aid Understanding

® What are the advantages and disadvantages of weak models?
® What are the advantages and disadvantages of strong models?
® Training flow-based model is still challenging. Why?

34/35

Supplementary Wasserstein metric

* Define a distance between two sets of points {x;};_; and {y;}"_, :

min (|23 iy |
res, ni:l % Yﬂ'(z)

® Generalize to probability measures P and @ : the matching becomes a joint distribution
m(x,y)
I(P,Q) = {reP (R xRY) ,mx = P,y = Q}

Define the Wasserstein metric W,

. 1/
Wp(Pv Q) = werl_?(llng) (E‘n'(x,y) [”X - YHP]) g

® For W7, we have the Kantorovich-Rubinstein theorem:

Wi(P,Q) = sup Ep[f] - Eqlf]

Iflleip<1

Duality holds for W,, in general, but the formula for W7 is simplest.

35/35

