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Example: Generate natural images

Figure 1: images generated by BigGAN (Brock et al., 2018)

.
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https://openreview.net/forum?id=B1xsqj09Fm


Example: Style transfer

Figure 2: Style transfers with pix2pix (Isola, et. al., 2017)
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https://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf


Example: Generate images from text description

Try this https://huggingface.co/spaces/stabilityai/stable-diffusion.

4 / 35

https://huggingface.co/spaces/stabilityai/stable-diffusion


Example: Generate images from text description

Figure 3: Generated by https://beta.dreamstudio.ai with the prompt “Great wall in mountains,
stars, Vincent van Gogh”.
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https://beta.dreamstudio.ai


Distribution Learning

General goal: Given {xi}ni=1 drawn from unknown ρ∗,
“estimate” ρ∗ using these samples.

Task:

• Estimate the likelihood (classical, density estimation).

• Generate new samples (generative model).

Figure 4: “What I cannot create,
I do not understand!”
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History

• Gaussian mixture model, histogram estimator, and kernel density estimator. All these
models take the following basis-expansion form:

f̂h(x; a, µ) =

m∑
i=1

ajkh(x, µi),

with
∑m
j=1 aj = 1 and aj ≥ 0, ∀j = 1, . . . ,m. Here h denotes the “bandwidth”.

• In modern ML tasks, ρ∗ is a high-dimensional distribution.

• Classical linear methods all suffer from the curse of dimensionality in representing ρ∗.
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How do we represent distribution?

• Represent prob. distributions through functions.
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Energy-based models

Density function: Let Vθ : X 7→ R be a parametric potential energy function. Then, the
Gibbs distribution:

pθ(x) =
e−Vθ(x)∫
e−Vθ(x)dx

= e−Vθ(x)/Zθ.

is a density function.

• Learning a distribution is reduced to learn a energy function Vθ. Hence, It is often referred
as an energy-based model
(http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf).

• Zθ =
∫
e−Vθ(x) dx is the called partition function. We usually are unable to evaluate the

density pθ(x) since Zθ is hard to compute.

• We can sample pθ with MCMC sampler but this might be not efficient.
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Transform-based models

Pushforward distribution: Let Z ∼ Q be a simple distribution, e.g., Q = N (0, ID) and
Q = Unif([0, 1]D). Let G : RD 7→ Rd be a transform (also called generator). Then, the
distribution P is generated through the transform G:

P = Law(X), X = Gθ(Z), Z ∼ Q.

• In this modeling, the complex distribution P is generated from a simple distribution Q.
Learning P is reduced to learn a generator G.

• We can use neural networks to parameterize G.

10 / 35



Transform-based models

Pushforward distribution: Let Z ∼ Q be a simple distribution, e.g., Q = N (0, ID) and
Q = Unif([0, 1]D). Let G : RD 7→ Rd be a transform (also called generator). Then, the
distribution P is generated through the transform G:

P = Law(X), X = Gθ(Z), Z ∼ Q.

• In this modeling, the complex distribution P is generated from a simple distribution Q.
Learning P is reduced to learn a generator G.

• We can use neural networks to parameterize G.

10 / 35



Transform-based models (cont’d)

• One can choose D � d. In such a case, P is a singular distribution without a density
function. In particular, P concentrates on a D-dimensional sub-manifold in Rd:

Supp(P ) = Range(G).

• [Pros] It is fast to draw samples from P .
• Draw z1, . . . , zn independently from Q.
• Then, {xi = G(zi)}ni=1 are i.i.d. samples from P .

• Computing expectation:

EX∼P [f(X)] = EZ∼Q[f(G(Z))] ≈ 1

n

n∑
i=1

f(G(zi)).
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The density of transform-based models

• By abuse of notation, let Q(·) denote the density function of Q. When d = D, X has the
following density function:

P (x) = Q(G−1(x))|det(∇G−1(x))|.

• A simple derivation: For any testing function h, we have∫
h(x)P (x) dx =

∫
h(G(z))Q(z) dz (definition of push-forward distribution)

=

∫
h(y)Q(G−1(y))

dz

dy
dy (change of variable)

=

∫
h(y)Q(G−1(y))|det∇G−1(y)|dy.

Hence, P (x) = Q(G−1(x))|det∇G−1(x)|.
• This formula is useful when we would like to estimate likelihoods, or train the model via

MLE.
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How can we construct G such that

• The G−1(x) and det∇G−1(x) can be computed efficiently.

The flow-based models provide a principled approach to design this kind of G!

13 / 35



Flow-based models

Suppose fw : Rd 7→ Rd be a simple invertible map. Flow-based models construct complex
transforms through a “flow” of simple transform fw by

Gθ = fwK ◦ fwK−1
◦ · · · ◦ fw1 : Rd 7→ Rd,

where θ = (w1, . . . , wK). It can be rewritten as

z0 = z

zt = fwt(zt−1), t = 1, . . . ,K

Gθ(z) = zK
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Flow-based models (cont’d)

• The inverse is computed with G−1
θ (x) = f−1

w1
◦ f−1

w2
◦ · · · ◦ f−1

wK (x).

• Note that |det∇G−1
θ (x)| = 1/|det∇Gθ(z)| and

det∇Gθ(z) =

(
det

dzL
dzL−1

)(
det

dzL
dzL−1

)
· · ·
(

det
dz1

dz0

)
.

Hence,

log |det∇zGθ(z)| =
L−1∑
t=0

log |∇fwt(zt−1)|

• Note that the computation cost of det∇fw(z) can as slow as O(d3). We need to design
fw such that its inverse and the determinant of Jacobian can be efficiently computed.
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Variants of flow-based models

We choose fw through the following criteria:

• It is easy to compute the inverse map: f−1
w .

• It is efficient to compute the determinant: |det∇fw|.

In the literature, there are many choices:

• Normalizing flow (Tabak & Vanden-Eijnden, 2010)

• NICE: nonlinear independent components estimation (Dinh et al., 2014)

• Real-NVP: real-valued Non-volume preserving (Dinh et al., 2017)

• Masked autogressive flow (Papamakarios et al., 2017)

• Inverse autogressive flow (Kingma et al., 2016)

• Continuous normalizing flow (CNF) (Chen et al., 2019).

• Diffusion model.

We will only cover details of NICE and real-NVP, whose designing principle is to ensure:

∇fw is lower triangular.

In this case, the computational cost is O(d).
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NICE (Non-linear Independent Component Estimation)

Decompose z into two disjoint subsets: z = (z1:s, zs+1:d). Then, NICE proposes the following
additive coupling transform x = f(z):

x1:s = z1:s

xs+1:d = zs+1:d + v(z1:s)

Here v : Rs 7→ Rd−s can be parameterized with neural networks.

• The inverse map: z = f−1(x) is given by

z1:s = x1:s

zs+1:d = xs+1:d − v(x1:s).

• The Jacobian is lower triangular:

∇zfw(z) =

(
Is 0
∇v In−s.

)
Hence, |det∇zfw(z)| = 1, i.e., the NICE implements volume-preserving transforms.

• We do not need to compute the determinant of Jacobian for NICE. Great!! But the
volume-preserving property also restricts the expressive power.
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Real-NVP (Real-valued Non-Volume Preserving)

Real-NVP adds scaling factors to NICE:

x1:s = z1:s

xs+1:d = zs+1:d�eu(z1:s) + v(z1:s),

where u, v : Rs 7→ Rd−s are parameterized with neural networks. Here, � and ez should be
understood in an element-wise manner.

• The inverse map:

z1:s = x1:s

zs+1:d = (xs+1:d − v(x1:s))� e−u(x1:s).

• The Jacobian:

∇f(z) =

(
Is 0
∗ diag(eu(z1:s)).

)
log |det∇f(z)| = |

d−s∑
j=1

uj(z1:s)|.

The computation cost is O(d).
• Real-NVP is not volume-preserving.
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Remarks

• Note that the additive coupling transform leaves part of its input unchanged. To fix this
issue, we need to exchange the role of two subsets for different steps.
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The choice of loss function

Let L(·, ·) be a metric measuring the difference between two distributions. We expect

min
θ
L(Pθ, P

∗). (1)

But, we can only

min
θ
L(Pθ, P̂n) + λnR(θ), (2)

where P̂n = 1
n

∑n
i=1 δ(· − xi) and R(·) denotes certain regularization.

• Different from supervised learning, choosing L(·, ·) is highly non-trivial. There are no
such thing called fitting error at the i-th sample.

• There are many variants of norm, divergence, distance for comparing two distributions:
• Pθ may not have a density function, e.g., the transform-based models.
• Computing the density of Pθ may be intractable or expensive, e.g., the energy-based models.
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• Designing loss functions
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What is a practical loss function?

• Consider the Lp distance: ∫
|Pθ(x)− P̂n(x)|p dx.

• The total variation:
TV (Pθ, P̂n).

We are unable to evaluate these losses since we only have samples x1, . . . , xn from ρ∗.

A pratical choice of metric must be an expectation in P̂n; otherwise, the metric is not
computable.
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Strong form

• Strong form: Need Pθ to have a density function.

KL(P̂n||Pθ) =

∫
log

P̂n(x)

Pθ(x)
dP̂n(x)

= constant− EP̂n [logPθ(x)]

= constant− 1

n

n∑
i=1

logPθ(xi) (3)

• It is equivalent to maximizing the likelihood.

• In fact, (3) is the only practical density-based loss (homework).
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Weak form

Weak Form: View P as a linear functional over certain function classes.

L(P, P ′) = sup
f∈F

(EP [f ]− EP ′ [f ]) (4)

Here f is called the test function and F is the set of test functions.

Intuitively speaking, weak metrics measure the differences of two distributions by comparing
their “generalized” moments .

There are many different choices of moments class.

• F = {x, x2, x3, . . . , } → the classic moment methods.

• F = {‖f‖L∞ ≤ 1} → the total variation norm.

• F = {‖f‖Lip ≤ 1} → the 1-Wasserstein metric.

• F = unit ball in RKHS space → the maximum mean discrepancy distance.

• F = neural networks (with certain constraints) → the neural distance.
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Intuitively speaking, weak metrics measure the differences of two distributions by comparing
their “generalized” moments .

There are many different choices of moments class.

• F = {x, x2, x3, . . . , } → the classic moment methods.

• F = {‖f‖L∞ ≤ 1} → the total variation norm.
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The models

Loss functions:

• Strong: log-likelihood
min
P
−EP∗ [logP (x)].

• Weak: dual norm
min
P

max
f∈F

(EP [f ]− EP∗ [f ]) .

Representations:

• Generator/Pushforward: P = G#Q.

• Potential/Gibbs: P = e−V /
∫
e−V dQ.

Combinations: Different combinations lead to diffent models.

• Weak metric + generator = GAN (Generative adversarial network):

• Strong metric: Variational autoencoder (VAE), normalizing flow, diffusion-based
generative model, autoregressive models, etc.
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Generative adversarial network (GAN)

Rename the test function as the discriminator D.

• Weak formulation of Jensen-Shannon divergence (symmetrized KL):

JS(P, P ′) =
1

2
DKL

(
P
∣∣∣∣P + P ′

2

)
+

1

2
DKL

(
P ′
∣∣∣∣P + P ′

2

)
= sup

q
(EP [log q(x)] + EP ′ [log(1− q(x))])

where the supremum is taken with all measurable functions q : Rd 7→ [0, 1].

• Neural network formulation:

L(P, P ′) = sup
D

(EP [log(1−D(x))] + EP ′ [logD(x)]) ,

where D : Rd 7→ (0, 1) is a neural network. It is essentially a binary classifier.

• Consider the generative model P = G#Q. Then, the problem becomes a minimax
problem:

min
G

max
D

(
Ez∼Q[log(1−D(G(z)))] +

1

n

n∑
i=1

logD(xi)

)
.
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GAN: The original game motivation

A game between the generator and discriminator:
• Discriminator: Distinguish the fake and real data.
• Generator: generate fake data G(z) such that {G(z)}z are undistinguishable with the real

data {xi}i.
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Wasserstein GAN

Choose test functions as constraint neural networks.

min
θ1∈U

max
θ2

(
Ez[fθ1(Gθ2(z))]− 1

n

n∑
i=1

fθ1(xi)

)
(5)

• Both fθ1 and Gθ2 are neural networks.

• In the original Wasserstein GAN, U = {θ : maxi |θi| ≤ δ} with the δ tunned for each
problems.

• There are many other choices of U , such as gradient penalty, spectral normalization, etc.
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Evaluate our models

In supervised learning, we evaluate our model by using a test dataset. However, for
unsupervised learning models, it is hard to evaluate the model’s goodness.

Weak metrics:

• Human judgement.

• Wasserstein W2 metric: Computation suffers from the curse of dimensionality.

• Frechet inception distance: Approximating W2 with only means and covariances.

Strong metrics:

• Log-likelihood.

• Inception score: Let C(x) be an ImageNet classifier. If C(x) has small entropy on x, then
the classifier is confident about the label of x. This implies that x looks like an image (at
least for C(x)).
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Training procedure

• Strong form:

min
θ
−
∑
i

log pθ(xi)

Train with SGD/ADAM.

• Weak form:
min
θ2

max
θ1

(
Ex∼P̂n [D(x; θ1)]− Ez[D(G(z; θ2); θ1)]

)
This is not a standard optimization but a minimax problem.
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Solve the minimax problem

min
θ2

max
θ1

(
Ex∼P̂n [D(x; θ1)]− Ez[D(G(z; θ2); θ1)]

)
Each step (θ1(t), θ2(t)) 7→ (θ1(t+ 1), θ2(t+ 1)) updates as follows.

• Maximization-step: Let θ1(t, 0) = θ1(t).

• For k = 1, . . . ,m, randomly sample z1,k, . . . , zB,k and update the generator as follows

θ1(t, k) = θ1(t, k−1)+η1∇θ1

(
1

B1

∑
i

D(xi; θ1(t))−
1

B2

∑
j

D(G(zj ; θ2(t)); θ1(t, k − 1))

)

• Return θ1(t+ 1) = θ1(t,m).

• Minimization-step: Update the discriminator:

θ2(t+ 1) = θ2(t)− η2∇θ2

 1

B

∑
j

D(G(zj,k; θ2(t, k)); θ1(t))

 ,

where {xi} and {zj} are the minibatch samples.
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Issues

• The training of weak models is very unstable, in particular when the maximization
step is updated only a few steps—a choice preferred in practice.
Moreover, we do not have a good criterion to monitor the training progress since the weak
norm cannot be estimated in a reasonable way.

• Mode collapse: Are there metrics that can detect the mode collapse?

Figure 5: Left: Images from [Zhao et al., 2017] Energy-based GAN
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Summary

Distribution learning: Normalizing flow, GAN, etc.

• Representation:
• Energy-based models
• Transform-based models: flow-based models (NICE, real-NVP, etc.)

• Loss designing:
• Strong form: MLE/KL-divergence;
• Weak form: The choice of test functions.

• Evaluation: Weak and strong metrics.

Note: Variational Autoencoders (VAEs) are important generative models but are not covered
in this slide. Additionally, we will dedicate a separate lecture to discussing diffusion models.
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Questions to Aid Understanding

• What are the advantages and disadvantages of weak models?

• What are the advantages and disadvantages of strong models?

• Training flow-based model is still challenging. Why?
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Supplementary Wasserstein metric

• Define a distance between two sets of points {xi}ni=1 and {yj}nj=1 :

min
π∈Sn

√√√√ 1

n

n∑
i=1

∥∥xi − yπ(i)

∥∥2

• Generalize to probability measures P and Q : the matching becomes a joint distribution
π(x,y)

Π(P,Q) :=
{
π ∈ P

(
Rd × Rd

)
, πx = P, πy = Q

}
Define the Wasserstein metric Wp

Wp(P,Q) := min
π∈Π(P,Q)

(
Eπ(x,y) [‖x− y‖p]

)1/p
• For W1, we have the Kantorovich-Rubinstein theorem:

W1(P,Q) = sup
‖f‖Lip≤1

EP [f ]− EQ[f ]

Duality holds for Wn in general, but the formula for W1 is simplest.
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