Diffusion Model and Score Matching

Instructor: Lei Wu¹

Mathematical Introduction to Machine Learning

Peking University, Fall 2024

¹School of Mathematical Sciences; Center for Machine Learning Research

What Is Diffusion?

Dye molecules diffuse throughout the entire space by colliding with water molecules.

• Let $\{x_k\}_{k\geq 0}$ be the trajectory of dye molecules. We can model its dynamics as follows

 $x_{k+1} = x_k + \sqrt{\eta} \xi_k, \qquad 0 \le k \le N - 1,$

where $\xi_k \stackrel{iid}{\sim} \mathcal{N}(0,1)$ and η is a small factor ².

 $^{^{2}\}eta$ depends on the temperature, time unit, etc.

• Let $\{x_k\}_{k\geq 0}$ be the trajectory of dye molecules. We can model its dynamics as follows

$$x_{k+1} = x_k + \sqrt{\eta}\xi_k, \qquad 0 \le k \le N - 1,$$

where $\xi_k \stackrel{iid}{\sim} \mathcal{N}(0,1)$ and η is a small factor ².

• Thus, we have after N steps

$$x_{N\eta} = x_0 + \sqrt{\eta} \sum_{k=0}^{N-1} \xi_k \sim \mathcal{N}(x_0, \eta N).$$

 $^{^{2}\}eta$ depends on the temperature, time unit, etc.

• Let $\{x_k\}_{k\geq 0}$ be the trajectory of dye molecules. We can model its dynamics as follows

$$x_{k+1} = x_k + \sqrt{\eta}\xi_k, \qquad 0 \le k \le N - 1,$$

where $\xi_k \stackrel{iid}{\sim} \mathcal{N}(0,1)$ and η is a small factor ².

Thus, we have after N steps

$$x_{N\eta} = x_0 + \sqrt{\eta} \sum_{k=0}^{N-1} \xi_k \sim \mathcal{N}(x_0, \eta N).$$

• Consider the continuous-time limit: $\eta \to 0$. Let $t = N\eta$. Then, we have

$$x_{N\eta} \to X_t \sim \mathcal{N}(X_0, t).$$

 $^{^{2}\}eta$ depends on the temperature, time unit, etc.

• Let $\{x_k\}_{k\geq 0}$ be the trajectory of dye molecules. We can model its dynamics as follows

$$x_{k+1} = x_k + \sqrt{\eta} \xi_k, \qquad 0 \le k \le N - 1,$$

where $\xi_k \stackrel{iid}{\sim} \mathcal{N}(0,1)$ and η is a small factor ².

Thus, we have after N steps

$$x_{N\eta} = x_0 + \sqrt{\eta} \sum_{k=0}^{N-1} \xi_k \sim \mathcal{N}(x_0, \eta N).$$

• Consider the continuous-time limit: $\eta \to 0$. Let $t = N\eta$. Then, we have

$$x_{N\eta} \to X_t \sim \mathcal{N}(X_0, t).$$

• We call $B_t := X_t - X_0$ Brownian motion.

 $^{^{2}\}eta$ depends on the temperature, time unit, etc.

Important Properties of Brownian Motion

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

 $^{^{3}}$ Albert Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat, 1905.

Important Properties of Brownian Motion

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

• After time t, dye molecules only move $O(\sqrt{t})$: ³

 $\mathbb{E}[B_t] = 0, \quad \mathbb{E}[B_t^2] = t,$

where the second property is known as the Einstein relationship.

 $^{^{3}}$ Albert Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat, 1905.

Important Properties of Brownian Motion

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

• After time t, dye molecules only move $O(\sqrt{t})$: ³

$$\mathbb{E}[B_t] = 0, \quad \mathbb{E}[B_t^2] = t,$$

where the second property is known as the Einstein relationship.

• $B_t - B_s$ and B_s are independent. The trajectory is continuous but **non-differentiable** almost everywhere.

 $^{^{3}}$ Albert Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat, 1905.

General Diffusion Process (Modeled by Ito-SDE)

Consider dye molecules in a force field f(x,t) and the collision is heterogeneous:

• From t to $t + \eta$, the dye molecule moves according to

 $^{^{4}\}text{A}$ good textbook for SDE is: Bernt Øksendal, Stochastic Differential Equations: An Introduction with Applications

General Diffusion Process (Modeled by Ito-SDE)

Consider dye molecules in a force field f(x,t) and the collision is heterogeneous:

• From t to $t + \eta$, the dye molecule moves according to

$$x_{t+\eta} - x_t = \underbrace{f(x_t, t)\eta}_{\text{drift}} + \underbrace{\sigma(x_t, t)\sqrt{\eta}\xi_t}_{\text{diffusion}}$$

• Taking $\eta \rightarrow 0$ gives a stochastic differential equation (SDE) ⁴:

$$dx_t = f(x_t, t) dt + \sigma(x_t, t) dB_t$$

⁴A good textbook for SDE is: Bernt Øksendal, Stochastic Differential Equations: An Introduction with Applications

General Diffusion Process (Modeled by Ito-SDE)

Consider dye molecules in a force field f(x,t) and the collision is heterogeneous:

• From t to $t + \eta$, the dye molecule moves according to

$$x_{t+\eta} - x_t = \underbrace{f(x_t, t)\eta}_{\text{drift}} + \underbrace{\sigma(x_t, t)\sqrt{\eta}\xi_t}_{\text{diffusion}}.$$

• Taking $\eta \to 0$ gives a stochastic differential equation (SDE) ⁴:

$$\mathrm{d}x_t = f(x_t, t)\,\mathrm{d}t + \sigma(x_t, t)\,\mathrm{d}B_t$$

In physics, it is often written (by let $\omega_t=\dot{B}_t$) as

$$\dot{x}_t = f(x_t, t) + \sigma(x_t, t)\omega_t,$$

where ω_t is often referred to as white noise.

 $^{^{4}\}text{A}$ good textbook for SDE is: Bernt Øksendal, Stochastic Differential Equations: An Introduction with Applications

A Comparison Between SDE and ODE ⁵

Ordinary Differential Equation (ODE):

$$rac{\mathrm{d} \mathbf{x}}{\mathrm{d} t} = \mathbf{f}(\mathbf{x},t) \ \, ext{or} \ \, \mathrm{d} \mathbf{x} = \mathbf{f}(\mathbf{x},t) \mathrm{d} t$$

Analytical Solution:
$$\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \mathbf{f}(\mathbf{x}, \tau) \mathrm{d}\tau$$

Iterative Solution:

Sol

⁵taken from https://cvpr2022-tutorial-diffusion-models.github.io/

Langevin Dynamics

(Over-damped) Langevin dynamics is a special SDE with the drift term given by a potential force f(x) = −∇U(x):

$$dx_t = -\nabla U(x_t) dt + \sqrt{2\beta^{-1}} dB_t.$$
 (1)

Denote by $p_t = p(\cdot, t) = Law(X_t)$. Then, we have

$$p(x,t) \to \frac{e^{-\beta U(x)}}{Z_{\beta}} \text{ as } t \to \infty.$$
 (2)

Langevin Dynamics

(Over-damped) Langevin dynamics is a special SDE with the drift term given by a potential force f(x) = −∇U(x):

$$dx_t = -\nabla U(x_t) dt + \sqrt{2\beta^{-1}} dB_t.$$
 (1)

Denote by $p_t = p(\cdot, t) = Law(X_t)$. Then, we have

$$p(x,t) \to \frac{e^{-\beta U(x)}}{Z_{\beta}} \text{ as } t \to \infty.$$
 (2)

• To simulate (1), we can apply the Euler-Maruyama scheme:

$$X_{k+1} = X_k - \nabla U(X_k)\eta + \sqrt{2\beta^{-1}\eta\xi_k} \text{ with } \xi_k \sim \mathcal{N}(0, I_d).$$
(3)

Langevin Dynamics

(Over-damped) Langevin dynamics is a special SDE with the drift term given by a potential force f(x) = −∇U(x):

$$dx_t = -\nabla U(x_t) dt + \sqrt{2\beta^{-1}} dB_t.$$
 (1)

Denote by $p_t = p(\cdot, t) = Law(X_t)$. Then, we have

$$p(x,t) \to \frac{e^{-\beta U(x)}}{Z_{\beta}} \text{ as } t \to \infty.$$
 (2)

• To simulate (1), we can apply the Euler-Maruyama scheme:

$$X_{k+1} = X_k - \nabla U(X_k)\eta + \sqrt{2\beta^{-1}\eta}\xi_k \text{ with } \xi_k \sim \mathcal{N}(0, I_d).$$
(3)

• Ornstein–Uhlenbeck (OU) process is a simplest SDE given by

$$\mathrm{d}x_t = -\theta x_t \,\mathrm{d}t + \sigma \,\mathrm{d}B_t,$$

for which $U(x) = \theta ||x||^2/2, \beta^{-1} = \sigma^2/2$. The equilibrium distribution is Gaussian:

$$p_{\infty}(x) \propto \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right)$$

Diffusion models

In diffusion models

- We first gradually inject noise to a sample until it becomes pure noise. This is a diffusion process!!
- The generative models are (probabilistic) inverse of the forward process.

Fixed forward diffusion process

Generative reverse denoising process

Data

Fixed forward diffusion process

Generative reverse denoising process

Data

Why are diffusion models powerful?

- Guide the learning of reverse generative denoise process with the information of a fixed forward diffusion process!
- GAN, Normalizing flow, and Variational Autoencoder do not have forward-process information to guide the learning. [Explain it!]

Data

Generative reverse denoising process

There are two key issues in diffusion models:

- Construct forward diffusion process.
- Utilize forward information for learning the reverse process.

Denoising Diffusion Probabilistic Models (DDPM)⁶

• DDPM chooses the following variance-preserving forward diffusion process:

$$x_{k+1} = \sqrt{1 - \beta_k} x_k + \sqrt{\beta_k} \xi_k, 0 \le k \le N - 1,$$

where $\xi_k \overset{iid}{\sim} \mathcal{N}(0, I_d)$.

⁶Jonathan Ho, Ajay Jain, Pieter Abbeel, *Denoising Diffusion Probabilistic Models*, NeurIPS 2020.

Denoising Diffusion Probabilistic Models (DDPM)⁶

• DDPM chooses the following variance-preserving forward diffusion process:

$$x_{k+1} = \sqrt{1 - \beta_k} x_k + \sqrt{\beta_k} \xi_k, 0 \le k \le N - 1,$$

where $\xi_k \overset{iid}{\sim} \mathcal{N}(0, I_d)$.

• Consider $\beta_t = \beta = o(1)$. Then, we have

$$x_{k+1} = x_k - \frac{\beta x_k}{2} + \sqrt{\beta} \xi_k + o(\beta)$$
(4)

When $\beta \rightarrow 0$, we have the forward process is given by an OU process

$$\mathrm{d}x_t = -\frac{x_t}{2}\,\mathrm{d}t + \mathrm{d}B_t.$$

⁶Jonathan Ho, Ajay Jain, Pieter Abbeel, *Denoising Diffusion Probabilistic Models*, NeurIPS 2020.

Properties of the Forward Process

• First, the conditional distribution is always Gaussian

$$P_t := x_t | x_0 \sim \mathcal{N}(e^{-t/2} x_0, (1 - e^{-t}) I_d) = \mathcal{N}\left(\alpha_t x_0, \sqrt{1 - \alpha_t^2} I_d\right),$$
(5)

where $\alpha_t = e^{-t/2}$. We also denote $\sigma_t^2 := 1 - \alpha_t^2$. (Derivation is given on the blackboard.)

Properties of the Forward Process

• First, the conditional distribution is always Gaussian

$$P_t := x_t | x_0 \sim \mathcal{N}(e^{-t/2} x_0, (1 - e^{-t}) I_d) = \mathcal{N}\left(\alpha_t x_0, \sqrt{1 - \alpha_t^2} I_d\right),$$
(5)

where $\alpha_t = e^{-t/2}$. We also denote $\sigma_t^2 := 1 - \alpha_t^2$. (Derivation is given on the blackboard.)

• The distribution of x_t can be viewed as the convolution of $P(x_0)$ with a Gaussian smoothing kernel:

$$P_t(x) = \int P_t(x|x_0) P(x_0) \, \mathrm{d}x_0 = \int P(x_0) \frac{1}{C_t} e^{-\frac{\|x - \alpha_t x_0\|^2}{2(1 - \alpha_t^2)}} \, \mathrm{d}x_0,$$

where C_t is the normalizing constant.

Properties of the Forward Process

· First, the conditional distribution is always Gaussian

$$P_t := x_t | x_0 \sim \mathcal{N}(e^{-t/2} x_0, (1 - e^{-t}) I_d) = \mathcal{N}\left(\alpha_t x_0, \sqrt{1 - \alpha_t^2} I_d\right),$$
(5)

where $\alpha_t = e^{-t/2}$. We also denote $\sigma_t^2 := 1 - \alpha_t^2$. (Derivation is given on the blackboard.)

• The distribution of x_t can be viewed as the convolution of $P(x_0)$ with a Gaussian smoothing kernel:

$$P_t(x) = \int P_t(x|x_0) P(x_0) \, \mathrm{d}x_0 = \int P(x_0) \frac{1}{C_t} e^{-\frac{\|x - \alpha_t x_0\|^2}{2(1 - \alpha_t^2)}} \, \mathrm{d}x_0,$$

where C_t is the normalizing constant.

• The forward process converges exponentially fast:

 $D_{\mathrm{KL}}\left(P_t || \mathcal{N}(0, I_d)\right) \le C e^{-t} D_{\mathrm{KL}}\left(P_0 || \mathcal{N}(0, I_d)\right),$

This means we can take a moderately large $T \mbox{ such that }$

 $\operatorname{Law}(x_T) \approx \mathcal{N}(0, I_d).$

Reversing a Diffusion Process

What do we mean by reversing a diffusion process?

Fixed forward diffusion process

Generative reverse denoising process

Reversing a Diffusion Process

What do we mean by reversing a diffusion process?

Data

Generative reverse denoising process

Definition 1

Given a forward process $\{X_t\}_{t \in [0,T]}$, the backward process $\{\tilde{X}_t\}_{t \in [T,0]}$ is said to a reverse process of $\{X_t\}_{t \in [0,T]}$ iff $\operatorname{Law}(X_t) = \operatorname{Law}(\tilde{X}_{T-t}).$

Remark: The reverse process may be non-unique.

An Explicit Construction of Reverse Processes

• Consider a large family of diffusion process given by the forward SDE:

 $\mathrm{d}x_t = f(x,t)\,\mathrm{d}t + g(t)\,\mathrm{d}B_t, \quad 0 \le t \le T.$

⁷Brian Anderson, *Reverse-time diffusion equation models*, Stochastic Processes and their Applications 12 (1982)

An Explicit Construction of Reverse Processes

• Consider a large family of diffusion process given by the forward SDE:

 $\mathrm{d}x_t = f(x,t)\,\mathrm{d}t + g(t)\,\mathrm{d}B_t, \quad 0 \le t \le T.$

• Anderson (1982) ⁷ provided an explicit construction of the reverse SDE:

 $d\tilde{x}_t = \left[f(\tilde{x}_t, t) - g^2(t)\nabla_x \log p(\tilde{x}, t)\right] dt + g(t) d\bar{B}_t, \quad t \in [T, 0]$

where \bar{B}_t is a backward Brownian motion and the time in the above equation is negative. (The proof can be easily completed by checking the Fokker-Planck equation (omitted). We refer to Anderson (1982) for the derivation.)

Scholar articles Reverse-time diffusion equation models BDO Anderson - Stochastic Processes and their Applications, 1982 Cited by 390 Related articles All 6 versions

⁷Brian Anderson, *Reverse-time diffusion equation models*, Stochastic Processes and their Applications 12 (1982)

Score Matching

• The key quantity for the reverse SDE is the (time-dependent) score function

 $\nabla_x \log p(\cdot, \cdot) : \mathbb{R}^d \times [0, T] \mapsto \mathbb{R}^d,$

Therefore, we can easily reverse the process if the score function is known.

Score Matching

• The key quantity for the reverse SDE is the (time-dependent) score function

 $\nabla_x \log p(\cdot, \cdot) : \mathbb{R}^d \times [0, T] \mapsto \mathbb{R}^d,$

Therefore, we can easily reverse the process if the score function is known.

• Model: Let $s_{\theta} : \mathbb{R}^d \times [0,T] \mapsto \mathbb{R}^d$ be a neural network to model the score function.

Score Matching

• The key quantity for the reverse SDE is the (time-dependent) score function

 $\nabla_x \log p(\cdot, \cdot) : \mathbb{R}^d \times [0, T] \mapsto \mathbb{R}^d,$

Therefore, we can easily reverse the process if the score function is known.

- Model: Let $s_{\theta} : \mathbb{R}^d \times [0,T] \mapsto \mathbb{R}^d$ be a neural network to model the score function.
- Training objective: Let $p_t = p(\cdot, t)$ and

$$L_t(\theta) = \mathbb{E}_{x \sim p_t} \left[\|s_\theta(x, t) - \nabla_x \log p(x, t)\|^2 \right].$$

Let π be a (weighted) distribution supported on [0,T]. Consider the learning via

$$\min_{\theta} L(\theta) := \mathbb{E}_{t \sim \pi}[L_t(\theta)] \qquad \text{(score matching)}. \tag{6}$$

Data

Generative reverse denoising process

- Why is this objective informative for training? The problem nearly becomes a sequential of supervised learning: Score matching at different times.
- Bad News: $\nabla_x \log p(\cdot, t)$ is unknown. Instead, we have only access to the noisy sequences $\{x_i(t)\}_{t \in [0,T], i \in [n]}$ generated by the forward process, starting from the inputs $\{x_i(0) = x_i\}_{i=1}^n$.
- Approach: Reformulate the objective into a quantity that computes an expectation with respect to $p(\cdot, t)$ (This a general principle!).

Implicit Score Matching

Reformulate the objective using the log-derivative trick:

$$\begin{split} L_t(\theta) &= \mathbb{E}_{x \sim p_t} \left[\|s_{\theta}(x,t) - \nabla_x \log p(x,t)\|^2 \right] \\ &= \mathbb{E}_{x \sim p_t} \|s_{\theta}(x,t)\|^2 + \mathbb{E}_{x \sim p_t} \|\nabla_x \log p(x,t)\|^2 - 2\mathbb{E}_{x \sim p_t} \langle s_{\theta}(x,t), \nabla_x \log p(x,t) \rangle \\ &= \mathbb{E}_{x \sim p_t} \|s_{\theta}(x,t)\|^2 + \mathbb{E}_{x \sim p_t} \|\nabla_x \log p(x,t)\|^2 - 2\int_{\mathbb{R}^d} \langle s_{\theta}(x,t), \nabla_x p(x,t) \rangle \, \mathrm{d}x \\ &= \mathbb{E}_{x \sim p_t} \|s_{\theta}(x,t)\|^2 + \mathbb{E}_{x \sim p_t} \|\nabla_x \log p(x,t)\|^2 + 2\int_{\mathbb{R}^d} [\nabla_x \cdot s_{\theta}(x,t)] p(x,t) \, \mathrm{d}x. \end{split}$$

Note that the conditional distribution $p_t(x|z)$ is tractable (see Eq. (5)). However, there are a few problems with the above formula:

- Computing gradient for the red term is **computationally expensive**, as $\nabla_{\theta}(\nabla_x \cdot s_{\theta}(x, t))$ needs to compute second-order derivatives.
- Stochastic approximation also exhibits a high variance, as during the training Var_x[∇_x · s_θ(x, t)] is not well-controlled.

We need a better alternative.

Denoising Score Matching

Noting that $p(x,t) = \int p_t(x|z)p_0(z) \, dz$, we have

$$\begin{split} \int_{\mathbb{R}^d} [\nabla \cdot s_{\theta}(x,t)] p(x,t) \, \mathrm{d}x &= \int_{\mathbb{R}} p_0(z) \, \mathrm{d}z \int_{\mathbb{R}^d} [\nabla_x \cdot s_{\theta}(x,t)] p_t(x|z) \, \mathrm{d}x \\ &= -\int_{\mathbb{R}} p_0(z) \, \mathrm{d}z \int_{\mathbb{R}^d} \langle s_{\theta}(x,t), \nabla_x p_t(x|z) \rangle \, \mathrm{d}x \\ &= -\int_{\mathbb{R}} p_0(z) \, \mathrm{d}z \int_{\mathbb{R}^d} \langle s_{\theta}(x,t), \nabla_x \log p_t(x|z) \rangle p_t(x|z) \, \mathrm{d}x \\ &= -\mathbb{E}_{z \sim p_0} \mathbb{E}_{x \sim p_t(\cdot|z)} \left[\langle s_{\theta}(x,t), \nabla_x \log p_t(x|z) \rangle \right] \end{split}$$

Based on the preceding derivation, we have

$$\begin{split} L_t(\theta) &= \mathbb{E}_{x \sim p_t} \left[\|s_\theta(x,t) - \nabla_x \log p(x,t)\|^2 \right] \\ &= \mathbb{E}_{z \sim p_0} \mathbb{E}_{x \sim p_t(\cdot|z)} \|s_\theta(x,t)\|^2 - 2 \mathbb{E}_{z \sim p_0} \mathbb{E}_{x \sim p_t(\cdot|z)} \left[\langle s_\theta(x,t), \nabla_x \log p_t(x|z) \rangle \right] + C \\ &= \mathbb{E}_{z \sim p_0} \mathbb{E}_{x \sim p_t(\cdot|z)} \left[\|s_\theta(x,t) - \nabla_x \log p_t(x|z)\|^2 \right] + C \end{split}$$

The key observation:

 In this formula, the input gradient term ∇_x log p_t(x|z) is explicit, eliminating the need for backpropagation and making it well-controlled.

The Denoising/Noise-Prediction Interpretation

Consider the DDPM-type ⁸ forward process and let $\alpha_t = e^{-t/2}$ and $\sigma_t^2 = 1 - e^{-t}$. Then,

$$p_t(x|x_0) \propto \exp\left(-\frac{\|x-\alpha_t x_0\|^2}{2\sigma_t^2}\right).$$

Thus, the total objective becomes

$$L(\theta) = \mathbb{E}_t \mathbb{E}_{x_0} \mathbb{E}_{x_t|x_0} \left[\left\| s_{\theta}(x_t, t) - \frac{x_t - \alpha_t x_0}{\sigma_t^2} \right\|^2 \right]$$
(7)

⁸DDPM-type forward process gives an explicit conditional density.

The Denoising/Noise-Prediction Interpretation

Consider the DDPM-type ⁸ forward process and let $\alpha_t = e^{-t/2}$ and $\sigma_t^2 = 1 - e^{-t}$. Then,

$$p_t(x|x_0) \propto \exp\left(-\frac{\|x-\alpha_t x_0\|^2}{2\sigma_t^2}\right).$$

Thus, the total objective becomes

$$L(\theta) = \mathbb{E}_t \mathbb{E}_{x_0} \mathbb{E}_{x_t \mid x_0} \left[\left\| s_{\theta}(x_t, t) - \frac{x_t - \alpha_t x_0}{\sigma_t^2} \right\|^2 \right]$$
(7)

Noting that $x_t | x_0 \sim \mathcal{N}(\alpha_t x_0, (1 - \alpha_t) I_d)$, we can rewrite

- One can interpret $x_t \alpha_t x_0$ as the "direction of denoising".
- Plugging it back into (7) gives the noise-prediction objective:

$$L(\theta) = \mathbb{E}_t \mathbb{E}_{x_0} \mathbb{E}_{\xi_t \sim \mathcal{N}(0, I_d)} \left[\left\| s_\theta(x_t, t) - \frac{\xi_t}{\sigma_t} \right\|^2 \right]$$

⁸DDPM-type forward process gives an explicit conditional density.

Training Procedure

$$L(\theta) = \mathbb{E}_t \mathbb{E}_{x_0} \mathbb{E}_{\xi_t \sim \mathcal{N}(0, I_d)} \left[\left\| s_\theta(x_t, t) - \frac{\xi_t}{\sigma_t} \right\|^2 \right]$$

Parameterize s_{θ} with neural networks. Then, SGD of batch size 1 updates as follows:

Algorithm • Step 1: $t \sim \pi, x_0 \sim p_0, \xi_t \sim \mathcal{N}(0, I_d)$ • Step 2: $\alpha_t = e^{-t/2}, x_t = \alpha_t x_0 + \sqrt{1 - \alpha_t} \xi_t$ • Step 3: $\hat{L}(\theta) = \left\| s_{\theta}(x_t, t) - \frac{\xi_t}{\sigma_t} \right\|^2$ • Step 4: $\theta_{k+1} = \theta_k - \eta \nabla_{\theta} \hat{L}(\theta_k)$

The Choice of Time Weighting

How to choose π ?

$$L(\theta) = \mathbb{E}_{t \sim \pi} \mathbb{E}_{x_0} \mathbb{E}_{\xi_t \sim \mathcal{N}(0, I_d)} \left[\left\| s_{\theta}(x_t, t) - \frac{\xi_t}{\sigma_t} \right\|^2 \right]$$

Key observation: When $t \to 0$, $\sigma_t = \sqrt{1 - e^{-t}} \to 0$. Loss heavily amplified when sampling t close to 0. High variance!

⁹Take a look this note

The Choice of Time Weighting

How to choose π ?

$$L(\theta) = \mathbb{E}_{t \sim \pi} \mathbb{E}_{x_0} \mathbb{E}_{\xi_t \sim \mathcal{N}(0, I_d)} \left[\left\| s_{\theta}(x_t, t) - \frac{\xi_t}{\sigma_t} \right\|^2 \right]$$

Key observation: When $t \to 0$, $\sigma_t = \sqrt{1 - e^{-t}} \to 0$. Loss heavily amplified when sampling t close to 0. High variance!

• Training with time cut-off η :

 $\pi = \mathrm{Unif}([\eta, T]).$

• Variance reduction via importance sampling ⁹:

$$\pi(t) \propto \frac{1}{\sigma_t^2}.$$

Intuitively, we need more samples for when t is close to 0, otherwise the Monte-Carlo estimate may give a rather wrong estimate.

⁹Take a look this note

Probability-Flow ODE

The reverse SDE is given by

$$d\tilde{x}_t = \left[f(\tilde{x}_t, t) - g^2(t)\nabla_x \log p(\tilde{x}, t)\right] dt + g(t) d\bar{B}_t,$$

(Song et al. 2021) showed that the following probability-flow ODE is also a reverse process

$$\mathrm{d}\tilde{x}_t = f(\tilde{x}_t, t) - \frac{1}{2}g^2(t)\nabla_x \log p(\tilde{x}, t) \,\mathrm{d}t.$$

For the DDPM-type forward process, it becomes

$$\mathrm{d}\tilde{x}_t = -\frac{1}{2}(x_t + \nabla_x \log p(\tilde{x}, t)) \,\mathrm{d}t$$

The probability-flow ODE can be interpreted as a continuous-time normalizing flow (CNF).

A Schematic Comparison

Figure 2: (Up) SDE; (Down) ODE.

- For diffusion models, generating new samples needs to discretize the revise-time SDE/ODE. It is often very slow as we need to take small step size to control discretization error and numerical stability.
 - For SDEs, in general, there does not exist higher-order solver as the trajectory is non-differentiable almost everywhere.
 - Deterministic ODE enables the use of advanced higher-order ODE solvers such as Runge-Kutta, thereby speeding up the generation of new samples.

Exact Likelihood Computation¹⁰

• Consider the continuous-time normalizing flow generated by the ODE

$$\dot{x}_t = f(x_t, t), t \in [0, T]$$

with initial condition $x_0 \sim p_0$.

¹⁰For generality, we assume normal time direction in this slide.

Exact Likelihood Computation¹⁰

• Consider the continuous-time normalizing flow generated by the ODE

$$\dot{x}_t = f(x_t, t), t \in [0, T]$$

with initial condition $x_0 \sim p_0$.

• Consider the flow map $\Phi_T : \mathbb{R}^d \mapsto \mathbb{R}^d$ defined by $\Phi_T(x_0) = x_T$. Then, we have the log-likelihood of p_T satisfies (with the derivation left as homework)

$$\log p_T(x_T) = \log p_0(x_0) - \int_0^T \nabla \cdot f(x_t, t) \,\mathrm{d}t.$$

¹⁰For generality, we assume normal time direction in this slide.

Exact Likelihood Computation¹⁰

• Consider the continuous-time normalizing flow generated by the ODE

$$\dot{x}_t = f(x_t, t), t \in [0, T]$$

with initial condition $x_0 \sim p_0$.

• Consider the flow map $\Phi_T : \mathbb{R}^d \mapsto \mathbb{R}^d$ defined by $\Phi_T(x_0) = x_T$. Then, we have the log-likelihood of p_T satisfies (with the derivation left as homework)

$$\log p_T(x_T) = \log p_0(x_0) - \int_0^T \nabla \cdot f(x_t, t) \,\mathrm{d}t$$

• In practice, for a $h : \mathbb{R}^d \mapsto \mathbb{R}^d$, $\nabla \cdot h(x)$ can be estimated using the Hutchinson-Skilling trace estimator:

$$\underbrace{\nabla \cdot h(x)}_{\text{need } d \text{ gradients}} = \mathbb{E}_{\epsilon}[\epsilon^{\top} \nabla h(x)\epsilon] \approx \underbrace{\frac{1}{m} \sum_{j=1}^{m} \epsilon_{j} \cdot \nabla (h(x) \cdot \epsilon_{j})}_{\text{need only } m \text{ gradients}},$$

where $\mathbb{E}[\epsilon] = 0$ and $\mathbb{E}[\epsilon \epsilon^{\top}] = I_d$ and $\{\epsilon_j\}_{j=1}^m$ are iid samples. The most popular choice of the distribution of ϵ is $\text{Unif}(\{\pm 1\}^d)$.

¹⁰For generality, we assume normal time direction in this slide.

Manipulating the Latent Space

Interpolation

Generation with Probability Flow ODE

Controllable Generalization

Generate One-Class of Samples

Text to Images

You 请画一幅暴雪中的长城景色

You

请用八大山人的风格重绘这幅画,不要改变内容,只改变风格。请注意留白和落款, 不用输出任何文字描述。

ChatGPT

Some Classical Tasks

28 / 34

• Controlled generalization can be modeled as sampling from P(x|y) where y denotes the control factor.

- Controlled generalization can be modeled as sampling from P(x|y) where y denotes the control factor.
- Baye's rule: $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$. Accordingly, the score function:

$$\nabla_x \log P(x|y) = \nabla_x \log P(y|x) + \nabla_x \log P(x)$$
(8)

where the normalizing constant disappears.

- Controlled generalization can be modeled as sampling from P(x|y) where y denotes the control factor.
- Baye's rule: $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$. Accordingly, the score function:

$$\nabla_x \log P(x|y) = \nabla_x \log P(y|x) + \nabla_x \log P(x)$$
(8)

where the normalizing constant disappears.

• We can use Langevin dynamics to simulate it. But we can directly couple (8) with the reverse-time SDE or ODE:

$$\dot{\tilde{x}}_t = f(\tilde{x}_t, t) - \frac{1}{2}g(t)^2 \log p_t(\tilde{x}|y)$$
$$= f(\tilde{x}_t, t) - \frac{1}{2}\nabla_x \left[\log p(\tilde{x}_t, t) + \log p(y|\tilde{x}_t)\right].$$

- Controlled generalization can be modeled as sampling from P(x|y) where y denotes the control factor.
- Baye's rule: $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$. Accordingly, the score function:

$$\nabla_x \log P(x|y) = \nabla_x \log P(y|x) + \nabla_x \log P(x)$$
(8)

where the normalizing constant disappears.

• We can use Langevin dynamics to simulate it. But we can directly couple (8) with the reverse-time SDE or ODE:

$$\begin{split} \dot{\tilde{x}}_t &= f(\tilde{x}_t, t) - \frac{1}{2}g(t)^2 \log p_t(\tilde{x}|y) \\ &= f(\tilde{x}_t, t) - \frac{1}{2} \nabla_x \left[\log p(\tilde{x}_t, t) + \log p(y|\tilde{x}_t) \right]. \end{split}$$

• Therefore, as long as we have a good "classifier" p(y|x), then we can couple it with the unconditional model $s_{\theta}(x,t) \approx \nabla \log p(x,t)$ in a very simple and principled approach.

- Controlled generalization can be modeled as sampling from P(x|y) where y denotes the control factor.
- Baye's rule: $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$. Accordingly, the score function:

$$\nabla_x \log P(x|y) = \nabla_x \log P(y|x) + \nabla_x \log P(x)$$
(8)

where the normalizing constant disappears.

• We can use Langevin dynamics to simulate it. But we can directly couple (8) with the reverse-time SDE or ODE:

$$\dot{\tilde{x}}_t = f(\tilde{x}_t, t) - \frac{1}{2}g(t)^2 \log p_t(\tilde{x}|y)$$
$$= f(\tilde{x}_t, t) - \frac{1}{2}\nabla_x \left[\log p(\tilde{x}_t, t) + \log p(y|\tilde{x}_t)\right].$$

- Therefore, as long as we have a good "classifier" p(y|x), then we can couple it with the unconditional model $s_{\theta}(x,t) \approx \nabla \log p(x,t)$ in a very simple and principled approach.
- One unconditional models for all tasks.

Connection with Energy-based Models

- In EBM, $p(x) = e^{-U(x)}/Z$. We learn a potential energy $V_{\theta}(x) \approx U(x) = -\nabla \log p(x)$. That is, score matching is also commonly used in learning energy-based model.
- In score-based models, we learn $s_{\theta}(x) \approx \nabla_x \log p(x) = -\nabla_x U(x)$, i.e., the force.
- With the score functions (aka. the force field), we can also recover samples by running Langevin dynamics

$$\mathrm{d}x_t = -\nabla_x \log p(x_t) \,\mathrm{d}t + \sqrt{2} \,\mathrm{d}B_t.$$

But its performance is notorious and consequently, using the reverse-time SDE/ODE is always much better.

Naive Score Matching + Langevin Dynamics

Often, the learned score function is useless when simulating Langevin dynamics.

CIFAR-10 data

Model samples

Reason 1: Inaccurate score functions

The learned score function are inaccurate in the low-density region.

$$L(\theta) = \mathbb{E}_x \|s_{\theta}(x) - \nabla \log p(x)\|^2.$$

Reason 2: Sampling with Langevin Dynamics is Slow

• When the target distribution is multimodal, Langevin dynamics (or more generally, MCMC methods) struggle to efficiently sample across different modes.

Conformational coordinate

Figure 3: The sampling rate suffers from the curse of dimensionality and loss barrier.

Summary

Advantages:

- The design is principled, ensuring stable training.
- The model is highly flexible:
 - Compare with normalizing flow like real-NVP , general networks can be used to model distribution.
 - principle controllable generalization.
- Consequently, diffusion models can generate high-quality data.

Disadvantage:

• Generation is slow due to the requirement for numerous denoising steps during the "discretization" inverse process.

Summary

Advantages:

- The design is principled, ensuring stable training.
- The model is highly flexible:
 - Compare with normalizing flow like real-NVP , general networks can be used to model distribution.
 - principle controllable generalization.
- Consequently, diffusion models can generate high-quality data.

Disadvantage:

• Generation is slow due to the requirement for numerous denoising steps during the "discretization" inverse process.

Also read the good note:

• Stanley H. Chan, Tutorial on Diffusion Models for Imaging and Vision, arXv:2403.18103.