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What Is Diffusion?

Dye molecules diffuse throughout the entire space by colliding with water molecules.
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Mathematical Model of Diffusion: Brownian motion

• Let {xk}k≥0 be the trajectory of dye molecules. We can model its dynamics as follows

xk+1 = xk +
√
ηξk, 0 ≤ k ≤ N − 1,

where ξk
iid∼ N (0, 1) and η is a small factor 2.

• Thus, we have after N steps

xNη = x0 +
√
η

N−1∑
k=0

ξk ∼ N (x0, ηN).

• Consider the continuous-time limit: η → 0. Let t = Nη. Then, we have

xNη → Xt ∼ N (X0, t).

• We call Bt := Xt −X0 Brownian motion.

2η depends on the temperature, time unit, etc.
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Important Properties of Brownian Motion

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

• After time t, dye molecules only move O(
√
t): 3

E[Bt] = 0, E[B2
t ] = t,

where the second property is known as the Einstein relationship.

• Bt −Bs and Bs are independent. The trajectory is continuous but non-differentiable
almost everywhere.

3Albert Einstein, On the motion of small particles suspended in liquids at rest required by the
molecular-kinetic theory of heat, 1905.
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General Diffusion Process (Modeled by Ito-SDE)

Consider dye molecules in a force field f(x, t) and the collision is heterogeneous:

• From t to t+ η, the dye molecule moves according to

xt+η − xt = f(xt, t)η︸ ︷︷ ︸
drift

+σ(xt, t)
√
ηξt︸ ︷︷ ︸

diffusion

.

• Taking η → 0 gives a stochastic differential equation (SDE) 4:

dxt = f(xt, t) dt+ σ(xt, t) dBt

In physics, it is often written (by let ωt = Ḃt) as

ẋt = f(xt, t) + σ(xt, t)ωt,

where ωt is often referred to as white noise.

4A good textbook for SDE is: Bernt Øksendal, Stochastic Differential Equations: An Introduction with
Applications
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A Comparison Between SDE and ODE 5

5taken from https://cvpr2022-tutorial-diffusion-models.github.io/
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Langevin Dynamics

• (Over-damped) Langevin dynamics is a special SDE with the drift term given by a
potential force f(x) = −∇U(x):

dxt = −∇U(xt) dt+
√

2β−1 dBt. (1)

Denote by pt = p(·, t) = Law(Xt). Then, we have

p(x, t) → e−βU(x)

Zβ
as t → ∞. (2)

• To simulate (1), we can apply the Euler-Maruyama scheme:

Xk+1 = Xk −∇U(Xk)η +
√
2β−1ηξk with ξk ∼ N (0, Id). (3)

• Ornstein–Uhlenbeck (OU) process is a simplest SDE given by

dxt = −θxt dt+ σ dBt,

for which U(x) = θ∥x∥2/2, β−1 = σ2/2. The equilibrium distribution is Gaussian:

p∞(x) ∝ exp

(
−∥x∥2

2σ2

)
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Diffusion models

In diffusion models

• We first gradually inject noise to a sample until it becomes pure noise. This is a diffusion
process!!

• The generative models are (probabilistic) inverse of the forward process.
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Diffusion models

Why are diffusion models powerful?

• Guide the learning of reverse generative denoise process with the information of a fixed
forward diffusion process!

• GAN, Normalizing flow, and Variational Autoencoder do not have forward-process
information to guide the learning. [Explain it!]
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Diffusion models

There are two key issues in diffusion models:

• Construct forward diffusion process.

• Utilize forward information for learning the reverse process.
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Denoising Diffusion Probabilistic Models (DDPM) 6

• DDPM chooses the following variance-preserving forward diffusion process:

xk+1 =
√
1− βkxk +

√
βkξk, 0 ≤ k ≤ N − 1,

where ξk
iid∼ N (0, Id).

• Consider βt = β = o(1). Then, we have

xk+1 = xk − βxk

2
+

√
βξk + o(β) (4)

When β → 0, we have the forward process is given by an OU process

dxt = −xt

2
dt+ dBt.

6Jonathan Ho, Ajay Jain, Pieter Abbeel, Denoising Diffusion Probabilistic Models, NeurIPS 2020.
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Properties of the Forward Process

• First, the conditional distribution is always Gaussian

Pt := xt|x0 ∼ N (e−t/2x0, (1− e−t)Id) = N
(
αtx0,

√
1− α2

t Id

)
, (5)

where αt = e−t/2. We also denote σ2
t := 1− α2

t . (Derivation is given on the blackboard.)

• The distribution of xt can be viewed as the convolution of P (x0) with a Gaussian
smoothing kernel:

Pt(x) =

∫
Pt(x|x0)P (x0) dx0 =

∫
P (x0)

1

Ct
e
− ∥x−αtx0∥2

2(1−α2
t ) dx0,

where Ct is the normalizing constant.

• The forward process converges exponentially fast:

DKL (Pt||N (0, Id)) ≤ Ce−tDKL (P0||N (0, Id)) ,

This means we can take a moderately large T such that

Law(xT ) ≈ N (0, Id).
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Reversing a Diffusion Process

What do we mean by reversing a diffusion process?
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Reversing a Diffusion Process

What do we mean by reversing a diffusion process?

Definition 1

Given a forward process {Xt}t∈[0,T ], the backward process {X̃t}t∈[T,0] is said to a reverse
process of {Xt}t∈[0,T ] iff

Law(Xt) = Law(X̃T−t).

Remark: The reverse process may be non-unique.
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An Explicit Construction of Reverse Processes

• Consider a large family of diffusion process given by the forward SDE:

dxt = f(x, t) dt+ g(t) dBt, 0 ≤ t ≤ T.

• Anderson (1982) 7 provided an explicit construction of the reverse SDE:

dx̃t =
[
f(x̃t, t)− g2(t)∇x log p(x̃, t)

]
dt+ g(t) dB̄t, t ∈ [T, 0]

where B̄t is a backward Brownian motion and the time in the above equation is negative.
(The proof can be easily completed by checking the Fokker-Planck equation (omitted).
We refer to Anderson (1982) for the derivation.)

7Brian Anderson, Reverse-time diffusion equation models, Stochastic Processes and their Applications 12
(1982)
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Score Matching

• The key quantity for the reverse SDE is the (time-dependent) score function

∇x log p(·, ·) : Rd × [0, T ] 7→ Rd,

Therefore, we can easily reverse the process if the score function is known.

• Model: Let sθ : Rd × [0, T ] 7→ Rd be a neural network to model the score function.
• Training objective: Let pt = p(·, t) and

Lt(θ) = Ex∼pt

[
∥sθ(x, t)−∇x log p(x, t)∥2

]
.

Let π be a (weighted) distribution supported on [0, T ]. Consider the learning via

min
θ

L(θ) := Et∼π[Lt(θ)] (score matching). (6)
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Score Matching (Cont’d)

• Why is this objective informative for training? The problem nearly becomes a sequential of
supervised learning: Score matching at different times.

• Bad News: ∇x log p(·, t) is unknown. Instead, we have only access to the noisy
sequences {xi(t)}t∈[0,T ],i∈[n] generated by the forward process, starting from the inputs
{xi(0) = xi}ni=1.

• Approach: Reformulate the objective into a quantity that computes an expectation with
respect to p(·, t) (This a general principle!).

14 / 34



Implicit Score Matching

Reformulate the objective using the log-derivative trick:

Lt(θ) = Ex∼pt

[
∥sθ(x, t)−∇x log p(x, t)∥2

]
= Ex∼pt

∥sθ(x, t)∥2 + Ex∼pt
∥∇x log p(x, t)∥2 − 2Ex∼pt

⟨sθ(x, t),∇x log p(x, t)⟩

= Ex∼pt
∥sθ(x, t)∥2 + Ex∼pt

∥∇x log p(x, t)∥2 − 2

∫
Rd

⟨sθ(x, t),∇xp(x, t)⟩dx

= Ex∼pt
∥sθ(x, t)∥2 + Ex∼pt

∥∇x log p(x, t)∥2 + 2

∫
Rd

[∇x · sθ(x, t)]p(x, t) dx.

Note that the conditional distribution pt(x|z) is tractable (see Eq. (5)). However, there are a
few problems with the above formula:

• Computing gradient for the red term is computationally expensive, as ∇θ(∇x · sθ(x, t))
needs to compute second-order derivatives.

• Stochastic approximation also exhibits a high variance, as during the training
Varx[∇x · sθ(x, t)] is not well-controlled.

We need a better alternative.
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Denoising Score Matching

Noting that p(x, t) =
∫
pt(x|z)p0(z) dz, we have∫

Rd

[∇ · sθ(x, t)]p(x, t) dx =

∫
R
p0(z) dz

∫
Rd

[∇x · sθ(x, t)]pt(x|z) dx

= −
∫
R
p0(z) dz

∫
Rd

⟨sθ(x, t),∇xpt(x|z)⟩dx

= −
∫
R
p0(z) dz

∫
Rd

⟨sθ(x, t),∇x log pt(x|z)⟩pt(x|z) dx

= −Ez∼p0
Ex∼pt(·|z) [⟨sθ(x, t),∇x log pt(x|z)⟩]

Based on the preceding derivation, we have

Lt(θ) = Ex∼pt

[
∥sθ(x, t)−∇x log p(x, t)∥2

]
= Ez∼p0

Ex∼pt(·|z) ∥sθ(x, t)∥
2 − 2Ez∼p0

Ex∼pt(·|z) [⟨sθ(x, t),∇x log pt(x|z)⟩] + C

= Ez∼p0 Ex∼pt(·|z)
[
∥sθ(x, t)−∇x log pt(x|z)∥2

]
+ C

The key observation:

• In this formula, the input gradient term ∇x log pt(x|z) is explicit, eliminating the need for
backpropagation and making it well-controlled.
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The Denoising/Noise-Prediction Interpretation

Consider the DDPM-type 8 forward process and let αt = e−t/2 and σ2
t = 1− e−t. Then,

pt(x|x0) ∝ exp

(
−∥x− αtx0∥2

2σ2
t

)
.

Thus, the total objective becomes

L(θ) = Et Ex0
Ext|x0

[∥∥∥∥sθ(xt, t)−
xt − αtx0

σ2
t

∥∥∥∥2
]

(7)

8DDPM-type forward process gives an explicit conditional density.
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Training Procedure

L(θ) = Et Ex0 Eξt∼N (0,Id)

[∥∥∥∥sθ(xt, t)−
ξt
σt

∥∥∥∥2
]

Parameterize sθ with neural networks. Then, SGD of batch size 1 updates as follows:

Algorithm

• Step 1: t ∼ π, x0 ∼ p0, ξt ∼ N (0, Id)

• Step 2: αt = e−t/2, xt = αtx0 +
√
1− αtξt

• Step 3: L̂(θ) =
∥∥∥sθ(xt, t)− ξt

σt

∥∥∥2
• Step 4: θk+1 = θk − η∇θL̂(θk)

18 / 34



The Choice of Time Weighting

How to choose π?

L(θ) = Et∼π Ex0
Eξt∼N (0,Id)

[∥∥∥∥sθ(xt, t)−
ξt
σt

∥∥∥∥2
]

Key observation: When t → 0, σt =
√
1− e−t → 0. Loss heavily amplified when sampling t

close to 0. High variance!

• Training with time cut-off η:
π = Unif([η, T ]).

• Variance reduction via importance sampling 9:

π(t) ∝ 1

σ2
t

.

Intuitively, we need more samples for when t is close to 0, otherwise the Monte-Carlo
estimate may give a rather wrong estimate.

9Take a look this note
19 / 34

https://math.arizona.edu/~tgk/mc/book_chap6.pdf


The Choice of Time Weighting

How to choose π?

L(θ) = Et∼π Ex0
Eξt∼N (0,Id)

[∥∥∥∥sθ(xt, t)−
ξt
σt

∥∥∥∥2
]

Key observation: When t → 0, σt =
√
1− e−t → 0. Loss heavily amplified when sampling t

close to 0. High variance!
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Probability-Flow ODE

The reverse SDE is given by

dx̃t =
[
f(x̃t, t)− g2(t)∇x log p(x̃, t)

]
dt+ g(t) dB̄t,

(Song et al. 2021) showed that the following probability-flow ODE is also a reverse process

dx̃t = f(x̃t, t)−
1

2
g2(t)∇x log p(x̃, t) dt.

For the DDPM-type forward process, it becomes

dx̃t = −1

2
(xt +∇x log p(x̃, t)) dt

The probability-flow ODE can be interpreted as a continuous-time normalizing flow (CNF).
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A Schematic Comparison

Figure 2: (Up) SDE; (Down) ODE.
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Faster Sampling

• For diffusion models, generating new samples needs to discretize the revise-time
SDE/ODE. It is often very slow as we need to take small step size to control discretization
error and numerical stability.

• For SDEs, in general, there does not exist higher-order solver as the trajectory is
non-differentiable almost everywhere.

• Deterministic ODE enables the use of advanced higher-order ODE solvers such as
Runge-Kutta, thereby speeding up the generation of new samples.
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Exact Likelihood Computation 10

• Consider the continuous-time normalizing flow generated by the ODE

ẋt = f(xt, t), t ∈ [0, T ]

with initial condition x0 ∼ p0.

• Consider the flow map ΦT : Rd 7→ Rd defined by ΦT (x0) = xT . Then, we have the
log-likelihood of pT satisfies (with the derivation left as homework)

log pT (xT ) = log p0(x0)−
∫ T

0

∇ · f(xt, t) dt.

• In practice, for a h : Rd 7→ Rd, ∇ · h(x) can be estimated using the Hutchinson-Skilling
trace estimator:

∇ · h(x)︸ ︷︷ ︸
need d gradients

= Eϵ[ϵ
⊤∇h(x)ϵ] ≈ 1

m

m∑
j=1

ϵj · ∇(h(x) · ϵj)︸ ︷︷ ︸
need only m gradients

,

where E[ϵ] = 0 and E[ϵϵ⊤] = Id and {ϵj}mj=1 are iid samples. The most popular choice of

the distribution of ϵ is Unif({±1}d).

10For generality, we assume normal time direction in this slide.
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Manipulating the Latent Space
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Controllable Generalization
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Generate One-Class of Samples
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Text to Images
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Some Classical Tasks
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Controllable Generalization via Diffusion Models

• Controlled generalization can be modeled as sampling from P (x|y) where y denotes the
control factor.

• Baye’s rule:P (x|y) = P (y|x)P (x)
P (y) . Accordingly, the score function:

∇x logP (x|y) = ∇x logP (y|x) +∇x logP (x) (8)

where the normalizing constant disappears.

• We can use Langevin dynamics to simulate it. But we can directly couple (8) with the
reverse-time SDE or ODE:

˙̃xt = f(x̃t, t)−
1

2
g(t)2 log pt(x̃|y)

= f(x̃t, t)−
1

2
∇x [log p(x̃t, t) + log p(y|x̃t)] .

• Therefore, as long as we have a good “classifier” p(y|x), then we can couple it with the
unconditional model sθ(x, t) ≈ ∇ log p(x, t) in a very simple and principled approach.

• One unconditional models for all tasks.
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Connection with Energy-based Models

• In EBM, p(x) = e−U(x)/Z. We learn a potential energy Vθ(x) ≈ U(x) = −∇ log p(x).
That is, score matching is also commonly used in learning energy-based model.

• In score-based models, we learn sθ(x) ≈ ∇x log p(x) = −∇xU(x), i.e., the force.

• With the score functions (aka. the force field), we can also recover samples by running
Langevin dynamics

dxt = −∇x log p(xt) dt+
√
2 dBt.

But its performance is notorious and consequently, using the reverse-time SDE/ODE is
always much better.
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Naive Score Matching + Langevin Dynamics

Often, the learned score function is useless when simulating Langevin dynamics.
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Reason 1: Inaccurate score functions

The learned score function are inaccurate in the low-density region.

L(θ) = Ex ∥sθ(x)−∇ log p(x)∥2.
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Reason 2: Sampling with Langevin Dynamics is Slow

• When the target distribution is multimodal, Langevin dynamics (or more generally, MCMC
methods) struggle to efficiently sample across different modes.

Figure 3: The sampling rate suffers from the curse of dimensionality and loss barrier.
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Summary

Advantages:

• The design is principled, ensuring stable training.

• The model is highly flexible:
• Compare with normalizing flow like real-NVP , general networks can be used to model

distribution.
• principle controllable generalization.

• Consequently, diffusion models can generate high-quality data.

Disadvantage:

• Generation is slow due to the requirement for numerous denoising steps during the
“discretization” inverse process.

Also read the good note:

• Stanley H. Chan, Tutorial on Diffusion Models for Imaging and Vision, arXv:2403.18103.
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