Diffusion Model and Score Matching

Instructor: Lei Wu !

Mathematical Introduction to Machine Learning

Peking University, Fall 2024

1School of Mathematical Sciences; Center for Machine Learning Research

1/34

What Is Diffusion?

Dye
Molecules

Water
Molecules

Equilibrium

Dye molecules diffuse throughout the entire space by colliding with water molecules

2/34

Mathematical Model of Diffusion: Brownian motion

® Let {z)}r>0 be the trajectory of dye molecules. We can model its dynamics as follows
Tpy1 = Tk + /1ks 0<ELSN-1,

where &, Y A7(0,1) and 7 is a small factor 2.

277 depends on the temperature, time unit, etc.
3/34

Mathematical Model of Diffusion: Brownian motion

® Let {z)}r>0 be the trajectory of dye molecules. We can model its dynamics as follows
Tpy1 = Tk + /1ks 0<ELSN-1,

where &, Y A7(0,1) and 7 is a small factor 2.
® Thus, we have after IV steps

N-1

JCNn:xO“"\/ﬁngNN(annN)'

k=0

277 depends on the temperature, time unit, etc.
3/34

Mathematical Model of Diffusion: Brownian motion

® Let {z)}r>0 be the trajectory of dye molecules. We can model its dynamics as follows
Th+1 = Tk + 1k, 0<ELSN-1,
where &, Y A7(0,1) and 7 is a small factor 2.
® Thus, we have after IV steps

N-1

xN,,:xo—l—\/ﬁZﬁkNN(zo,nN).

k=0
® Consider the continuous-time limit: n — 0. Let t = N7. Then, we have

TNy — Xt NN(XQ,t).

277 depends on the temperature, time unit, etc.
3/34

Mathematical Model of Diffusion: Brownian motion

Let {zx}r>0 be the trajectory of dye molecules. We can model its dynamics as follows
Th+1 = Tk + 1k, 0<ELSN-1,

where &, Y A7(0,1) and 7 is a small factor 2.

® Thus, we have after IV steps

N-1

xN,,:xo—l—\/ﬁZﬁkNN(zo,nN).

k=0

Consider the continuous-time limit: 7 — 0. Let ¢ = Nn. Then, we have

TNy — Xt NN(XQ,t).

We call B; := X; — Xy Brownian motion.

277 depends on the temperature, time unit, etc.
3/34

Important Properties of Brownian Motion

position versus time in 2D

Y Position

15
20 -15 10 -5 0 5 10

X Position

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

3Albert Einstein, On the motion of small particles suspended in liquids at rest required by the
molecular-kinetic theory of heat, 1905.
4/34

https://physics.bu.edu/~duffy/HTML5/brownian_motion.html
https://www2.stat.duke.edu/courses/Spring12/sta357/refs/Eins1905EN.pdf
https://www2.stat.duke.edu/courses/Spring12/sta357/refs/Eins1905EN.pdf

Important Properties of Brownian Motion

position versus time in 2D

Y Position

15
20 -15 10 -5 0 5 10

X Position

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html
* After time t, d lecul I O(Wt): 3
er time 7, aye molecules only move .
2
E[B] =0, E[B]=t,

where the second property is known as the Einstein relationship.

3Albert Einstein, On the motion of small particles suspended in liquids at rest required by the
molecular-kinetic theory of heat, 1905.
4/34

https://physics.bu.edu/~duffy/HTML5/brownian_motion.html
https://www2.stat.duke.edu/courses/Spring12/sta357/refs/Eins1905EN.pdf
https://www2.stat.duke.edu/courses/Spring12/sta357/refs/Eins1905EN.pdf

Important Properties of Brownian Motion

position versus time in 2D

Y Position

15
20 -15 10 -5 0 5

X Position

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

* After time t, dye molecules only move O(v/1): 3

E[B] =0, E[B}]=t,
where the second property is known as the Einstein relationship.

® B, — B, and By are independent. The trajectory is continuous but non-differentiable

almost everywhere.
3Albert Einstein, On the motion of small particles suspended in liquids at rest required by the

molecular-kinetic theory of heat, 1905.
4/34

https://physics.bu.edu/~duffy/HTML5/brownian_motion.html
https://www2.stat.duke.edu/courses/Spring12/sta357/refs/Eins1905EN.pdf
https://www2.stat.duke.edu/courses/Spring12/sta357/refs/Eins1905EN.pdf

General Diffusion Process (Modeled by Ito-SDE)

Consider dye molecules in a force field f(x,t) and the collision is heterogeneous:
® From ¢ to t + 1, the dye molecule moves according to

Ty — ¢ = f(2,)0+ 0 (24, 1) /1t -
—_—— ——

drift diffusion

4A good textbook for SDE is: Bernt @ksendal, Stochastic Differential Equations: An Introduction with

Applications
5/34

General Diffusion Process (Modeled by Ito-SDE)

Consider dye molecules in a force field f(x,t) and the collision is heterogeneous:
® From ¢ to t + 1, the dye molecule moves according to

Ty — ¢ = f(2,)0+ 0 (24, 1) /1t -
—_—— ——

drift diffusion

® Taking — 0 gives a stochastic differential equation (SDE) *:

dzy = f(xy,t) dt + o (x4, t) dBy

4A good textbook for SDE is: Bernt @ksendal, Stochastic Differential Equations: An Introduction with

Applications
5/34

General Diffusion Process (Modeled by Ito-SDE)

Consider dye molecules in a force field f(x,t) and the collision is heterogeneous:
® From ¢ to t + 1, the dye molecule moves according to

Ty — ¢ = f(2,)0+ 0 (24, 1) /1t -
—_—— ——

drift diffusion

® Taking — 0 gives a stochastic differential equation (SDE) *:
dzy = f(xy,t) dt + o (x4, t) dBy
In physics, it is often written (by let w; = Bt) as
T = f(xe,t) + o (e, t)wy,

where wy is often referred to as white noise.

4A good textbook for SDE is: Bernt @ksendal, Stochastic Differential Equations: An Introduction with

Applications
5/34

A Comparison Between SDE and ODE °

Ordinary Differential Equation (ODE): Stochastic Differential Equation (SDE):
dx dx Wiener Prgcess
i f(x,t) or dx =f(x,¢t)d¢ i f(x,t) + 0(X,t)w; - Crmmm— V&ﬁf:f\i‘)?s"e)
_ N
X drift coefficient diffusion coefficient
(dx = f(x,t)dt + o(x, t)dw;) wio
X
t
. t
el x(t) = x(0)+ | £x,)ir
t
x(t + At) =~ x(t) + £(x(t),t) At + o(x(t),t) VAL N(0,1)

Iterative
Numerical x(t + At) = x(t) + f(x(t), t) At

Solution:
6/34

Staken from https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/

Langevin Dynamics

¢ (Over-damped) Langevin dynamics is a special SDE with the drift term given by a
potential force f(z) = —VU(z):
da:t = —VU(.’L't) dt + V 26_1 dBt (1)
Denote by p; = p(-,t) = Law(X;). Then, we have
6—/3(/"(:1:)

(x,t) —
p(x,t) 7

as t — 00. (2)

7/34

Langevin Dynamics

¢ (Over-damped) Langevin dynamics is a special SDE with the drift term given by a
potential force f(z) = —VU(z):
da:t = —VU(.Z't) dt + V 26_1 dBt (1)
Denote by p; = p(-,t) = Law(X;). Then, we have
6—/3(/"(:1:)

Z[3

plx,t) — as t — o0. (2)

® To simulate (1), we can apply the Euler-Maruyama scheme:

X1 = X — VU(Xk)T] + 2‘3717/&@ with & ~ N(O,Id). (3)

7/34

Langevin Dynamics

¢ (Over-damped) Langevin dynamics is a special SDE with the drift term given by a

potential force f(z) = —VU(z):

da:t = —VU(.Z't) dt + V 26_1 dBt
Denote by p; = p(-,t) = Law(X;). Then, we have
6—/3(:"(:}:)

Zg

p(z,t) — as t — o0.

® To simulate (1), we can apply the Euler-Maruyama scheme:

X1 = Xy — VU(Xp)n + /287108, with & ~ N(0, Iq).

® Ornstein—Uhlenbeck (OU) process is a simplest SDE given by
det = —th dt+o dBt,

for which U(z) = 0||z|?/2, 37! = 0% /2. The equilibrium distribution is Gaussian:

Poo() o< exp (W>

202

7/34

Diffusion models

In diffusion models

e We first gradually inject noise to a sample until it becomes pure noise. This is a diffusion
process!!

® The generative models are (probabilistic) inverse of the forward process.

Fixed forward diffusion process

Data Noise

€

Generative reverse denoising process

8/34

Diffusion models

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

Why are diffusion models powerful?

® Guide the learning of reverse generative denoise process with the information of a fixed
forward diffusion process!

® GAN, Normalizing flow, and Variational Autoencoder do not have forward-process
information to guide the learning. [Explain it!]

8/34

Diffusion models

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

There are two key issues in diffusion models:
® Construct forward diffusion process.

® Utilize forward information for learning the reverse process.

8/34

Denoising Diffusion Probabilistic Models (DDPM) ©

® DDPM chooses the following variance-preserving forward diffusion process:

Tht1 = V1= Bexr + Bk, 0 <k <N -1,

where &, " N(0, 1,).

6 Jonathan Ho, Ajay Jain, Pieter Abbeel, Denoising Diffusion Probabilistic Models, NeurlPS 2020.

9/34

Denoising Diffusion Probabilistic Models (DDPM) ©

® DDPM chooses the following variance-preserving forward diffusion process:
Tpt1 = V1= Brok + / Brk, 0 <k < N —1,

where &, " N(0, 1,).
® Consider 8, = 8 = o0(1). Then, we have

x
Tyl = Tk — % +v/Bé + o(B) (4)
When 3 — 0, we have the forward process is given by an OU process

dz, = —% At + dB,.

6 Jonathan Ho, Ajay Jain, Pieter Abbeel, Denoising Diffusion Probabilistic Models, NeurlPS 2020.

9/34

Properties of the Forward Process
® First, the conditional distribution is always Gaussian

Py = ay|wg ~ N(e " Pao,(1— e ")g) =N <Oét$o, Ve OétZId> ; (5)

—t/2

where a; = e~/2. We also denote o7 := 1 — o?. (Derivation is given on the blackboard.)

10/34

Properties of the Forward Process

® First, the conditional distribution is always Gaussian

Py = ay|wg ~ N(e " Pao,(1— e ")g) =N <Oét$o, Ve OétZId> ; (5)

~t/2. We also denote 07 := 1 — . (Derivation is given on the blackboard.)

where oy = e
® The distribution of x; can be viewed as the convolution of P(z() with a Gaussian
smoothing kernel:

2
_ llz—agzgll

1 g
Pt((l?) :/Pt($|I0)P(I’0) d$0 :/P(Io)ae 2(1—ag) dl‘o,

where CY is the normalizing constant.

10/34

Properties of the Forward Process

® First, the conditional distribution is always Gaussian

Py = ay|wg ~ N(e " Pao,(1— e ")g) =N <Oét$o, Ve OétZId> ; (5)

—t/2

where a; = e~/2. We also denote o7 := 1 — o?. (Derivation is given on the blackboard.)

® The distribution of x; can be viewed as the convolution of P(z() with a Gaussian
smoothing kernel:

2
_ llz—agzgll

1 g
Pt((l?) :/Pt($|I0)P(I’0) d$0 :/P(Io)ae 2(=af) dl‘o,

where CY is the normalizing constant.
® The forward process converges exponentially fast:

Dy, (BN (0, I4)) < Ce™" Dy, (Bo||N (0, 1a))
This means we can take a moderately large T such that

Law(:z:T) ~ N(O, [d)

10/34

Reversing a Diffusion Process

What do we mean by reversing a diffusion process?

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

11/34

Reversing a Diffusion Process

What do we mean by reversing a diffusion process?

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

Definition 1
Given a forward process { X }+c(o,7, the backward process {Xt}te[T,O] is said to a reverse
process of { X }iejo,r) iff

Law(X;) = Law(Xp_¢).

Remark: The reverse process may be non-unique.

11/34

An Explicit Construction of Reverse Processes

® Consider a large family of diffusion process given by the forward SDE:

dzy = f(z,t)dt + g(t)dB;, 0<¢<T.

"Brian Anderson, Reverse-time diffusion equation models, Stochastic Processes and their Applications 12
(1982)

12/34

An Explicit Construction of Reverse Processes

® Consider a large family of diffusion process given by the forward SDE:
dzy = f(z,t)dt + g(t)dB;, 0<¢<T.
® Anderson (1982) 7 provided an explicit construction of the reverse SDE:

A = [f(Z4,) — ¢* () V. log p(z, 1)) dt + g(t) dBy, t € [T,0]

where B is a backward Brownian motion and the time in the above equation is negative.

(The proof can be easily completed by checking the Fokker-Planck equation (omitted).

We refer to Anderson (1982) for the derivation.)

Total citations Cited by 390
5 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Scholar articles Reverse-time diffusion equation models
BDO Anderson - Stochastic Processes and their Applications, 1982
Cited by 390 Related articles All 6 versions

"Brian Anderson, Reverse-time diffusion equation models, Stochastic Processes and their Applications 12
(1982)

12/34

Score Matching

® The key quantity for the reverse SDE is the (time-dependent) score function
v:l: 10g])(',) : Rd X [OaT] = Rda

Therefore, we can easily reverse the process if the score function is known.

13/34

Score Matching

® The key quantity for the reverse SDE is the (time-dependent) score function
v:l: 10g[)(',) : Rd X [OaT] = Rda

Therefore, we can easily reverse the process if the score function is known.
* Model: Let s : R? x [0,7] — R be a neural network to model the score function.

13/34

Score Matching

® The key quantity for the reverse SDE is the (time-dependent) score function
Va Ing('a) : Rd X [OaT] = Rda

Therefore, we can easily reverse the process if the score function is known.
* Model: Let s : R? x [0,7] — R? be a neural network to model the score function.
® Training objective: Let p; = p(-,t) and

Lt(a) = EmNpt [HS@(xat) -V logp(x,t)HQ] .
Let m be a (weighted) distribution supported on [0,T]. Consider the learning via

mein L(0) := Emrn[Le(0)] (score matching). (6)

Fixed forward diffusion process

Noise

Generative reverse denoising process

13/34

Score Matching (Cont’d)

® Why is this objective informative for training? The problem nearly becomes a sequential of
supervised learning: Score matching at different times.

® Bad News: V,logp(-,t) is unknown. Instead, we have only access to the noisy
sequences {z;(t) }+c[o,77,ic[n) generated by the forward process, starting from the inputs
{2i(0) = =i}y

® Approach: Reformulate the objective into a quantity that computes an expectation with
respect to p(-,t) (This a general principle!).

14/34

Implicit Score Matching

Reformulate the objective using the log-derivative trick:

Lt(e) = EwNpt |:||89(J}, t) - VLE 1ng(l‘, t)||2]
= Eunp, [150(2,1)]1% + Ennp, [V logp(z, || = 2By, (50(2,1), V.: log p(a, 1))

= Eanp, |50(2,)1 + Eanyp, | Vo logp(a,)| — 2/ (so(z,1), Vap(z, 1)) dz

JRd

= Eonp, lIs0(z,)+ Epp, [V log p(x, t)||* + 2/d[vw “sg(x,1)]p(z,t) d.
R,
Note that the conditional distribution p;(x|z) is tractable (see Eq. (5)). However, there are a

few problems with the above formula:

¢ Computing gradient for the red term is computationally expensive, as Vy(V,, - sg(z,1))
needs to compute second-order derivatives.

® Stochastic approximation also exhibits a high variance, as during the training
Var, [V, - so(x,t)] is not well-controlled.

We need a better alternative.

15/34

Denoising Score Matching

Noting that p(z,t) = [p.(x 2)dz, we have
/]Rd [V - sg(x,t)]p(x,t)de = /Rpo(z) dz /Rd [V - sg(z, t)]pe(z]2) do
= [[(s0(o.0) Tumal2))
= —/pg(z) dz/ (sg(z,t), Vzlogpe(z|2))pe(x|2) dz
R Rd

= - Ezrvpg Exwptﬂz) [<59 (I, t)a Ve Ingt (I Z)>]

Based on the preceding derivation, we have

Lt(e) = EW\'}% [HSQ(.Z‘,t) - Vw 10gp(x,t)||2]
=]EZNPO ErNPt(|z) ||89(:E t)||2 - 2EZ~P0 Eﬂ?NPt('\z) [<89(x7t)a Ve logpt(x\z)ﬂ +C
=E.vp, EZE’\’pt [” 99(T t) — V. logp; (T|Z) Hz] +C

The key observation:

® In this formula, the input gradient term V, log p:(x|z) is explicit, eliminating the need for
backpropagation and making it well-controlled.

16/34

The Denoising/Noise-Prediction Interpretation

Consider the DDPM-type & forward process and let oy = e~*/2 and 02 =1—e"t Then,

| —atwo|2>

pe(x|z0) X exp (— 507

Thus, the total objective becomes

L(0) = Bt Eyy By, | [sg(xy,t) — ——5—

8DDPM-type forward process gives an explicit conditional density.

17/34

The Denoising/Noise-Prediction Interpretation

Consider the DDPM-type & forward process and let a; = e~*/? and 67 =1 — e~*. Then,

_Iw—atwo|2>

pe(x|z0) X exp (507

Thus, the total objective becomes

L(0) = Et Eyy Eg, | [sg(xy,t) — ——5—

Noting that z¢|xg ~ N (auxo, (1 — o) l4), we can rewrite

re =oqro+\/1—0il = oxg +o&e with & ~N(0,Ig).
~— —~— ~—
noisy sample clean sample noise

® One can interpret &y — ayxo as the “direction of denoising”.
® Plugging it back into (7) gives the noise-prediction objective:

&

Ot

L(0) = Et Eyy Ee,onr(0,1,) [so(x¢,t) —

T

8DDPM-type forward process gives an explicit conditional density.

17/34

Training Procedure

59(1},1?)—%
t

2
L(@) :Et]EIO EgtNN(OJd) l]
Parameterize sy with neural networks. Then, SGD of batch size 1 updates as follows:

Algorithm

® Step 1: tNF,JIONp(),ftNN(O,Id)

® Step 2: oy = e 2 1y = o + /1 — s
. 2

® Step 3: L(0) = Hse(:ct,t) — &

* Step 4 01 =0 — nVoL(61)

18/34

The Choice of Time Weighting

How to choose 77

L(0) = Eiwr Ezy Be, (0,10 [sg(xg,t) — =

Key observation: When t — 0, 0y = v/1 —e~t — 0. Loss heavily amplified when sampling ¢
close to 0. High variance!

9Take a look this note
19/34

https://math.arizona.edu/~tgk/mc/book_chap6.pdf

The Choice of Time Weighting

How to choose 77

L(0) = Eiwr Ezy Be, (0,10 [sg(xg,t) — =

Key observation: When t — 0, 0y = v/1 —e~t — 0. Loss heavily amplified when sampling ¢
close to 0. High variance!

® Training with time cut-off 7:
7 = Unif([n, T)).

® Variance reduction via importance sampling °:

Intuitively, we need more samples for when ¢ is close to 0, otherwise the Monte-Carlo
estimate may give a rather wrong estimate.

9Take a look this note
19/34

https://math.arizona.edu/~tgk/mc/book_chap6.pdf

Probability-Flow ODE

The reverse SDE is given by
dz; = [f(ffta t) — g*(t) V. log p(, fﬂ dt + g(t) dB,
(Song et al. 2021) showed that the following probability-flow ODE is also a reverse process
1
dz, = f(3,t) — igz(t)v_,p log p(7,t) dt.
For the DDPM-type forward process, it becomes
- 1 -
dz, = —i(l‘t + V. logp(Z,t)) dt

The probability-flow ODE can be interpreted as a continuous-time normalizing flow (CNF).

20/34

A Schematic Comparison

w Forward diffusion process (fixed)

Reverse Generative Process q(XT)

Encoding with Probability Flow ODE

Generation with Probability Flow ODE

q(xo)
Figure 2: (Up) SDE; (Down) ODE.

21/34

Faster Sampling

® For diffusion models, generating new samples needs to discretize the revise-time
SDE/ODE. It is often very slow as we need to take small step size to control discretization
error and numerical stability.
® For SDEs, in general, there does not exist higher-order solver as the trajectory is
non-differentiable almost everywhere.
® Deterministic ODE enables the use of advanced higher-order ODE solvers such as
Runge-Kutta, thereby speeding up the generation of new samples.

22/34

Exact Likelihood Computation *°

® Consider the continuous-time normalizing flow generated by the ODE
.’I'Tt = f((Et,t)7t S [O,T]

with initial condition zg ~ pg.

10For generality, we assume normal time direction in this slide.

23/34

Exact Likelihood Computation *°

® Consider the continuous-time normalizing flow generated by the ODE
.’I'Tt = f((Et,t)ﬂf S [O,T]

with initial condition zg ~ pg.
* Consider the flow map @7 : R? — R? defined by ®1(z¢) = 7. Then, we have the
log-likelihood of pr satisfies (with the derivation left as homework)

T
log pr () = log po(zo) — /0 V- fat) dt.

10For generality, we assume normal time direction in this slide.
23/34

Exact Likelihood Computation °

® Consider the continuous-time normalizing flow generated by the ODE
.’I'Tt = f($t,t)7t S [O,T]

with initial condition zg ~ pg.
* Consider the flow map @7 : R? — R? defined by ®1(z¢) = 7. Then, we have the
log-likelihood of pr satisfies (with the derivation left as homework)

T
log pr () = log po(zo) — /0 V- flant) dt

® In practice, for a h: R+ R?, V - h(x) can be estimated using the Hutchinson-Skilling
trace estimator:

W) =FE.leT R
V- h(z) JeVh(x mg €);

need d gradients

need only m gradients

where E[e] = 0 and E[ee "] = I, and {¢;}7-, are iid samples. The most popular choice of
the distribution of ¢ is Unif({#1}9).

10For generality, we assume normal time direction in this slide.

23/34

Manipulating the Latent Space

Interpolation

Generation with Probability Flow ODE

24 /34

Controllable Generalization

25/34

Generate One-Class of Samples

class: bird class: deer

26/34

Text to Images

‘,'Wu

EE—IEREPHRES O You
BA/N\KUAMRBESXIEE, TEREAST, RBENE. BIEEAMER,
TFRMLEAX TR,

ChatGPT

@© chatGPT

27 /34

Some Classical Tasks

UOTJBZLIO[0)

LI

Sunureduy

uoryeI03sax HJ(

28 /34

Controllable Generalization via Diffusion Models

® Controlled generalization can be modeled as sampling from P(x|y) where y denotes the
control factor.

29/34

Controllable Generalization via Diffusion Models

® Controlled generalization can be modeled as sampling from P(x|y) where y denotes the
control factor.

® Baye's rule:P(z|y) = %. Accordingly, the score function:
V. log P(z|y) = V, log P(y|z) + V, log P(z) (8)

where the normalizing constant disappears.

29/34

Controllable Generalization via Diffusion Models

® Controlled generalization can be modeled as sampling from P(x|y) where y denotes the
control factor.
® Baye's rule:P(z|y) = %. Accordingly, the score function:

V. log P(z|y) = V, log P(y|z) + V, log P(z) (8)

where the normalizing constant disappears.

® We can use Langevin dynamics to simulate it. But we can directly couple (8) with the
reverse-time SDE or ODE:

iy = f(Fe,t) — %g(t)%gpt(fly)

= f(@0,t) ~ 5V logp(E, 1) + logp(yli)]

29/34

Controllable Generalization via Diffusion Models

® Controlled generalization can be modeled as sampling from P(x|y) where y denotes the
control factor.

® Baye's rule:P(z|y) = %. Accordingly, the score function:
V. log P(z|y) = V, log P(y|z) + V, log P(z) (8)

where the normalizing constant disappears.

® We can use Langevin dynamics to simulate it. But we can directly couple (8) with the
reverse-time SDE or ODE:

z - 1 -
Ty = f(Z,t) — 59@)2 log p¢(Z]y)
- 1 - -
= f(@,1) - ivm [log p(Z+,t) + log p(y|Z1)] -
® Therefore, as long as we have a good “classifier” p(y|z), then we can couple it with the

unconditional model sy(x,t) = Vlogp(z,t) in a very simple and principled approach.

29/34

Controllable Generalization via Diffusion Models

® Controlled generalization can be modeled as sampling from P(x|y) where y denotes the
control factor.

® Baye's rule:P(z|y) = %. Accordingly, the score function:
V. log P(z|y) = V, log P(y|z) + V, log P(z) (8)

where the normalizing constant disappears.

® We can use Langevin dynamics to simulate it. But we can directly couple (8) with the
reverse-time SDE or ODE:

b= F(E 1)~ 3ot ogp(ily)
= f(@0,t) ~ 5V logp(E, 1) + logp(yli)]

® Therefore, as long as we have a good “classifier” p(y|z), then we can couple it with the
unconditional model sy(x,t) = Vlogp(z,t) in a very simple and principled approach.

® One unconditional models for all tasks.

29/34

Connection with Energy-based Models

® In EBM, p(z) = e~V /Z. We learn a potential energy Vj(z) ~ U(z) = —V log p(x).

That is, score matching is also commonly used in learning energy-based model.
® In score-based models, we learn sg(z) = V,logp(z) = —V,U(z), i.e., the force.

® With the score functions (aka. the force field), we can also recover samples by running

Langevin dynamics
dzy = =V, log p(ay) dt + V2dB,.

But its performance is notorious and consequently, using the reverse-time SDE/ODE is
always much better.

30/34

Naive Score Matching + Langevin Dynamics

Often, the learned score function is useless when simulating Langevin dynamics.

CIFAR-10 data Model samples

31/34

Reason 1: Inaccurate score functions
The learned score function are inaccurate in the low-density region.
L(0) = E, ||so(z) — Vlogp(x)|*.

Data density Data scores Estimated scores

1
[P

32/34

Reason 2: Sampling with Langevin Dynamics is Slow

® When the target distribution is multimodal, Langevin dynamics (or more generally, MCMC
methods) struggle to efficiently sample across different modes.

Free Energy

Conformational coordinate

Figure 3: The sampling rate suffers from the curse of dimensionality and loss barrier.

33/34

Summary

Advantages:
® The design is principled, ensuring stable training.
® The model is highly flexible:

® Compare with normalizing flow like real-NVP , general networks can be used to model
distribution.
® principle controllable generalization.

® Consequently, diffusion models can generate high-quality data.
Disadvantage:

® Generation is slow due to the requirement for numerous denoising steps during the
“discretization” inverse process.

34/34

https://arxiv.org/abs/2403.18103

Summary

Advantages:
® The design is principled, ensuring stable training.
® The model is highly flexible:

® Compare with normalizing flow like real-NVP , general networks can be used to model
distribution.
® principle controllable generalization.

® Consequently, diffusion models can generate high-quality data.
Disadvantage:

® Generation is slow due to the requirement for numerous denoising steps during the
“discretization” inverse process.

Also read the good note:
e Stanley H. Chan, Tutorial on Diffusion Models for Imaging and Vision, arXv:2403.18103.

34/34

https://arxiv.org/abs/2403.18103

