
Transformer and Large Language
Models

Instructor: Lei Wu 1

Mathematical Introduction to Machine Learning

Peking University, Fall 2024

1School of Mathematical Sciences; Center for Machine Learning Research
1 / 21

Transformer

Transformers

• were introduced in Attention is all you
need (Vaswani et al., NeurIPS 2017);

• have revolutionized NLP, CV, robotics
and many applications;

• have enabled the creation of powerful
LLMs such as GPT-4;

• hold the promise of unlocking the
potential for AGI (artificial general
intelligence).

2 / 21

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Sequence Modeling

Consider a simple block for sequence modeling:

X := (x1,x2, . . . ,xn)
T7→ Y := (y1,y2, . . . ,yn).

In practical models, we may compose the T -type transforms for many times (aka layers).

• Recurrence
yi = f(xi,yi−1).

• Convolution
yi = f(xi−1,xi,xi+1).

• Attention (simplified, adaptive/selective weighted average):

yi = f

 n∑
j=1

wi,j(X)xj

 ,

where W (X) = (wi,j(X)) ∈ Rn×n satisfies
∑n

j=1 wi,j(X) = 1.

3 / 21

Sequence Modeling

Consider a simple block for sequence modeling:

X := (x1,x2, . . . ,xn)
T7→ Y := (y1,y2, . . . ,yn).

In practical models, we may compose the T -type transforms for many times (aka layers).

• Recurrence
yi = f(xi,yi−1).

• Convolution
yi = f(xi−1,xi,xi+1).

• Attention (simplified, adaptive/selective weighted average):

yi = f

 n∑
j=1

wi,j(X)xj

 ,

where W (X) = (wi,j(X)) ∈ Rn×n satisfies
∑n

j=1 wi,j(X) = 1.

3 / 21

Sequence Modeling

Consider a simple block for sequence modeling:

X := (x1,x2, . . . ,xn)
T7→ Y := (y1,y2, . . . ,yn).

In practical models, we may compose the T -type transforms for many times (aka layers).

• Recurrence
yi = f(xi,yi−1).

• Convolution
yi = f(xi−1,xi,xi+1).

• Attention (simplified, adaptive/selective weighted average):

yi = f

 n∑
j=1

wi,j(X)xj

 ,

where W (X) = (wi,j(X)) ∈ Rn×n satisfies
∑n

j=1 wi,j(X) = 1.

3 / 21

Sequence Modeling

Consider a simple block for sequence modeling:

X := (x1,x2, . . . ,xn)
T7→ Y := (y1,y2, . . . ,yn).

In practical models, we may compose the T -type transforms for many times (aka layers).

• Recurrence
yi = f(xi,yi−1).

• Convolution
yi = f(xi−1,xi,xi+1).

• Attention (simplified, adaptive/selective weighted average):

yi = f

 n∑
j=1

wi,j(X)xj

 ,

where W (X) = (wi,j(X)) ∈ Rn×n satisfies
∑n

j=1 wi,j(X) = 1.

3 / 21

Attention Mechanism (Cont’d)

We often call wi,j(X)’s the attention score and we want

the attention scores (wi,1(X), wi,2(X), · · · , wi,n(X)) to be sparse (i.e., selective).

• Attention in vision modeling:

4 / 21

Attention Mechanism (Cont’d)

Attention in machine translation (cross attention) 2:

Figure 1: See a better animation in this link.

2Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015.
5 / 21

https://eleks.com/wp-content/uploads/neural-machine-translation-with-attention-mechanism.gif

Self-Attention via Dot-Product

• Let X = (x1, . . . ,xn) ∈ Rd×n be our input sequence. We often call {xi} tokens.

• A self-attention A : Rd×n 7→ Rn×n outputs an attention-score map P = A(X). The most
popular choice is

AWK ,WQ
(X) = σ

(
1√
d
(WKX)⊤(WQX)

)
∈ Rn×n,

where
• WK ,WQ ∈ Rdkey×d are the key and query weight matrices, which are learned from data.
• σ denotes the softmax normalization performed in a column-wise manner, ensuring the

column represent a selective average.

6 / 21

Self-Attention via Dot-Product (Cont’d)

• The dot-products are implemented in a token-wise manner (can be naively paralleled):

ki = WKxi,qj = WQxj for i, j ∈ [n]

(AWK ,WQ
(X))i,j =

ek
⊤
i qj∑n

i′=1 e
k⊤
i′qj

• The attention scores are determined by the dot-product correlation among tokens. In
principle, one can also propose other alternatives.

• A single-head attention layer SA : Rd×n 7→ Rd×n is given as follows

SAWK ,WQ,WV
(X) = V σ(QK),

where Q,K, V are called the query, key, value matrices, respectively and given by

Q = WQX, K = WKX, V = WV X.

7 / 21

A Transformer Block

• A transformer block defines a sequence-to-sequence map

X = (x1,x2, . . . ,xn) ∈ Rd×n 7→ Y = (y1,y2, . . . ,yn) ∈ Rd×n.

• This maps consists of two blocks:

Y = F(X + MHA(X)),

where
• Multi-head attention (MHA)

MHA(X) :=

H∑
h=1

Wh
OSA

h(X).

• Tokenwise feed-forward networks (FFN):

F(Z) := (h(z1), h(z2), . . . , h(zn)) ∈ Rd×n.

In practice, h : Rd 7→ Rd is often chosen to be a two-layer MLP with hidden size dFF.

h(z) = W⊤
1 ReLU(W2z+ b),

where W1,W2 ∈ RdFF×d and b ∈ Rd.

8 / 21

Transformer

• Input: Linear embedding to change the dimension of each token.

X(0) = V X with V ∈ Rdmodel×d.

• Main block:
Xℓ = F(ℓ)(X(ℓ−1) + MHA(ℓ)(X(ℓ−1))), 1 ≤ ℓ ≤ L.

• Ouput: The output format depends on the tasks. In classification, we may

f(X) = p(x
(L)
1),

where p can be either a linear layer or small MLP.

• Architecure hyperparameters: dmodel, H, L, dkey , dFF. In practice, a common choice
dFF = 4dmodel, dkey = dmodel/H.

9 / 21

Absolute Positional Embedding (APE)

Transformers are still inherently permutationally invariant and we need to modify
transformers by injecting position information.

The most natural way of injecting position information is using absolute positional
embedding (APE): let ri ∈ Rd denote the information for token i:

xi → xi + ri,

• Learnable APE: ri are parameters to be learned.

• One-hot APE: ri = ei where ei is the one-hot label with 1 in the i-th coordinates and
zero else.

• Sinusoidal APE:

ri =
(
sin(i), cos(i), sin(i/c), cos(i/c), . . . , sin(i/c2i/d), cos(i/c2i/d)

)
∈ Rd,

where c is constant, e.g. 1000.

APE is rarely used in practice anymore due to:

• APE can not handle input sequence longer than that used in training.

• In many real problems, it is “relative distance” matters.

10 / 21

Absolute Positional Embedding (APE)

Transformers are still inherently permutationally invariant and we need to modify
transformers by injecting position information.

The most natural way of injecting position information is using absolute positional
embedding (APE): let ri ∈ Rd denote the information for token i:

xi → xi + ri,

• Learnable APE: ri are parameters to be learned.

• One-hot APE: ri = ei where ei is the one-hot label with 1 in the i-th coordinates and
zero else.

• Sinusoidal APE:

ri =
(
sin(i), cos(i), sin(i/c), cos(i/c), . . . , sin(i/c2i/d), cos(i/c2i/d)

)
∈ Rd,

where c is constant, e.g. 1000.

APE is rarely used in practice anymore due to:

• APE can not handle input sequence longer than that used in training.

• In many real problems, it is “relative distance” matters.
10 / 21

Relative Positional Embedding (RPE)

• Additive RPE: Let E = (WKX)⊤(WQX) ∈ Rn×n be the pre-softmax attention weights.
Then, we inject relative position information by

A(X) = σ(E − P),

where P = (h(j − i))i,j ∈ Rn×n.

• In T5 RPE chooses

h(t) =


|t| if |t| ≤ B/2

B
2 + B

2

⌊
log(

|t|
B/2

)

log(D
B/2

)

⌋
if B

2 ≤ |t| ≤ D

B − 1 if |t| ≥ D

In Alibi RPE, h(t) = −α|t|+ β. Where the α and β can be either learnable or fixed.

• Currently, the most popular one is the rotary positional embedding (RoPE), which has
been adopted in nearly all LLMs.

11 / 21

https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2104.09864

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

• Definition: Converting text into tokens (small units) before feeding it into a model.

• Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization

• Word-level Tokenization: Splits text into individual words.

"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

• Subword-level Tokenization: Breaks words into smaller pieces (subwords) for efficient
handling of unknown words and morphemes. Popular in transformers.

"Transformers are amazing!" ->

["Trans", "##form", "##ers", "are", "amaz", "##ing", "!"]

• Many other tokenizations. Libraries like NLTK, spaCy provide basic tokenization.
transformers library by Hugging Face for transformer-specific tokenization.

12 / 21

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

• Definition: Converting text into tokens (small units) before feeding it into a model.

• Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization

• Word-level Tokenization: Splits text into individual words.

"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

• Subword-level Tokenization: Breaks words into smaller pieces (subwords) for efficient
handling of unknown words and morphemes. Popular in transformers.

"Transformers are amazing!" ->

["Trans", "##form", "##ers", "are", "amaz", "##ing", "!"]

• Many other tokenizations. Libraries like NLTK, spaCy provide basic tokenization.
transformers library by Hugging Face for transformer-specific tokenization.

12 / 21

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

• Definition: Converting text into tokens (small units) before feeding it into a model.

• Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization

• Word-level Tokenization: Splits text into individual words.

"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

• Subword-level Tokenization: Breaks words into smaller pieces (subwords) for efficient
handling of unknown words and morphemes. Popular in transformers.

"Transformers are amazing!" ->

["Trans", "##form", "##ers", "are", "amaz", "##ing", "!"]

• Many other tokenizations. Libraries like NLTK, spaCy provide basic tokenization.
transformers library by Hugging Face for transformer-specific tokenization.

12 / 21

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

• Definition: Converting text into tokens (small units) before feeding it into a model.

• Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization

• Word-level Tokenization: Splits text into individual words.

"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

• Subword-level Tokenization: Breaks words into smaller pieces (subwords) for efficient
handling of unknown words and morphemes. Popular in transformers.

"Transformers are amazing!" ->

["Trans", "##form", "##ers", "are", "amaz", "##ing", "!"]

• Many other tokenizations. Libraries like NLTK, spaCy provide basic tokenization.
transformers library by Hugging Face for transformer-specific tokenization.

12 / 21

Cost Analysis

MHA(X) = X +

H∑
h=1

Wh
OW

h
V XSAh(X),

F(x) = W⊤
1 ReLU(W2x+ b).

In practice, it is often choose

dkey = dmodel/H, dFF = 4dmodel.

• Storage: 4d2model + 8d2model

• Computation:
• MHA: 4nd2model︸ ︷︷ ︸

Token-fea. extr.

+ dmodeln
2︸ ︷︷ ︸

attention

• FF: 8d2modeln.

• Tokenwise operations can be parallelized. The total cost depends on the sequence length
qudratically. This is especially bad for inference!!

13 / 21

Training Deep Transformers Need Many Tricks

• Scaled dot-product attention

AWK ,WQ
(X) = σ

(
1√
dk

(WKX)⊤(WQX)

)
∈ Rn×n,

• Layer normalization + residual connection:

X̃(ℓ−1) = LN(X(ℓ−1))

Xℓ = F
(
X̃(ℓ−1) + MHA(X̃(ℓ−1))

)
• AdamW optimizer with (β1 = 0.9, β2 = 0.98) and gradient clipping.
• Learning rate warmup + Cosine decay.

14 / 21

Readings

• The original paper https://arxiv.org/abs/1706.03762

• Annotated Transformer https://jalammar.github.io/illustrated-transformer/

• Illustrated Transformer https://poloclub.github.io/transformer-explainer/

15 / 21

https://arxiv.org/abs/1706.03762
https://jalammar.github.io/illustrated-transformer/
https://poloclub.github.io/transformer-explainer/

BERT

• Developed by Google.

• Bidirectional: Unlike traditional models that read text unidirectionally, BERT reads the
entire sequence of words at once.

• Layers: Typically 12 layers (BERT Base) or 24 layers (BERT Large).

Pre-training Tasks:

• Masked Language Model (MLM): Randomly masks words in the sentence and predicts
them.

• Next Sentence Prediction (NSP): Predicts if a given sentence logically follows another.

Fine-tuning: Adapts pre-trained BERT for various downstream tasks like question answering,
sentiment analysis, etc.

16 / 21

BERT

• Developed by Google.

• Bidirectional: Unlike traditional models that read text unidirectionally, BERT reads the
entire sequence of words at once.

• Layers: Typically 12 layers (BERT Base) or 24 layers (BERT Large).

Pre-training Tasks:

• Masked Language Model (MLM): Randomly masks words in the sentence and predicts
them.

• Next Sentence Prediction (NSP): Predicts if a given sentence logically follows another.

Fine-tuning: Adapts pre-trained BERT for various downstream tasks like question answering,
sentiment analysis, etc.

16 / 21

BERT

• Developed by Google.

• Bidirectional: Unlike traditional models that read text unidirectionally, BERT reads the
entire sequence of words at once.

• Layers: Typically 12 layers (BERT Base) or 24 layers (BERT Large).

Pre-training Tasks:

• Masked Language Model (MLM): Randomly masks words in the sentence and predicts
them.

• Next Sentence Prediction (NSP): Predicts if a given sentence logically follows another.

Fine-tuning: Adapts pre-trained BERT for various downstream tasks like question answering,
sentiment analysis, etc.

16 / 21

GPT (Generative Pre-trained Transformer)

• Next-token prediction (autoregressive model):

max
θ

n∑
i=1

logPθ(xi|x1, . . . , xi−1).

• Text Generation:

17 / 21

GPT (Generative Pre-trained Transformer)

• Next-token prediction (autoregressive model):

max
θ

n∑
i=1

logPθ(xi|x1, . . . , xi−1).

• Text Generation:

17 / 21

Practice

• Pre-train models in large dataset. Fine-tune models on down-stream tasks.

• Fine-tuning needs to retrain our model, which is not user-friendly.

• Next-token prediction enables capability of doing in-context learning.

• Prompt!

18 / 21

Remark

GPT and its focus on next-token prediction have fundamentally transformed how pre-trained
models are utilized, marking a significant step toward AGI. The transition from BERT to GPT
represents a major breakthrough in this evolution.

19 / 21

Vision Transformer (ViT)

20 / 21

Summary

• Transformers or attention-based models are versitle in many applications.

• Next-token prediction is powerful and it implicitly performs multi-task learning. The
latter might be the major reason of why GPT is so successful.

21 / 21

