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Reading

• Section 26 and 27 of [Shalev-Shwartz and Ben-David, 2014].

1 Setup

Let z = (x, y), `h(z) = `(h(x), y), and

R̂(h) =
1

n

n∑

i=1

`h(zi)

R(h) = Ez[`h(z)]

(1)

be the empirical risk and population risk, respectively. LetH be a hypothesis class. Consider the estimator:

ĥn = argmin
h∈H

R̂(h).

This type of estimator ensures that R̂(ĥn). But our question is: How small is the true errorR(ĥn)?
For any h ∈ H, consider the decomposition:

R(h) = R̂(h)︸ ︷︷ ︸
training error

+R(h)− R̂(h)︸ ︷︷ ︸
gen-gap

,

where the generalization gap satisfies

gen-gap(h) := R(h)− R̂(h) = Ez[`h(z)]− 1

n

∑
`h(zi). (2)

One may expected that gen-gap(h) = O(1/
√
n). By concentration inequality, this is true for h that is

independent of training data (z1, . . . , zn). However, our task is bound of gen-gap of ĥn:

gen-gap(ĥn) = Ez[`ĥn(z)]− 1

n

∑
`ĥn(zi).

Note that ĥn depends on (z1, . . . , zn) and hence {`ĥn(zi)} are not i.i.d. . Consequently, gen-gap may not be
in the order of O(1/

√
n). In fact that gen-gap(ĥn) can be arbitrarily large if ĥn is a very complex solution.

1



2 Uniform bounds

To deal with the dependence issue, we can consider the uniform bound

|R(ĥn)− R̂(ĥn)| ≤ sup
h∈H
|R(h)− R̂(h)|. (3)

Obviously, when the hypothesis space H is sufficiently “small”, e.g., the extreme case: H = {h}, it is
expected that

sup
h∈H
|R(h)− R̂(h)| ∼ 1√

n
.

Some natural questions go as follows.

• What kind ofH can guarantee the smallness of uniform bound?

• What is the rate? Do we still have O(1/
√
n)?

Let us first look at a simple example: finite hypothesis class.

Lemma 2.1 (Finite class). Let H be a collection of finite hypotheses and denote by |H| the number of
hypotheses. Assume supy,y′ |`(y, y′)| ≤ 1. For any δ ∈ (0, 1), with probability 1 − δ over the random
sampling of training set S, we have

sup
h∈H
|R(h)− R̂(h)| ≤

√
2 ln(2|H|/δ)

n
.

Proof. WLOG, suppose H = {h1, . . . , hm}. Let z = (x, y) and Qh(z) = `(h(x), y). Taking the union
bound gives us

P

{
sup
h∈H
| 1
n

n∑

i=1

Q(h, zi)− Ez[Q(h, z)]| ≥ t
}
≤

m∑

j=1

P

{∣∣∣∣∣
1

n

n∑

i=1

Q(hj , zi)− Ez[Z(hj , z)]

∣∣∣∣∣ ≥ t
}

(4)

≤ m2e
−2nt2

22 = 2me
−nt2

2 , (5)

where the last step follows from the Hoeffding’s inequality. Let the failure probability 2me
−nt2

2 = δ, which

leads to t =

√
2 ln(2m/δ)

n .

We see that the upper bound only depends on the cardinality of hypothesis class |H| logarithmically.
This implies that even when the hypothesis class has exponentially many functions, the generalization gap
can be still well controlled.

Remark 2.2. This lemma has a very important implication as follows. Consider a general model that hav-
ing m parameters and all parameters are represented using k-bit floating-point number. Then, this model
can represent 2km functions. Consequently, the corresponding generalization gap must be bounded by√

km+log(1/δ)
n . This means, in such a general case, the number of parameter is a good parameter to bound

generalization. Unfortunately, the generalization is guaranteed for the under-parameterized regime.
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Definition 2.3 (Empirical process). Let F be a class of real-valued functions f : Ω 7→ R where (Ω,Σ, µ)
is a probability space. Let X ∼ µ and X1, . . . , Xn be independent copies of X . Then, the random process
(Xf )f∈F defined by

Xf :=
1

n

n∑

i=1

f(Xi)− E f(X)

is called an empirical process indexed by F .

In our case, f(Z) = `(h(X), Y ). Our task is to bound the supremum:

sup
f∈F
|Xf |.

Note that the above quantity can also be viewed a “weak” distance between µ and the empirical measure
µ̂n = 1

n

∑n
i=1 δ(· − xi) with test functions given by F :

dF (µ̂n, µ) := sup
f∈F
|Eµ̂n f − Eµ f |.

3 Covering number

For the finite hypothesis classes, we have shown that log |F|, i.e., the logarithm of cardinality, can be used
as a good complexity measure. Then, a natural question is: can we do similar arguments for the case where
|F| = ∞? One possible approach is discretization. This means that we choose a finite subset Fε ⊂ F to
“represent” F .

Definition 3.1 (Covering number). Consider a metric space (T, ρ).

• We say Tε ⊂ T is an ε-cover (also called ε-net) of T , if for any t ∈ T , there exists a t′ ∈ Tε such that
ρ(t, t′) ≤ ε.

• The covering numberN (T, ρ, ε) is defined as the smallest cardinality of an ε-cover of T with respect
to ρ.

Definition 3.2 (Metric entropy). The metric entropy of T is defined by logN (T, ρ, ε).

Theorem 3.3. Let F be a function class with supf∈F ,x∈X |f(x)| ≤ B. Let ‖f − g‖∞ = supx∈X |f(x) −
g(x)|. Then, for any δ ∈ (0, 1), w.p. at least 1− δ over the sampling of X1, X2, . . . , Xn, we have

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ 2ε+B

√
logN (F , ‖ · ‖∞, ε) + log(2/δ)

n
.

Proof. Let Fε be an ε-cover of F . For any f ∈ F , let f ′ ∈ Fε such that ‖f − f ′‖∞ ≤ ε. Then, we have
∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

f(Xi)−
1

n

n∑

i=1

f ′(Xi)

∣∣∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

f ′(Xi)− E[f ′(X)]

∣∣∣∣∣+
∣∣E f ′(X)− E[f(X)]

∣∣ .
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Taking the surprimum with respect to f ∈ F gives

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ 2ε+ sup
f ′∈Fε

∣∣∣∣∣
1

n

n∑

i=1

f ′(Xi)− E[f ′(X)]

∣∣∣∣∣

≤ 2ε+ 2B

√
log(2|Fε|/δ)

n
,

where the last step uses Lemma 2.1. Noting that |Fε| ≤ N (F , ‖ · ‖∞, ε), we complete the proof.

Example: Lipschtiz models. Let f : X × Rm 7→ R be our model, where m denotes the number of
parameters. Assume that f is L-Lipschtiz in the sense that supx |f(x; θ1)− f(x; θ2)| ≤ Lρ(θ1, θ2).

Let F = {f(x; θ) : θ ∈ Ω} be the function class. Let Ωε be an ε-cover of Ω with respect to the ρ metric.
Then,

‖f(·; θ1)− f(·; θ2)‖∞ ≤ Lρ(θ1, θ2)

implies that Fε = {f(·; θ) : θ ∈ Ωε/L} is an ε-cover of F . Hence, we have

N (F , ‖ · ‖∞, ε) ≤ N (Ω, ρ, ε/L) . (6)

Linear class. Consider the linear class:

H =
{
x 7→ w>x : ‖w‖2 ≤ 1, ‖x‖2 ≤ 1

}
.

Then,
sup
‖x‖≤1

|w>x− v>x| ≤ ‖w − v‖ sup
‖x‖≤1

‖x‖ ≤ ‖w − v‖2.

Let Bd(r) = {x ∈ Rd : ‖x‖ ≤ r} be the ball of radius r. Then, (6) gives

N (H, ‖ · ‖∞, ε) ≤ N (Bd(1), ‖ · ‖2, ε).

The above examples demonstrate that one can reduce the estimation of covering number of a function
class to the covering number of a subset in Euclidean space. The latter is often easier to estimate and we
provide below one of the most important examples.

3.1 Volume argument

To help the estimation of covering number, we introduce the packing number.

Definition 3.4 (Packing number). Consider a metric space (T, ρ). Tε ⊂ T is said to be ε-separated if
ρ(x, y) > ε for any x, y ∈ Tε and x 6= y. The packing number is defined as

P(F , ρ, ε) = sup
Tε⊂T is ε-separated

|Tε|

Lemma 3.5. N (T, ρ, ε) ≤ P(T, ρ, ε).

Proof. Let Tε be the maximal ε-separated subset. Then, we claim that Tε is also an ε-cover of T , i.e.,
T ⊂ ∪x∈TεB(x; ε). If not, there exists a y ∈ T such that d(y, x) > ε for any x ∈ Tε. Hence, Tε ∪ {y} is
also ε-separated, which is contradictary with the assumption.
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Lemma 3.6. (1/ε)d ≤ N (Bd(1), ‖ · ‖2, ε) ≤ (1 + 2/ε)d.

The proof follows from a volume argument.

Proof. Lower bound. Let Nε be an ε-cover of Bd(1). Then, Bd(1) ⊂ ∪x∈NεBd(x; ε). Therefore,

Vol(Bd(1)) ≤
∑

x∈Nε

Vol(Bd(x; ε)) = |Nε|Vol(Bd(x; ε)).

Hence,

N (Bd(1), ‖ · ‖2, ε) = |Nε| ≥
Vol(Bd(1))

Vol(Bd(x; ε))
=

(
1

ε

)d

Upper bound. Let Pε ⊂ Bd(1) be ε-separated. Then, by definition of packing number, we have

∪x∈PεBd(x; ε/2) ⊂ Bd(1 + ε/2)⇒
∑

x∈Pε

Vol(Bd(x; ε/2)) ≤ Vol(Bd(1 + ε/2)).

Let Cdrd be the volume of a `2 ball of radius r. Then,

|Pε|Cd(ε/2)d ≤ Cd(1 + ε/2)d ⇒ |Pε| ≤ (1 + 2/ε)d.

Then, the upper bound follows from Lemma 3.5.

Remark 3.7. The volume argument described above can also be utilized to estimate the covering numbers
of other classes and under different metrics.

4 Rademacher complexity

The following inequality

Lemma 4.1 (Symmetrization of empirical processes).

E sup
f∈F

[
1

n

n∑

i=1

f(Xi)− E f(X)

]
≤ 2E sup

f∈F
[
1

n

n∑

i=1

ξif(Xi)],

where ξ1, . . . , ξn are i.i.d. Rademacher random variable: P(ξ = 1) = P(ξ = −1) = 1
2

Proof. Let X ′i be an independent copy of Xi. To simplify the notation, we use EXi and EX′i to denote the
expectation with respect to {Xi}ni=1 and {X ′i}ni=1, respectively. Then,

E sup
f∈F

[
1

n

n∑

i=1

f(Xi)− E f(X)] = EXi sup
f∈F

EX′i [
1

n

n∑

i=1

(f(Xi)− f(X ′i))] (7)

≤ EXi,X′i
sup
f∈F

[
1

n

n∑

i=1

(f(Xi)− f(X ′i))] (8)
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Due to that f(Xi)− f(X ′i) is symmetric 1, for any {ξi} ∈ {±1}n, we have

EXi,X′i
sup
f∈F

[
1

n

n∑

i=1

f(Xi)− f(X ′i)] = EXi,X′i
sup
f∈F

1

n

n∑

i=1

ξi[f(Xi)− f(X ′i)]

= EXi,X′i,ξ
sup
f∈F

1

n

n∑

i=1

ξi[f(Xi)− f(X ′i)]

≤ EXi,X′i,ξ
[sup
f∈F

1

n

n∑

i=1

ξif(Xi) + sup
f∈F

1

n

n∑

i=1

−ξif(X ′i)]

= 2EXi,ξ sup
f∈F

1

n

n∑

i=1

ξif(Xi)

Definition 4.2 (Rademacher complexity). The empirical Rademacher complexity of a function class F on
a set of training samples {xi}ni=1 is defined as

R̂adn(F) = Eξ[sup
f∈F

1

n

n∑

i=1

ξif(xi)].

The population Rademacher complexity is given by

Radn(F) = E[R̂adn(F)],

where the expectation is taken over the distribution of {xi}ni=1.

Thus, the symmetrization lemma (Lemma 4.1) can be restated as follows

E sup
f∈F

[
1

n

n∑

i=1

f(Xi)− E f(X)

]
≤ 2 Radn(F). (9)

This implies that the Rademacher complexity reflects the degree of concentration.

Theorem 4.3. Assume that 0 ≤ f ≤ B for all f ∈ F . For any δ ∈ (0, 1), with probability at least 1 − δ
over the choice of the training set S = {X1, . . . , Xn}, we have

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f (Xi)− Ef(X)

∣∣∣∣∣ ≤ 2 Radn(F) +B

√
2 log(2/δ)

n
, (10)

and the sample-dependent version:

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f (Xi)− Ef(X)

∣∣∣∣∣ ≤ 2R̂adn(F) + 4B

√
2 log(4/δ)

n
. (11)

1A random variable Z is said to be symmetric if Z and −Z have the same distribution.
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Proof. Let

G (x1, . . . , xn) = sup
f∈F

[
1

n

n∑

i=1

f (xi)− Ef(X)

]
.

Note that for any i ∈ [n], it holds that

G(x1, . . . , xn)−G(X̃1, . . . , X̃n)

= sup
f∈F

(
1

n

n∑

i=1

f(Xi)− E f(X))− sup
f∈F

(
1

n

n∑

i=1

f(X̃i)− E f(X))

≤ sup
f∈F

(
1

n

n∑

i=1

f(Xi)− E f(X)−
(

1

n

n∑

i=1

f(X̃i)− E f(X)

))

≤ sup
f∈F

1

n

(
f(Xi)− f(X̃i)

)
≤ 2B

n
.

Similarly, we have

G(X̃1, . . . , X̃n)−G(X1, . . . , Xn) ≥ −2B

n
.

Therefore, the variation satisfies

Li := sup
X,X̃

|G(X1, . . . , Xn)−G(X̃1, . . . , X̃n)| ≤ 2B/n,

where X = (X̃1, . . . , X̃n) and X̃ = (X1, . . . , Xn) are different for only the i-th component.
Therefore, σ2 = 1

4

∑n
i=1 L

2
i ≤ B2

n . By McDiarmid’s inequality,

P{|G(X1, . . . , Xn)− EG| ≥ t} ≤ 2e−
nt2

2B2 .

Let the failure probability 2e−
nt2

2B2 = δ, which leads to t =

√
2B2 log(2/δ)

n . Restating the above inequality
gives the bound (10).

Analogously, we can applying McDiarmid’s inequality to the Rademacher complexityQ (x1, . . . , xn) =
Eξ supf∈F

[
1
n

∑n
i=1 ξif (xi)

]
, which leads to the sample-dependent bound (11).

Examples.

• Let F = {f}. Then,

R̂adn(F) = Eξ[
1

n

n∑

i=1

ξif(xi)] = 0.

• Two functions. Let F = {f−1, f1} where f−1 ≡ −1 and f1 ≡ 1.

√
nR̂adn(F) = Eξ sup

f∈{−1,+1}
f

1√
n

n∑

i=1

ξi = Eξ |
1√
n

n∑

i=1

ξi| → EZ∼N (0,1) |Z| =
√

2

π
.

Hence, when n is sufficiently large,

Radn(F) ∼
√

2

nπ
.
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Remark: This implies that it is impossible to obtain a rate faster than O(1/
√
n) using Rademacher

complexity since it saturates even for learning/distinguishing two constant functions. This is a bad
news!

Lemma 4.4 (Massart’s lemma). Assume that supx∈X ,f∈F |f(x)| ≤ B and F is finite. Then,

R̂adn(F) ≤ B
√

2 log |F|
n

.

Proof. Let Zf =
∑n

i=1 ξif(xi). Then,

logE[eλZf ] = log

(
n∏

i=1

E[eλξif(xi)]

)
≤

n∑

i=1

logE eλξif(Xi)
(i)

≤
n∑

i=1

λ2 (B − (−B))2

8
=
nB2

2
λ2,

where (i) follows from the Hoeffding’s lemma, which provides an upper bound of the log-moment generat-
ing functions of a bounded random variable. Hence, Zf is sub-Gaussian with the variance proxy σ2 = nB2.
Using the maximal inequality, we have

R̂adn(F) =
1

n
Eξ[sup

f∈F
Zf ] ≤ 1

n
· √nB

√
2 log |F| = B

√
2 log |F|

n
. (12)

Applying Massart’s lemma to bound the generalization gap recovers Lemma 2.1.

Linear functions. Let F = {w>x : ‖w‖p ≤ 1}. Let q be the conjugate of p, i.e., 1/q + 1/p = 1. Then,

R̂adn(F) = Eξ sup
‖w‖p≤1

1

n

n∑

i=1

ξiw
>Xi = Eξ sup

‖w‖p≤1
w>

(
1

n

n∑

i=1

ξiXi

)
= Eξ ‖

1

n

n∑

i=1

ξiXi‖q. (13)

Lemma 4.5. Assume that ‖xi‖q ≤ 1 for all xi ∈ S. Then,

• If p = 2, then

R̂adn(F) ≤
√

1

n
.

• If p = 1, then,

R̂adn(F) ≤
√

2 log(2d)

n
.

Proof. For the case where p = 2,

R̂adn(F) ≤ Eξ ‖
1

n

n∑

i=1

ξixi‖2 ≤

√√√√Eξ ‖
1

n

n∑

i=1

ξixi‖22

=

√√√√ 1

n2

n∑

i,j=1

xixj E[ξiξj ] =

√√√√ 1

n

n∑

i=1

x2
i ≤

√
1

n
.

The case of p = 1 leaves to homework.
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We have shown the Rademacher complexity of linear functions. To obtain the estimates of more general
classes, we need follow results.

Lemma 4.6 (Rademacher calculus). The Rademacher complexity has the following properties.

• Radn(λF) = |λ|Radn(F).

• Radn(F + f0) = Radn(F).

• Let Conv(F) denote the convex hull of F defined by

Conv(F) =
{ m∑

j=1

ajfj : αj ≥ 0,
m∑

j=1

aj = 1, f1, . . . , fm ∈ F ,m ∈ N+

}
.

Then, we have Radn(Conv(F)) = Radn(F).

Proof. Here, we only prove the third result. By definition,

nR̂adn(Conv(F)) = E sup
fj∈F ,‖α‖1=1

n∑

i=1

ξi

m∑

j=1

ajfj(Xi)

= E sup
fj∈F ,‖α‖1=1

m∑

j=1

aj

n∑

i=1

ξifj(Xi)

= E sup
fj∈F

max
j

n∑

i=1

ξifj(Xi)

= E sup
f∈F

n∑

i=1

ξif(Xi) = nR̂adn(F)

The third property suggests that convex combinations does not change the Rademacher complexity.

Lemma 4.7 (Ledoux & Talagrand 2011, Contraction lemma). Let ϕi : R 7→ R with i = 1, . . . , n be
β-Lispchitz continuous. Then,

1

n
Eξ sup

f∈F

n∑

i=1

ξiϕi ◦ f(xi) ≤ β R̂adn(F).

Proof. WLOG, assume β = 1. Let ξ̂ = (ξ1, . . . , ξn) and Zk(f) =
∑k

i=1 ξiϕi ◦ f(xi). Then,

Eξn sup
f∈F

n∑

i=1

ξiϕi ◦ f(xi) =
1

2

[
sup
f∈F

(Zn−1(f) + ϕn ◦ f(xn)) + sup
f∈F

(Zn−1(f)− ϕn ◦ f(xn))

]

=
1

2
sup
f,f ′∈F

(
Zn−1(f) + Zn−1(f ′) + ϕn ◦ f(xn)− ϕn ◦ f ′(xn)

)

≤ 1

2
sup
f,f ′∈F

(
Zn−1(f) + Zn−1(f ′) + |f(xn)− f ′(xn)|

)
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=
1

2
sup
f,f ′∈F

(
Zn−1(f) + Zn−1(f ′) + (f(xn)− f ′(xn))

)
(Use the symmetry)

=
1

2

[
sup
f∈F

(Zn−1(f) + f(xn)) + sup
f∈F

(Zn−1(f)− f(xn))

]

= Eξn sup
f∈F

(Zn−1(f) + ξnf(xn)).

Hence, by induction, we have

Eξ̂[sup
f∈F

Zn(f)] ≤ Eξ̂ sup
f∈F

(Zn−1(f) + ξnf(xn))

≤ Eξ̂ sup
f∈F

(Zn−2(f) + ξn−1f(xn−1) + ξnf(xn))

≤ Eξ̂ sup
f∈F

(ξ1f(x1) + · · ·+ ξnf(xn))

= nR̂adn(F). (14)

Corollary 4.8. Given a function class F and ϕ : R 7→ R, let ϕ ◦ F = {ϕ ◦ f : f ∈ F}. Then,

Radn(ϕ ◦ F) ≤ Lip(ϕ) Radn(F).

Rademacher complexity of neural networks. In the following, we provide an example showing the
power of combining the contraction lemma with Rademacher calculus. They together can bound the
Rademacher complexity of many complex models.

Consider two-layer neural networks. Suppose the activation function σ : R 7→ R is σLip-Lipschitz
continuous. Let

Fm =



fm(x; θ) =

m∑

j=1

ajσ(w>j x) :
∑

j

|aj | ≤ A, ‖wj‖2 ≤ B



 .

be the collection of two-layer neural networks fm(·; θ).

Lemma 4.9. Suppose ‖xi‖2 ≤ 1 for i = 1, . . . , n. Then, we have

R̂adn(Fm) ≤ 2σLipAB√
n

.

The above lemma implies that Rademacher complexity only depends on the parameter norm, indepen-
dent of the network width. This implies that the capacity of over-parameterized networks can be well-
controlled by enforcing a constraint on a appropriate parameter norm. It is worth noting that for different
networks, we may need to identify the appropriate norm of parameters.

Proof.

R̂adn(Fm) =
1

n
Eξ sup

f∈Fm

n∑

i=1

f(xi)ξi
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=
1

n
Eξ sup

θ∈Θ

n∑

i=1

ξi

m∑

j=1

ajσ(w>j xi)

=
1

n
Eξ sup

θ∈Θ

m∑

j=1

aj

n∑

i=1

ξiajσ(w>j xi)

≤ 1

n
Eξ sup

θ∈Θ

m∑

j=1

|aj |
∣∣∣∣∣ sup
‖w‖≤B

n∑

i=1

ξiσ(w>xi)

∣∣∣∣∣

(i)

≤ A
1

n
Eξ sup
‖w‖≤B

∣∣∣∣∣
n∑

i=1

ξiσ(w>xi)

∣∣∣∣∣

= A
1

n
Eξ

(
sup
‖w‖≤B

n∑

i=1

ξiσ(w>xi)

)
+A

1

n
Eξ

(
− sup
‖w‖≤B

n∑

i=1

ξiσ(w>xi)

)

(ii)

≤ 2A
1

n
Eξ

(
sup
‖w‖≤B

n∑

i=1

ξiσ(w>xi)

)

iii
≤ 2AσLip

1

n
Eξ

(
sup
‖w‖≤B

n∑

i=1

ξiw
>xi

)

(iiii)

≤ 2σLipAB√
n

,

where (i) is due to
∑m

j=1 |aj | ≤ A; (ii) use the symmetry of ξi; (iii)follows from the contraction property
(Lemma 4.7); (iiii) follows from Lemma 4.5.

5 Bounding Rademacher complexity using covering number

Consider the function space (F , L2(Pn)), where F is the hypothesis class and L2(Pn) is defined by

‖f − f ′‖L2(Pn) =

√√√√ 1

n

n∑

i=1

(f(xi)− f ′(xi))2,

where x1, . . . , xn denote the finite training samples. Since only the n samples are available, we can really
think of these functions as a n-dimensional vector:

f̂ = (f(x1), f(x2), . . . , f(xn))> ∈ Rn,

Obviously, we cannot distinguish functions using information beyond these n-dimensional vectors.

Example 1. Let F = {f : R 7→ [0, 1] : f is non-decreasing}. Then, N (F , L2(Pn), ε) = n1/ε.

Proof. WLOG, assume −∞ = x0 < x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 = 1. For any y = (y1, y2, . . . , yn) ∈
Rn, define a piecewise constant function

fy(x) = yi for x ∈ [xi, xi+1), i = 1, 2, . . . , n.

11



For any ε ∈ (0, 1), let Yε = (0, ε, 2ε, 3ε, . . . , 1−ε). Then, |Yε| ≤ 1/ε. Define the following non-decreasing
set:

Sε := {y ∈ Rn : yi ∈ Yε and y1 ≤ y1 ≤ · · · ≤ yn} .
Let Fε = { fy : y ∈ Sε} . Obviously, Fε ⊂ F . Moreover, for any f ∈ F , there exists y ∈ Sε such that

‖f − fy‖2L2(Pn) =
1

n

n∑

i=1

(f(xi)− yi)2 ≤ ε2.

Hence, Fε is an ε-cover of F and |Fε| = |Sε|. What remains is to count the cardinality of |Sε|. Let
y0 = 0, yn+1 = 1 and ∆i = (yi − yi−1)/ε. Then, {∆i}n+1

i=1 must be non-negative integers and satisfy

∆1 + ∆2 + . . .∆n+1 =
1

ε
.

Hence, |Sε| is equal to the number of solutions of the above equation:

|Sε| =
(
n+ 1

ε

n

)
=

(n+ 1
ε )(n+ 1

ε − 1) · · · (n+ 1)

(1
ε )(1

ε − 1) · · · 1 ≤ n 1
ε .

In the following, we show that the Rademacher complexity can be bounded using the metric entropy.
To simplify notation, we use ‖ · ‖ and 〈, 〉 to denote L2(Pn) norm and the induced inner product: 〈f, g〉 =
1
n

∑n
i=1 f(xi)g(xi). Then,

R̂adn(F) = E sup
f∈F
〈ξ, f〉.

Proposition 5.1 (One-resolution discretization). Suppose supx∈X ,f∈F |f(x)| ≤ B. Then,

R̂adn(F) ≤ inf
ε

(
ε+B

√
2 logN (F , L2(Pn), ε)

n

)
.

The above bound is similar to Theorem 3.3. The difference is that the above bound is determined by the
L2(Pn) covering number, while Theorem 3.3 relies on the L∞ covering number. Technically speaking, this
improvement is obtained by removing the E f(X) term with symmetrization.

Proof. Let Fε be an ε-cover of F with respect to the metric L2(Pn). For any f ∈ F , let π(f) ∈ Fε such
that ‖f − π(f)‖ ≤ ε. Then,

E sup
f∈F
〈ξ, f〉 = E sup

f∈F

[
〈ξ, f − π(f)〉+ 〈ξ, π(f)〉

]

≤ E sup
f∈F
〈ξ, f − π(f)〉+ E sup

f∈F
〈ξ, π(f)〉

≤ E ‖ξ‖‖f − π(f)‖+ E sup
f∈Fε

〈ξ, f〉

≤ ε
√

E ‖ξ‖22
n

+ R̂adn(Fε) (Jesson’s inequality)

≤ ε+B

√
2 log |Fε|

n
, (Massart’s lemma).

Using the definition of covering number and optimizing over ε, we complete the proof.
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For the non-decreasing functions considered previously, we have

Radn(F) ≤ inf

(
ε+

√
2 log n

εn

)
= C

(
log n

n

)1/3

. (15)

This rate is slower than the expected O(1/
√
n). Is it because non-decreasing functions are complex? No! It

is actually just an artifact caused by the proof technique.
In many cases, the one-resolution discretization may give us sub-optimal bounds of generalization gap.

To fix this problem, we need a sophisticated analysis of all the resolutions. This is typically done by using a
chaining approach introduced by Dudley.

Theorem 5.2 (Dudley’s integral inequality). LetD = supf,f ′∈F ‖f−f ′‖L2(Pn) be the diameter of F . Then,

R̂adn(F) ≤ 12 inf
α<D

(
α+

∫ D

α

√
logN (F , L2(Pn), ε)

n
dε

)
.

Then, for the for non-decreasing functions, we have

Radn(F) .
∫ 2

0

√
log n

nε
dε .

√
log n

n
.

Figure 1 visualizes the difference between the upper bound given in Proposition 5.1 and the one in Theorem
5.2. Clearly, the latter is smaller.

√
logN (F ,‖·‖n,ε)

n

One resolution

∫ 1
ε

√
logN (F ,‖·‖n,t)

n dt

Chaining

Figure 1: (Left) The result of one-resolution analysis; (Right) The result of chaining with all resolutions. In this case,
the diameter D = 1. The comparison of two figures provides a visual illustration of how the chaining bound is tigher
than the one-resolution bound.

Proof. Let εj = 2−jD be the dyadic scale and Fj be an εj-cover of F . Given f ∈ F , let fj ∈ Fj such that
‖fj − f‖ ≤ εj . Consider the decomposition

f = f − fm +
m∑

j=1

(fj − fj−1), (16)

where f0 = 0. Notice that

• ‖f − fm‖ ≤ εm.
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• ‖fj − fj−1‖ ≤ ‖fj − f‖+ ‖f − fj−1‖ ≤ εj + εj−1 ≤ 3εj .

Then,

R̂adn(F) = E sup
f∈F
〈ξ, f〉

= E sup
f∈F


〈ξ, f − fm〉+

m∑

j=1

〈ξ, fj − fj−1〉




≤ εm + E sup
f∈F

m∑

j=1

〈ξ, fj − fj−1〉

≤ εm +
m∑

j=1

E sup
f∈F
〈ξ, fj − fj−1〉

= εm +
m∑

j=1

E sup
fj∈Fj ,fj−1∈Fj−1

〈ξ, fj − fj−1〉

= εm +

m∑

j=1

R̂adn(Fj ∪ Fj−1).

Using the Massart lemma and the fact that supf∈Fj ,f ′∈Fj−1
‖fj − fj−1‖ ≤ 3εj ,

R̂adn(F) ≤ εm +
m∑

j=1

3εj

√
2 log(|Fj ||Fj−1|)

n

≤ εm +

m∑

j=1

6εj

√
log |Fj |
n

= εm +
m∑

j=1

12(εj − εj+1)

√
logN (F , L2(Pn), εj)

n
.

Taking m→∞, we obtain

R̂adn(F) ≤ 12

∫ D

0

√
logN (F , L2(Pn), t)

n
dt.

Similarly, we can obtain that

R̂adn(F) . inf
α>0

(
α+

∫ D

α

√
logN (F , L2(Pn), t)

n
dt

)
.

The key ingredient of proceeding analysis is the multi-resolution decomposition (16). The technical
reason why chaining provides a better estimate is as follows. In the one-resolution discretization, we apply
Massart’s lemma to functions whose range in [−1, 1], whereas in chaining, we apply Massart’s lemma to
functions whose range has size O(εj).
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Remark 5.3. Metric entropy is actually more intuitive than Rademacher complexity. The essence is dis-
cretization and applying Massart’s lemma. Moreover, metric entropy is sometimes more convenient to
estimate.
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