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1 Uniform bounds of generalization gap

LetH be the hypothesis class. Consider the estimator:

ĥn = argmin
h∈H

R̂n(h).

This estimator guarantees the smallness of the empirical risk. But the question is: How small is the true
errorR(ĥn)? This is equivalent to control the generalization gap:

R(ĥn)− R̂n(ĥn). (1.1)

Unfortunately, concentration inequalities cannot be applied directly since ĥn depends on the training set. To
deal with this dependence, we can consider the uniform bound

|R(ĥn)− R̂n(ĥn)| ≤ sup
h∈H
|R(h)− R̂n(h)|. (1.2)

Obviously, when the hypothesis space H is sufficiently “small”, e.g., the extreme case: H = {h}, it is
expected that

sup
h∈H
|R(h)− R̂n(h)| ∼ 1√

n
.

Some natural questions go as follows.

• What kind ofH can guarantee the smallness of uniform bound?

• What is the rate? Do we still have O(1/
√
n)?

Let us first look at a simple example: finite hypothesis class.

Lemma 1.1. Assume |H| < ∞ and supy,y′ |`(y, y′)| ≤ 1. For any δ ∈ (0, 1), with probability 1 − δ over
the random sampling of training set S, we have

sup
h∈H
|R(h)− R̂n(h)| ≤

√
2 ln(2|H|/δ)

n
.

Proof. Let Z(h,X) = `(h(X), h∗(X)). Taking the union bound gives us

P

{
sup
h∈H
| 1
n

n∑
i=1

Z(h,Xi)− E[Z(h,X)]| ≥ t

}
≤

m∑
j=1

P

{∣∣∣∣∣ 1n
n∑
i=1

Z(hj , Xi)− E[Z(hj , X)]

∣∣∣∣∣ ≥ t
}

(1.3)

≤ m2e
−2nt2

22 = 2me
−nt2

2 . (1.4)

Let the failure probability 2me
−nt2

2 = δ, which leads to t =

√
2 ln(2m/δ)

n .
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The upper bound only depends on |H| logarithmically. Hence, even when the hypothesis class has
exponentially many functions, the generalization gap can be still well controlled.

Definition 1.2 (Empirical process). Let F be a class of real-valued functions f : Ω 7→ R where (Ω,Σ, µ)
is a probability space. Let X ∼ µ and X1, . . . , Xn be independent copies of X . Then, the random process
(Xf )f∈F defined by

Xf :=
1

n

n∑
i=1

f(Xi)− E f(X)

is called an empirical process indexed by F .

In our case, f(X) = `(h(X), h∗(X)). Our task is to bound the suprema:

sup
f∈F
|Xf |.

Note that the above quantity can viewed a “weak” distance between µ and the empirical measure µ̂n =
1
n

∑n
i=1 δ(· − xi) with the test functions given by F :

dF (µ̂n, µ) := sup
f∈F
|Eµ̂n f − Eµ f |.

2 Rademacher complexity

Lemma 2.1 (Symmetrization of empirical processes).

E sup
f∈F

[
1

n

n∑
i=1

f(Xi)− E f(X)

]
≤ 2E sup

f∈F
[
1

n

n∑
i=1

ξif(Xi)],

where ξ1, . . . , ξn are i.i.d. Rademacher random variable: P(ξ = 1) = P(ξ = −1) = 1
2

Proof. Let X ′i be an independent copy of Xi. To simplify the notation, we use EXi and EX′i to denote the
expectation with respect to {Xi}ni=1 and {X ′i}ni=1, respectively. Then,

E sup
f∈F

[
1

n

n∑
i=1

f(Xi)− E f(X)] = EXi sup
f∈F

EX′i [
1

n

n∑
i=1

(f(Xi)− f(X ′i))] (2.1)

≤ EXi,X′i sup
f∈F

[
1

n

n∑
i=1

(f(Xi)− f(X ′i))] (2.2)

Due to that f(Xi)− f(X ′i) is symmetric, for any {ξi} ∈ {±1}n, we have

EXi,X′i sup
f∈F

[
1

n

n∑
i=1

f(Xi)− f(X ′i)] = EXi,X′i sup
f∈F

1

n

n∑
i=1

ξi[f(Xi)− f(X ′i)]

= EXi,X′i,ξ sup
f∈F

1

n

n∑
i=1

ξi[f(Xi)− f(X ′i)]

≤ EXi,X′i,ξ[sup
f∈F

1

n

n∑
i=1

ξif(Xi)− inf
f∈F

1

n

n∑
i=1

ξif(X ′i)]
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= 2EXi,ξ sup
f∈F

1

n

n∑
i=1

ξif(Xi)

Definition 2.2 (Rademacher complexity). The empirical Rademacher complexity of a function class F on
finite samples is defined as

R̂adn(F) = Eξ[sup
f∈F

1

n

n∑
i=1

ξif(Xi)].

The population Rademacher complexity is given by

Radn(F) = ES [R̂adn(F)].

The symmetrization lemma 2.1 implies that

E sup
f∈F

[
1

n

n∑
i=1

f(Xi)− E f(X)

]
≤ 2 Radn(F). (2.3)

Theorem 2.3. Assume that 0 ≤ f ≤ B for all f ∈ F . For any δ ∈ (0, 1), with probability at least 1 − δ
over the choice of the training set S = {X1, . . . , Xn}, we have

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (Xi)− Ef(X)

∣∣∣∣∣ ≤ 2 Radn(F) +B

√
log(2/δ)

2n
,

and the sample-dependent version:

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (Xi)− Ef(X)

∣∣∣∣∣ ≤ 2R̂adn(F) + 3B

√
log(4/δ)

n
.

Proof. Let

g (x1, . . . , xn) = sup
f∈F

[
1

n

n∑
i=1

f (xi)− Ef(X)

]
and note that

sup
α
g (x1, . . . , xi−1, α, xi+1, . . . , xn)− inf

α
g (x1, . . . , xi−1, α, xi+1, . . . , xn) ≤ B

n
.

By McDiarmid’s inequality,

P{|g(X1, . . . , Xn)− E g| ≥ t} ≤ 2e−
2nt2

B2 .

Let the failure probability 2e−
2nt2

B2 = δ, which leads to t =

√
2B log(2/δ)

n . This proves the first statement.
Analogously, using again the McDiarmid’s inequality to g′ (x1, . . . , xn) = Eξ supf∈F

[
1
n

∑n
i=1 ξif (xi)

]
leads to the sample-dependent one.
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• Let F = {f}. Then,

R̂adn(F) = Eξ[
1

n

n∑
i=1

ξif(xi)] = 0.

• Two functions. Let F = {f−1, f1} where f−1 ≡ −1 and f1 ≡ 1.

√
nR̂adn(F) = Eξ sup

f∈{−1,+1}
f

1√
n

n∑
i=1

ξ = Eξ |
1√
n

n∑
i=1

ξi| → EZ∼N (0,1) |Z| =
√

2

π
.

Hence, when n is sufficiently large,

Radn(F) ∼
√

2

nπ
.

Lemma 2.4 (Massart’s lemma). Assume that supx∈X ,f∈F |f | ≤ B and F is finite. Then,

R̂adn(F) ≤ B
√

2 log |F|
n

.

Proof. Let Zf =
∑n

i=1 ξif(xi). Then,

E[eλZf ] =
n∏
i=1

E[eλξif(xi)] ≤
n∏
i=1

eλ
2 (B−(−B))2

8 = e
λ2nB2

2 .

Hence, Zf is sub-Gaussian with the variance proxy σ2 =
√
nB. Using the maximal inequality, we have

R̂adn(F) =
1

n
Eξ[sup

f∈F
Zf ] ≤ 1

n
·
√
nB
√

2 log |F| = B

√
2 log |F|

n
. (2.4)

Applying Massart’s lemma to bound the generalization gap recovers Lemma 1.1.

Linear functions. Let F = {wTx : ‖w‖p ≤ 1}. Let q be the conjugate of p, i.e., 1/q + 1/p = 1. Then,

R̂adn(F) = Eξ sup
‖w‖p≤1

1

n

n∑
i=1

ξiw
TXi = Eξ sup

‖w‖p≤1
wT

(
1

n

n∑
i=1

ξiXi

)
= Eξ ‖

1

n

n∑
i=1

ξiXi‖q. (2.5)

Lemma 2.5. Assume that ‖xi‖q ≤ 1 for all xi ∈ S. Then,

• If p = 2, then

R̂adn(F) ≤
√

1

n
.

• If p = 1, then,

R̂adn(F) ≤
√

2 log(2d)

n
.
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Proof. For the case where p = 2,

R̂adn(F) ≤ Eξ ‖
1

n

n∑
i=1

ξixi‖2 ≤

√√√√Eξ ‖
1

n

n∑
i=1

ξixi‖22

=

√√√√ 1

n2

n∑
i,j=1

xixj E[ξiξj ] =

√√√√ 1

n

n∑
i=1

x2i ≤
√

1

n
.

The case of p = 1 leaves to homework.

We have shown the Rademacher complexity of linear functions. To obtain the estimates of more general
classes, we need follow results.

Lemma 2.6 (Rademacher calculus). The Rademacher complexity has the following properties.

• Radn(λF) = |λ|Radn(F).

• Radn(F + f0) = Radn(F).

• Let Conv(F) denote the convex hull of F defined by

Conv(F) =
{ m∑
j=1

ajfj : αj ≥ 0,

m∑
j=1

aj = 1, f1, . . . , fm ∈ F ,m ∈ N+

}
.

Then, we have Radn(Conv(F)) = Radn(F).

Proof. Here, we only prove the third result. By definition,

nR̂adn(Conv(F)) = E sup
fj∈F ,‖α‖1=1

n∑
i=1

ξi

m∑
j=1

ajfj(Xi)

= E sup
fj∈F ,‖α‖1=1

m∑
j=1

aj

n∑
i=1

ξifj(Xi)

= E sup
fj∈F

max
j

n∑
i=1

ξifj(Xi)

= E sup
f∈F

n∑
i=1

ξif(Xi) = nR̂adn(F)

Lemma 2.7 (Ledoux & Talagrand 2011, Contraction lemma). Let ϕi : R 7→ R with i = 1, . . . , n be
β-Lispchitz continuous. Then,

1

n
Eξ sup

f∈F

n∑
i=1

ξiϕi ◦ f(xi) ≤ β R̂adn(F).
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Proof. WLOG, assume β = 1. Let ξ̂ = (ξ1, . . . , ξn) and Zk(f) =
∑k

i=1 ξiϕi ◦ f(xi). Then,

Eξn sup
f∈F

n∑
i=1

ξiϕi ◦ f(xi) =
1

2

[
sup
f∈F

(Zn−1(f) + ϕn ◦ f(xn)) + sup
f∈F

(Zn−1(f)− ϕn ◦ f(xn))

]

=
1

2
sup
f,f ′∈F

(
Zn−1(f) + Zn−1(f

′) + ϕn ◦ f(xn)− ϕn ◦ f ′(xn)
)

≤ 1

2
sup
f,f ′∈F

(
Zn−1(f) + Zn−1(f

′) + |f(xn)− f ′(xn)|
)

≤ 1

2
sup
f,f ′∈F

(
Zn−1(f) + Zn−1(f

′) + (f(xn)− f ′(xn))
)

(Use the symmetry)

=
1

2

[
sup
f∈F

(Zn−1(f) + f(xn)) + sup
f∈F

(Zn−1(f)− f(xn))

]
= Eξn sup

f∈F
(Zn−1(f) + ξnf(xn)).

Hence, by induction, we have

Eξ̂[sup
f∈F

Zn(f)] ≤ Eξ̂ sup
f∈F

(Zn−1(f) + ξnf(xn))

≤ Eξ̂ sup
f∈F

(Zn−2(f) + ξn−1f(xn−1) + ξnf(xn))

≤ Eξ̂ sup
f∈F

(ξ1f(x1) + · · ·+ ξnf(xn))

= nR̂adn(F). (2.6)

Corollary 2.8. Given a function class F and ϕ : R 7→ R, let ϕ ◦ F = {ϕ ◦ f : f ∈ F}. Then,

Radn(ϕ ◦ F) ≤ Lip(ϕ) Radn(F).

3 Covering number and metric entropy

For the finite hypothesis classes, we have shown that log |F|, i.e., the logarithm of cardinality, can be used
as a good complexity measure. Can we extend this observation to the case where |F| = ∞. One possible
approach is discretization. This means that we choose a finite subset Fε ⊂ F to “represent” F .

Definition 3.1. Consider a metric space (T, ρ).

• We say Tε ⊂ T is a ε-cover (also called ε-net) of T , if for any t ∈ T , there exists a t′ ∈ Tε such that
ρ(t, t′) ≤ ε.

• The covering numberN (ε, T, ρ) is defined as the smallest cardinality of an ε-cover of T with respect
to ρ. The metric entropy of T is defined by logN (ε, T, ρ).
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In the above definition, the metric space (T, ρ) can be arbitrary. However, we will focus on the case of
(F , L2(Pn)), where F is the hypothesis class and L2(Pn) is defined by

‖f − f ′‖L2(Pn) =

√√√√ 1

n

n∑
i=1

(f(xi)− f ′(xi))2.

Here, (x1, . . . , xn) denote the finite training samples. Since only the n samples are available, we can really
think of these functions as a n-dimensional vector:

f̂ = (f(x1), f(x2), . . . , f(xn))T ∈ Rn,

Obviously, we cannot distinguish functions using information beyond these n-dimensional vectors.

Example 1. Let F = {f : R 7→ [0, 1] : f is non-decreasing}. Then, N (ε,F , L2(Pn)) = n1/ε.

Proof. WLOG, assume −∞ = x0 < x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 = 1. For any y = (y1, y2, . . . , yn) ∈
Rn, define a piecewise constant function

fy(x) = yi for x ∈ [xi, xi+1), i = 1, 2, . . . , n.

For any ε ∈ (0, 1), let Yε = (0, ε, 2ε, 3ε, . . . , 1−ε). Then, |Yε| ≤ 1/ε. Define the following non-decreasing
set:

Sε := {y ∈ Rn : yi ∈ Yε and y1 ≤ y1 ≤ · · · ≤ yn} .

Let Fε = { fy : y ∈ Sε} . Obviously, Fε ⊂ F . Moreover, for any f ∈ F , there exists y ∈ Sε such that

‖f − fy‖2L2(Pn) =
1

n

n∑
i=1

(f(xi)− yi)2 ≤ ε2.

Hence, Fε is a ε-cover of F and |Fε| = |Sε|. What remains is to count the cardinality of |Sε|. Let
y0 = 0, yn+1 = 1 and ∆i = (yi − yi−1)/ε. Then, {∆i}n+1

i=1 must be non-negative integers and satisfy

∆1 + ∆2 + . . .∆n+1 =
1

ε
.

Hence, |Sε| is equal to the number of solutions of the above equation:

|Sε| =
(
n+ 1

ε

n

)
=

(n+ 1
ε )(n+ 1

ε − 1) · · · (n+ 1)

(1ε )(1ε − 1) · · · 1
≤ n

1
ε .

In the following, we show that the Rademacher complexity can be bounded using the metric entropy.
To simplify notation, we use ‖ · ‖ and 〈, 〉 to denote L2(Pn) norm and the induced inner product: 〈f, g〉 =
1
n

∑n
i=1 f(xi)g(xi). Then,

R̂adn(F) = E sup
f∈F
〈ξ, f〉.
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Proposition 3.2 (One-step discretization). Suppose supx∈X ,f∈F |f(x)| ≤ B. Then,

R̂adn(F) ≤ inf
ε

(
ε+B

√
2 logN (ε,F , L2(Pn))

n

)
.

Proof. Let Fε be an ε-cover of F with respect to the metric L2(Pn). For any f ∈ F , let π(f) ∈ Fε such
that ‖f − π(f)‖ ≤ ε. Then,

E sup
f∈F
〈ξ, f〉 = E sup

f∈F

[
〈ξ, f − π(f)〉+ 〈ξ, π(f)〉

]
≤ E sup

f∈F
〈ξ, f − π(f)〉+ E sup

f∈F
〈ξ, π(f)〉

≤ E ‖ξ‖‖f − π(f)‖+ E sup
f∈Fε
〈ξ, f〉

≤ ε
√

E ‖ξ‖22
n

+ R̂adn(Fε) (Jesson’s inequality)

≤ ε+B

√
2 log |Fε|

n
, (Massart’s lemma).

Using the definition of covering number and optimizing over ε, we complete the proof.

For the non-decreasing functions considered previously, we have

Radn(F) ≤ inf

(
ε+

√
2 log n

εn

)
= C

(
log n

n

)1/3

. (3.1)

This rate is slower than the expected 1/
√
n. Is it because non-decreasing functions are complex? No! It is

actually just an artifact caused by the proof technique.
In many cases, the one-step discretization may give us sub-optimal bounds of generalization gap. To

fix this problem, we need a sophisticated analysis of all the resolutions. This is typically done by using a
chaining approach introduced by Dudley.

Theorem 3.3 (Dudley’s integral inequality). Assume supf∈F ,x∈X ‖f − f ′‖L2(Pn) = D be the diameter of
F . Then,

R̂adn(F) ≤ 12

∫ D

0

√
logN (ε,F , L2(Pn))

n
dε.

Then, for the for non-decreasing functions, we have

Radn(F) .
∫ 2

0

√
log n

nε
dε .

√
log n

n
.

Figure 1 visualizes the difference between the upper bound given in Proposition 3.2 and the one in Theorem
3.3. Clearly, the latter is smaller.

Proof. Let D = supf,f ′∈F ‖f1 − f2‖ be the diameter of F . Let Fj be a εj-cover of F with εj = 2−jD be
the dyadic scale. Let fj ∈ Fj such that ‖fj − f‖ ≤ εj . Consider the decomposition

f = f − fm +
m∑
j=1

(fj − fj−1), (3.2)

where f0 = 0. Notice that
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Figure 1: (Left) The result of one-resolution analysis; (Right) The result of chaining.

• ‖f − fm‖ ≤ εm.

• ‖fj − fj−1‖ ≤ ‖fj − f‖+ ‖f − fj−1‖ ≤ εj + εj−1 ≤ 3εj .

Then,

R̂adn(F) = E sup
f∈F
〈ξ, f〉

= E sup
f∈F

〈ξ, f − fm〉+

m∑
j=1

〈ξ, fj − fj−1〉


≤ εm + E sup

f∈F

m∑
j=1

〈ξ, fj − fj−1〉

≤ εm +

m∑
j=1

E sup
f∈F
〈ξ, fj − fj−1〉

= εm +
m∑
j=1

E sup
fj∈Fj ,fj−1∈Fj−1

〈ξ, fj − fj−1〉

= εm +
m∑
j=1

R̂adn(Fj ∪ Fj−1).

Using the Massart lemma and the fact that supf∈Fj ,f ′∈Fj−1
‖fj − fj−1‖ ≤ 3εj ,

R̂adn(F) ≤ εm +

m∑
j=1

3εj

√
2 log(|Fj ||Fj−1|)

n

≤ εm +
m∑
j=1

6εj

√
log |Fj |
n

= εm +
m∑
j=1

12(εj − εj+1)

√
logN (εj ,F , L2(Pn))

n
.
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Taking m→∞, we obtain

R̂adn(F) ≤ 12

∫ D

0

√
logN (t,F , L2(Pn))

n
dt.

The key ingredient of proceeding analysis is the multi-resolution decomposition (3.2). The technical
reason why chaining provides a better estimate is as follows. In the one-resolution discretization, we apply
Massart’s lemma to functions whose range in [−1, 1], whereas in chaining, we apply Massart’s lemma to
functions whose range has size O(εj).

Remark 3.4. Metric entropy is actually a more intuitive complexity measure than Rademacher complexity.
The essence is discretization and applying Massart’s lemma. Moreover, metric entropy is sometimes more
convenient to estimate.
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