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1 Uniform bounds of generalization gap

Let H be the hypothesis class. Consider the estimator:
hy, = argmin R, (h).
heH
This estimator guarantees the smallness of the empirical risk. But the question is: How small is the true

~

error R(hy,,)? This is equivalent to control the generalization gap:
R(hn) — Ro(hn)- (1.1)

Unfortunately, concentration inequalities cannot be applied directly since hn depends on the training set. To
deal with this dependence, we can consider the uniform bound

IR(hn) = R (hn)| < sup [R(R) — R (h)]. (12)
heH

Obviously, when the hypothesis space H is sufficiently “small”, e.g., the extreme case: H = {h}, it is

expected that

. 1
sup IR(h) = Rau(h)| ~ Nk

Some natural questions go as follows.

e What kind of ‘H can guarantee the smallness of uniform bound?

e What is the rate? Do we still have O(1/+/n)?
Let us first look at a simple example: finite hypothesis class.
Lemma 1.1. Assume [H| < oo and sup,, ,, [((y,y')| < 1. Forany 6 € (0, 1), with probability 1 — § over
the random sampling of training set S, we have

sup [R(R) — Ro(h)] </ 222H/0)

heH n
Proof. Let Z(h, X) = ¢(h(X), h*(X)). Taking the union bound gives us

P{sum}zizm,xi) ~E[Z(h,X))| > t} < iﬂm{ :
=1

heH = U

n

Z Z(hj’Xi) - E[Z(hj’X)]
1=1

> t} (1.3)
72nt2 7nt2

<m2e 22 =2me 2 . (1.4)

2
Let the failure probability 2me 3 =4 , which leads to t = 2In(2m/9)

n



The upper bound only depends on || logarithmically. Hence, even when the hypothesis class has
exponentially many functions, the generalization gap can be still well controlled.

Definition 1.2 (Empirical process). Let F be a class of real-valued functions f : Q — R where (2, %, )
is a probability space. Let X ~ pand X, ..., X, be independent copies of X. Then, the random process

(X ) e defined by
1 n
= n;ﬂxi) ~Ef(X)

is called an empirical process indexed by F.

In our case, f(X) = £(h(X),h*(X)). Our task is to bound the suprema:

sup | Xy|.
feF

Note that the above quantity can viewed a “weak” distance between p and the empirical measure i, =
% >, 0(- — x;) with the test functions given by F:

dF(fin; 1) := sup [ Ep, f =B, f].
fer

2 Rademacher complexity

Lemma 2.1 (Symmetrization of empirical processes).

1 n
E sup Zf X) §2E§1€1§[n;&f(&

fer

where &1, . .., &y, are i.i.d. Rademacher random variable: P(§ = 1) =P(§ = —1) = 5

Proof. Let X! be an independent copy of X;. To simplify the notation, we use Ex, and E x to denote the
expectation w1th respect to { X;}I" | and {X/}" ,, respectively. Then,

n n

Esup[> S F(Xi) — B £(X)] = Ex, sup B[~ S (F(X) — F(XD)] @1
fer N fer L
<Ex, x ]S;elg[; > (F(X) = F(XD)] 2.2)

=1

Due to that f(X;) — f(X]) is symmetric, for any {¢;} € {£1}", we have
1 1
Ex, X! sup EZ X)) :EXi,XZ( ?ggﬁZgl[ﬂX@) — f(X7)]
i1 i=1
1 n
= EXi,X;,g SUP E Z &Gilf(Xi) — f(Xz/)]

< Ex,xielsup | Z@ X0) — fnt = > 6 f (X))
=1



1 n
=2Ex, ¢sup — & (X
gfe}‘n; if (Xi)

O]

Definition 2.2 (Rademacher complexity). The empirical Rademacher complexity of a function class F on
finite samples is defined as

— 1 <&
Rad,(F) = Eé[;ggﬁ ;fif(Xi)]-

The population Rademacher complexity is given by
Rad,,(F) = Es[Rad,(F)].

The symmetrization lemma 2.1 implies that

E sup
feF

% S F(X:) —E f(X)| < 2Rad,(F). 2.3)
=1

Theorem 2.3. Assume that 0 < f < B forall f € F. Forany § € (0, 1), with probability at least 1 — §
over the choice of the training set S = { X1, ..., X, }, we have

< 2Rad,(F) +B\/1°g§i/5>,
< 2Rad,(F) +3B\/k)g(§/5).

g (x1,...,2n) = sup llzf($i)—Ef(X)

feF |1 i=1

L3 F(X) ~EF(X)
=1

sup
fer

and the sample-dependent version:

sup
feFr

L3 (X ~ BA(X)
=1

Proof. Let

and note that

3 |

Sup g ('Ila sy Li—1, QG Tjp 15 - - - ,xn) - lgfg ('1:17 sy Li—1, Q, Tt 15 - - - 7‘Tn) <
e
By McDiarmid’s inequality,

n2
P{lg(X1,...,X,) —Eg| >t} <2 57 .

2
Let the failure probability 26_% = §, which leads to t =
Analogously, using again the McDiarmid’s inequality to g’ (z1,...,7,) = E¢supser [% S &S ()]
leads to the sample-dependent one. O

%@/6). This proves the first statement.



e Let F = {f}. Then,
Rady (F) = Bel - Y &f ()] = 0
=1

e Two functions. Let F = {f_1, f1} where f_; = —1and f; = 1.

vnRad,(F)=Es sup f— E=E: |— &Gl = Eg Z:\/>,
) 6fe{—1,+1} Vn ZZ; ¢| Jn ; | ZN(0,1) | Z] -

Hence, when n is sufficiently large,

Rad, (F) ~ /.

nm

Lemma 2.4 (Massart’s lemma). Assume that sup,cx ser |f| < B and F is finite. Then,

2log | F|

Rad,(F) < B\ —

Proof. Let Zy =" | & f(x;). Then,

\Z n )‘6 )\Q(B ( B))z A2nB2
g0 = [ misron < [T =
=1

Hence, Z is sub-Gaussian with the variance proxy 0% = \/nB. Using the maximal inequality, we have

2log | F|
_— 24
- 2.4

_ 1
Rad, (F) = —Eg[supi - VnBy/2log | F| =
feF

O

Applying Massart’s lemma to bound the generalization gap recovers Lemma 1.1.

Linear functions. Let 7 = {w”z : ||w||, < 1}. Let ¢ be the conjugate of p, i.e., 1/q + 1/p = 1. Then,

Rad,, E wl X, = E “Naxs | =B |- S axill,. @5
ad,(F) = E¢ sup Zéw ¢ sup w (ngﬁ ) glln;§ lg- (2.5

[wlp<1 ™ wllp<1

Lemma 2.5. Assume that ||x;||q < 1 for all z; € S. Then,

o Ifp =2, then
Rad,(F) < \/z
o [fp=1, then,
@n(}_) < 210512(2(1).



Proof. For the case where p = 2,

— 1 & 1 &
Rad,(F) < E¢ ||nzlﬁi$i||2 < | Ee ||n;§i$i|%
1= 1=

1 — 1 — 1
=z Y v ElGg] = 52%2 = \/;
=1

ij=1
The case of p = 1 leaves to homework. O

We have shown the Rademacher complexity of linear functions. To obtain the estimates of more general
classes, we need follow results.

Lemma 2.6 (Rademacher calculus). The Rademacher complexity has the following properties.
e Rad,,(A\F) = |\ Rad,(F).
e Rad, (F + fo) = Rad,,(F).

o Let Conv(F) denote the convex hull of F defined by
m m
Com(F) = {3 a;f;:0;20,3 a; =1, i, fm € Fome N, |,
j=1 j=1

Then, we have Rad,,(Conv(F)) = Rad,(F).

Proof. Here, we only prove the third result. By definition,

n

nﬁa\dn(Conv(f)):E sup Z&Zajfj(Xz‘)
fieFlleli=12 55

m

=E  sup Y a; > &fi(X)
=1

fieFllalh=13=

=E sup maXZ@fj(Xi)

fier 1o

?telg;ﬁ( ) = nRad,(F)

O]

Lemma 2.7 (Ledoux & Talagrand 2011, Contraction lemma). Lef ; : R — R with¢ = 1,...,n be
B-Lispchitz continuous. Then,

1 " _
— E¢ sup &wio flx;) < BRady(F).
R Besun €0 f(@) (F)



Proof. WLOG, assume 3 = 1. Let £ = (&1,...,&n) and Zi(f) = Zle &wio f(x;). Then,

" 1
Ee, sup » &pio f(x;) =
¢ fefi; (z:) =

SUP(Z 1(f) + ¢no f(zn)) + sup(Zn-1(f) — pn o f(mn))]

2| feF
=2 S0 (Z01()+ Zua () 0 S(on) = ' (0)
<5 50 (Zaa(9)+ Zualf) + 11 (on) = £
< % sup <Zn,1(f) + Zna(f) + (f(xy) — f’(mn))) (Use the symmetry)
,f'e
= % sup(Zn—1(f) + f(zn)) + sup(Zn-1(f) — f(ﬂfn))]
feF fer
= Egn sup(Zn_1(f) + fnf(xn))
feF

Hence, by induction, we have

E¢lsup Zu (/)] < Egsup(Zao1(f) + & f(@n))
JeF ferF

<E; sup(Zn—2(f) + &n-1f(@n-1) + & f(2n))

f€.7—"

< IE sup(&1f(x1) + -+ &nf(zn))

f eF
= nRad,,(F). (2.6)

Corollary 2.8. Given a function class F and ¢ : R — R, let po F = {po f: f € F}. Then,

Rad,(p o F) < Lip(¢) Rad,(F).

3 Covering number and metric entropy

, 1.e., the logarithm of cardinality, can be used
as a good complexity measure. Can we extend this observation to the case where |F| = oco. One possible
approach is discretization. This means that we choose a finite subset F. C F to “represent” F.

Definition 3.1. Consider a metric space (7', p).

e Wesay T, C T is a e-cover (also called e-net) of T, if for any ¢ € T, there exists a t' € T, such that
,O(t, t/) <e

e The covering number N (¢, T, p) is defined as the smallest cardinality of an e-cover of 7" with respect
to p. The metric entropy of T is defined by log N (¢, T, p).



In the above definition, the metric space (7', p) can be arbitrary. However, we will focus on the case of
(F, L%*(P,)), where F is the hypothesis class and L?(PP,,) is defined by

n

1f = flleze,) = %Z(f(xi) — f'(z3))%

i=1

Here, (z1,...,z,) denote the finite training samples. Since only the n samples are available, we can really
think of these functions as a n-dimensional vector:

f=(f@) faa),..., flaa)" €RT,

Obviously, we cannot distinguish functions using information beyond these n-dimensional vectors.

Example 1. Let F = {f : R — [0, 1] : fis non-decreasing}. Then, (¢, F, Ly(P,)) = n'/=.

Proof. WLOG, assume —00 = x9 < 21 < 29 < -+ < @, < g1 = 1. Forany y = (y1,%2,...,Yn) €
R"™, define a piecewise constant function

fy(x) =vy; forz € |z;,xiq1), i=1,2,...,n.

Forany e € (0,1),let Yz = (0,¢,2¢,3¢,...,1—¢). Then, |Yz| < 1/e. Define the following non-decreasing
set:
Se:={yeR" ry; €Yeandy; <y1 < <yn}.

Let F. = { f, : y € Sc} . Obviously, F. C F. Moreover, for any f € F, there exists y € .S. such that

n

1
1f— fyH%Q(Pn) = Z(f(xi) —yi)® <€
i=1
Hence, F. is a e-cover of F and |F.| = |S:|. What remains is to count the cardinality of |S.|. Let

Yo = 0,ynt1 = Land A; = (y; — yi—1)/e. Then, {A;}7F! must be non-negative integers and satisfy
1
A1+A2+...An+1 - g

Hence, |S;| is equal to the number of solutions of the above equation:

n 41 ntVNntl_1)...(n )
|SE|:(;:E>_(+E)(+E 1)---(n+1) 1

= < ne.

OE-n-1
O

In the following, we show that the Rademacher complexity can be bounded using the metric entropy.
To simplify notation, we use || - || and (,) to denote L*(P,,) norm and the induced inner product: (f,g) =
% Z?:l f(x;)g(z;). Then,

Rad,,(F) = Esup(€, f).
feF



Proposition 3.2 (One-step discretization). Suppose sup,cy rer |f(x)| < B. Then,

2log N (g, F, Lz(Pn))>

n

Rad,(F) < inf (5 + B\/
€

Proof. Let F. be an e-cover of F with respect to the metric L?(P,,). For any f € F, let 7(f) € F. such
that || f — 7(f)|| < . Then,

Esup(¢, f) = Esup [(€, f = 7(/)) + (& 7(/))]
fer fer
< Esup(, f — 7 (f)) + Esup(¢, 7 (f))

fer fer

<E[¢llf = n(f)l +E sup (¢, f)
feFe

E €113

n
2log | F¢|

<e + ﬁa\dn(}}) (Jesson’s inequality)

<e+ B , (Massart’s lemma).

Using the definition of covering number and optimizing over €, we complete the proof. O

For the non-decreasing functions considered previously, we have

. 2logn logn 1/3
Rad,(F) <inf [ e + =C : 3.1
en n

This rate is slower than the expected 1/y/n. Is it because non-decreasing functions are complex? No! It is
actually just an artifact caused by the proof technique.

In many cases, the one-step discretization may give us sub-optimal bounds of generalization gap. To
fix this problem, we need a sophisticated analysis of all the resolutions. This is typically done by using a
chaining approach introduced by Dudley.

Theorem 3.3 (Dudley’s integral inequality). Assume supscz ey |f — f'llz2@,) = D be the diameter of

F. Then,
_ D 2
Radn(]-“)§12/ \/logN(s,f,L Pn)) 4o
0

n
Then, for the for non-decreasing functions, we have

2
Rad,, (F) 5/ o8 g < Jlosn
0 ne n

Figure 1 visualizes the difference between the upper bound given in Proposition 3.2 and the one in Theorem
3.3. Clearly, the latter is smaller.

Proof. Let D = sup; yie 7 || fi — fal| be the diameter of F. Let F; be a ej-cover of F with &; = 277D be
the dyadic scale. Let f; € F; such that || f; — f|| < ¢;. Consider the decomposition

F=F=tm+ Y (fi—Fi-0), (3.2)
j=1

where fo = 0. Notice that



///

Figure 1: (Left) The result of one-resolution analysis; (Right) The result of chaining.

[ T

o |If = finll < &m.
o [Ifi = ficall <Wfs = FII+ I = fi-all <& +ej-1 < 365

Then,

Rad,,(F) = Esup(¢, f)
feF

- F -
;jlelg (& f— +]§1 £ fi— fi-1)
m E yJg T Jj—

< em+ }Sclelgjél@ fi— fi-1)

<em+ Y E fi— fie

<e +j_1 ?elg(i fi— fi=1)

=em+Y E  sup (& fj— fio1)

j=1 Jfi€Fjfi-1€Fj-1

=€&m + Zﬁin(ﬂ U fj_l).
j=1

Using the Massart lemma and the fact that sup ez, per, | [fj — fi-1l < 3ej.

21
Rad,( <am+23 \/ = ‘FHE 1))

/1
<€m+26 og|.7-"

1 j L3 (P,
—5m+212 —€]+1\/OgN(€]’}—’ ( ))

n




Taking m — oo, we obtain

D
Rad, (F) < 12/ \/logN(t’i’p(P")) at.
0

O

The key ingredient of proceeding analysis is the multi-resolution decomposition (3.2). The technical
reason why chaining provides a better estimate is as follows. In the one-resolution discretization, we apply
Massart’s lemma to functions whose range in [—1, 1], whereas in chaining, we apply Massart’s lemma to
functions whose range has size O(¢;).

Remark 3.4. Metric entropy is actually a more intuitive complexity measure than Rademacher complexity.
The essence is discretization and applying Massart’s lemma. Moreover, metric entropy is sometimes more
convenient to estimate.

10
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