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1 Feature-based methods

We start by considering the linear regression, for which the hypothesis class is
F={p"z:peR%,

where we omit the bias term for simplicity. The ridge regression penalizes the squared ¢5 norm of j:
1 n
Bn = argmin — > (8T — y:)” + AlIB|5-

perd M

The minimizer has a closed-form solution:

. 1 1

By = <XTX + I> ~ Xy,

n n
where X = (x1,...,7,)7 € R™9 ¢y = (y1,...,y,)T € R™. Another population one is LASSO, which
penalizes the /1 norm of parameters:
1 n
min — Y (87 z; — i)? + A1

in
peER® T

To consider nonlinear functions, we can consider the model:
m
fla;8) = Biwj(x).
j=1

Here, ¢1, ..., ¢, are a set of (nonlinear) basis functions, which are often referred to as features in machine
learning. Accordingly, the feature map is defined as ® : X — R™ with ®(z) = (p1(),...,pn(x))T €
R™. Typical examples includes

e Spectral methods: {¢;} are either Fourier basis or orthogonal polynomials.
e Splines: {¢;} are piecewise polynomials.
e Computer vision: Some hand-crafted features.

We can consider two types of feature-based methods.
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1.1 General feature-based methods
{5 extension. The previous idea can be extended to a general feature-based model:
f(@; B) = (B, ®(x))n, (1.1)

where

e 7 is the feature space, which can be any Hilbert space;

o & : X — H is the feature map;

e The “coefficients” are 5 € H.

If taking H = R™ and ®(x) = (¢(z1),...,0(xn))T € R™, we recover the classical ones. However,
the advantage of the formulation (1.1) is that it includes the case where m = co. Below is an example:

Random feature models (RFMs). Consider

8) = [ Blwlptasw) dn(w) = (8, ¢li ) 2(e), (12
where 7 is a fixed distribution. In this case, the feature map is given by
O X L(n),  B(x) = (i),

and the parameter is 3 € L?(7). The model (1.2) can be viewed as the continuum limit of the following

random feature model
1 m
= > Bipla;wy),
7=1

where wy, . . ., w;,, are independently sampled from 7 and fixed.
Now, the model (1.1) is well-defined. The objective function of the corresponding ridge regression can

be written as
n

Ra(B) = = S (8. () — ) + MBI (13

=1

How can we optimize (1.3), which is an infinitely dimensional problem?

1.2 /; extension.

Consider the random feature methods:
2

n m )\ m
£ Dl DL IEEn TS B SIEN]
j=1

i=1 \j=1

Assume for any x € X, esssup,, |¢(x; w)| < co. Then, the continuum limit of the above method is given

by
Bglln — </B o(zs;w) dr(w) yl> -i-/\/ﬂ )| drr(w

This method can not be analyzed using the kernel theory.



2 Representer theorem and kernel methods

When it is clear from the context, we will drop the subscripts in (, )y and || - || for simplicity. Let us
consider a general problem:

Ry ( ane (i3 8), yi) + Ar([1BID), 2.1)

o f(z;8) = (B, ®(x))
e /is a general loss function.
e 1 :[0,00) — [0, 00) is a strictly increasing function.
Theorem g.l (Representer theorem). Let B the a minimizer of (2.1). Then, there must exist ai,...,a, € R
such that 3 =" | a;®(z;) and
f(@;B) = (8, @(x)) = Y aik(w;, x), 2.2)

where k(z,z") .= (®(z), P(2)).
Proof. LetV,, = span{®(z1),...,®(z,)} C H. For any 8 € H, we can decompose it as follows
B =B+ B,

where ,BH eV,,BL € VnJ‘.

= [IB4II> + [|BL|*. Since r(-) is non-decreasing,

r(I181) = By )- (2.3)

On the other hand, for any z;,
f(ais B) = (B, ®(w:)) = (B, ®(ws)) + (BL, () = (B, ©(4)), (2.4)
where the last equality is due to 5| € VnL. Combining (2.3) and (2.4), we have for any 8 € H,
Ru(B) = Ra(6))-

Therefore, we can take 3 | = >oir1 a;®(z;). Then, the function represented can be written as

f(a; 8) = (B, ®( Zaz ), ®(x)) = ) aik(x;, )
i=1

O]

This theorem allows transforming the infinite-dimensional optimization problem (2.1) into a finite di-
mensional problem. Moreover, we only need to access the kernel k(-, -) without needing to evaluate the
feature maps.



The reduced model. Representer theorem implies that we only need to choose

8= Za]@(azj), flx; B) = Zajk(:z:j,a:).
=1 =1

Moreover,
n n n
18I = > a;j®(xy), > a;®(x;)) = > k(wi, x5)aia; = o Ka,
j=1 j=1 ij=1
where a = (ay,...,a,)T € R" and K = (k(x;,x;)) € R"*" is the kernel matrix.

The kernel ridge regression (KRR) corresponds to the case where £(y, ') = (y — y')? and r(t) = 2,
i.e., the problem (1.3). Then, the problem can be reduced to the following n-dimensional problem

- 1
Rala) =~ Ka— ylI3 + X’ Ka, (2.5)
whose solution is given by
1
a=(—K+1) Y.
n

In general, kernel methods refer to methods whose hypothesis class is given by

F = Zajk(:cj,-) ta€R"”
j=1

Mathematically, the kernel is defined as follows.

Definition 2.2 (kernel). k£ : X x X — R is said to be a kernel if there exists a feature map ¢ : X — H such
that
k(z,2') = (®(x), @(2")).

Below is a list of popular kernels.

Polynomial kernel: k(z, ') = (1 4 x72’)® is a kernel for any s € N
e Linear (s = 1). We have k(z,2) = (®(z), ®(2)) with
O(x) = (1,21,...,2q).

e Quadratic (s = 2): The feature map is given by

(I)(ZL‘) = (1’%7 s IE%, \/§$d$d—17 s \/il'dl‘l, \/§$d_1$d_2, SRR \/§$2$1, \/il‘d, SRR \/lea \ 1 , )

constant

quadratic cross terms linear terms

d
(®(x), ®(2)) = Z(ml)Q(ﬂc;)z +2 Z T 4 2 szx; +1

i=1 i#j
d
= (Z zixh)? + 2 Z i, + 1
=1 %
= (T2’ +1)? (2.6)



llz— wH

Gaussian kernel: k(x,2') = e~ . Considering d = 1, we have

2
k(z,2") —e T T M = ***7271'

z2
where ®(z) = e~ 2 (1, x, %xQ, e ﬁx”, ce)
Laplace kernel:
lle—a'|lo

k(z,2))=e " =

This kernel is less smooth than the Gaussian kernel. Recently, it has been shown that the Laplace kernel is
intimately related to neural network models in the kernel regime.

For a specific problem, choosing appropriate kernels is highly non-trivial. One may need to incorporate
the domain knowledge into the kernel design.

3 Reproducing kernel Hilbert spaces

In this section, we ask the question:
What kind of functions can be “efficiently” learned by kernel methods?

By representer theorem, consider
f - U,Zozl./_"n,

where
Fn = Zajk(-,a?j) cx; € X,a5 €R,j€n]

This intuition tells us that what kind of functions can be “approximated” by kernel methods. We are inter-
ested in functions f € F. However, the problem is how to take the closure and measure the complexity
of f € F? Without imposing constraints on the norm of coefficients {a;} in taking the closure, this space
can be extremely large. For example, if the corresponding features are polynomials, then F contains all
the continuous functions because of the Stone-Weierstrass theorem. However, C'(X) is too large since the
Rademacher complexity is O(1). We hope that the Rademacher complexity is on the order of O(1/y/n).

We need to define an “appropriate” norm for f € F.

Let us take a step back to the feature-based representation:

n

B=> a;®(x;),  f@:B) =) ajk(x;,-).
=1

=1

In KRR, we penalize ||3]|? of the hypothesis. This means that || 3||? should be a good norm of the represented
function f(x; ), i.e,

1£C B2 = 18I = Zaz ) Zaj @)= 3 mak(es ).

ij=1

This intuition can be made rigorous by the following theorem.



Theorem 3.1 (Moore-Aronsajn theorem). Let k : X x X + R be any kernel. Let H® = span({k(-,z) :
x € X'}) and endow it with the inner product:

:ZZ ik (i, 7)) (3.1

where f =3 aik(-,xi), 9 = 7L, Bik(:,2}). Then, HO is a valid pre-Hilbert space, i.e, the pointwise
closure Hy, = HO is a Hilbert space.

Proof. We show that (3.1) indeed defines a valid inner product. First,

(f;9)no = Zazg (i) = > Bif(a})
j=1

Itis implied that that the inner product is independent of the specific representation of f and g. The triangular
inequality is easy to verify. Next, we show that || f||0 = 0 if and only if f = 0. If there exist zy € X such
that f(zo) # 0. Assume f(z) = > ", ajk(x;, ) and consider

0 < IAf + f(zo)k(,20) 30 = NI flI50 + 2AF* (o) + F*(0)k (w0, z0).

Taking A — —oo, the RHS will be negative and this causes contradictory.
What remains is to show that the convergence of Cauchy sequence. We refer to Link for a complete
proof. O

Lemma 3.2. The Hilbert space defined in Theorem 3.1 satisfies the reproducing property:
Proof. For f € H°, we can write f(z) = Y. | ajk(-,x;). By definition,

For any f € Hy, let lim, o fn(x) = f(z). Then,

<f7k(7x>>’Hk = nlggo<fmk(7x)>7{k = lim fn(x) - f(iL')

n—0o0

The reproducing property is the most important property of this Hilbert space.

Definition 3.3 (RKHS). Let X be an arbitrary set and H a Hilbert space of real-valued functions on X'. We
say H is a reproducing kernel Hilbert space (RKHS) if there is a kernel £ : X x X +— R such that

o Vre X, k(-,x) € H.
e Reproducing property: Vx € X, f € H, (f, k(-,x))y = f(x)

Lemma 3.4. For a RKHS, the evaluation functional L,(f) = f(x) is continuous.


http://www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf

Proof. Forany x € X and f € H,

sup [Lo(f)] = sup [{f, k(- 2))n| < [[k( 2) ]2 < oo,
I ll2<1 1l

O]

This continuity of the evaluation functional is sometimes used as the equivalent definition of RKHS. An
important implication is that the convergence in norm implies the pointwise convergence. If lim,,_, || fr, —
fll% = 0, then

[fu(@) = f(2)] < | Lallll fo = flle = 0 asn — oo

Lemma 3.5. For a RKHS, the reproducing kernel k is unique.
Proof. For any two kernels k1, ko,
(fik1(, ) = k(s 2))n = fla) — f(2) =0,Ve € X,V f € H.
Taking f = ki(-, ) — ka(-, z), we have ||k (-, z) — ko(-,2)||3, = 0,Vz € X. Hence, k1 = ko. O
Theorem 3.6. For any kernel k, there is a unique RKHS, for which k is the reproducing kernel.

Proof. First, by Moore-Aronsajn theorem, there exists a RKHS with k being the reproducing kernel. As-
sume H; and Hy be two RKHSs with k being the reproducing kernel. First, by definition, k(-, x) € H; for
any z € X. Hence, HO C H;1. Moreover, H° is dense in 7{; since if there exists f €  such that f 1 #Y,
we must have

<f,k‘(,l‘)>7.[1 :f(l'):() Vo e X.
For f =3 70 ajk(-, ),

£ = O aik( i), Y agk(x))my = Y aiag(k( ), k(- 25)) 0,
i j=1

1,7=1

—~
.
=

S aiak(zi i) = | 30

ij=1

where (i) follows from the reproducing property. Hence, || f||#, = || fll3o for f € Ho. By the same
argument, the same results hold for Hy. For any f € H1, there must exits (f,,) C H° such that f(x) =
lim,, o0 fn(z). This implies that f € Ho. Similarly, H; and #5 contains the same functions. What remains
is to check that the two norms coincide, which results from

1l = T [ fullry = lim | fallso = tim [ fulls = 1l

O

Theorem 3.7. A Hilbert space of functions H C RY is a RKHS if and only if the evaluation functional is
continuous.



Proof. 1If L, is continuous, by Riesz representation theorem, there exist K, € H such that

Lo(f) = (Ka, f)n

Define the kernel:
k(z, x/) = <KxaKm’>H = Kac’(x> = Kx(ml)v
for which
(fi k(G x))u = (f, Kz) = f(x), VfeH.
This means k(-, -) is a reproducing kernel of #. O

4 A generalization analysis of kernel ridge regression

We first provide the upper bound of the Rademacher complexity.

Proposition 4.1. For any kernel k, let Hy; the corresponding RKHS. Let HkQ ={feHr:|flln <Q}

Then, we have
> i (i, i)
" .

Rad,,(H?) < Q

Proof.

nﬁa\dn(Hg) = Hf”sup Z& z;)] = E¢| Hf”sup Z& [, k(-, xi))n, | (reproducing property)
Hy, < My, S

=E¢ sup (f, Zfl Sx)) ] < QE¢|| Zgz i) |7,

Hfllnk i=1

= QE Z &&k(xs, x5) Z &i&ik(z, )] (Jensen inequality)

i,j=1 1,j=1

= Q.| > kl(wi, ) (E[&i&;] = 0,V # j).
=1

Given data {(x;, f*(x;))}! ;. consider the kernel ridge regression (KRR) estimator

o = argmin Ry (f) + Al f 134, - “.1)
JeMk
Theorem 4.2 (A priori estimate). Assume that ((-,y) is L-Lipschitz and bounded by B, and sup ¢ y k(z,z) <
1. Then, for any 6 € (0, 1), with probability 1 — § over the choice of training set, we have

LISl , g [los(1/3)

RUfn) S NPl + 2 .



Proof. (1) Let Q = || f*||#,. By the definition of f,,

Rl fu) + Ml fallr < Ru(F*) + A e, = Ml = AQ,

which yields R o

(2) Let Fo = {{(h(z),h"(x)) : h € ’HkQ} By the contraction lemma, we have
Ru(Fg) < LRA(HD).
Using the Rademacher complexity-based generalization bound, we have

log(d/2)

A~ A~

< LR, HQ B\| ———= log 4/5 B\| ——— Log( 1/5 (use sup k(z,z) < 1).
reX

3) R(fn) < Ra(fn) + [Ru(fn) = R(fn)| < AQ + (LQ + By/log(4/5))/v/n
O

The preceding estimate is a priori, since it depends on the norm of f* instead of that of fn Taking
A = O(1/4/n), we have that R(f,) = O(1/+/n), which does not suffer from the curse of dimensionality.
This means that the functions in the RKHS can be efficiently learned by the KRR.

e Similar results hold for any regularizations of the form r(|| f||4, ), where r : [0,00) — [0, 00) is
strictly increasing.

e Note that Theorem 4.2 holds as long as A > 0 and one can even take A — 0T, which may seem
strange at the first glance. This is due to that there is no label noise. In fact, the optimal A depends on
the level of noise as shown in the following theorem.

Consider the estimator

fo = argmin = S (T o f(z:) — o) + | s (42)
fere M4
where 7'(t) = min(max(¢, —1), 1). We make the following non-essential technical assumptions.
e sup, |f*(z)| < 1andsup, k(z,z) < 1.
o y;i = f*(z;) +&. {¢}; are i.i.d. random noises with |§;| < 0. Assume that o < 1.
Theorem 4.3. Under the preceding assumptions and taking \ = %, forany d € (0,1), we have

IIf*Hm + /log(2/0)

1= F117 e n

We refer to [E et al., 2019] for the proof.



Tightness. It is worth noting that preceding bounds are not tight for the square loss: £(y1, y2) = (y1—¥2)>.
When applying the contraction lemma, we use the worst-case Lipschitz norm Lip(#2/2) < 1 for t € [0, 1].
However, around the estimator, we should have ¢(x) = f () — f*(x) < 1. Therefore, we should use
the “local” Lipschitz norm to bound the Rademacher complexity. This will in turn gives rise to a fast rate.
Usually, the fast rate is close to O(1/n) and this approach is called “local Rademacher complexity”. Please
refer to [Bartlett et al., 2005] for more details.
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