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A two-layer neural network is given by

fm(x; θ) =
1

m

m∑
j=1

ajσ(wTj x+ cj) = aσ(Wx+ c),

where a, c ∈ Rm,W ∈ Rm×d and θ = {a,W, c} denote all the trainable parameters. See Figure 1 for a
visualization of this network.

Figure 1: An illustration of two-layer neural networks.

• σ : R 7→ R is the (nonlinear) activation function, e.g., σ(z) = max(0, z) (ReLU), σ(z) = tanh(z).
If z is a vector or matrix, σ(z) should be understood in an element-wise manner.

• m denotes the number of neurons, which is referred to as the network width.

• If only allowing training of {aj}with {bj , cj} fixed after the initialization, we obtain a random feature
model, where the random feature is ϕ(x; b, c) = σ(b · x + c).

Activation functions. A list of commonly-used activation functions is given in Table 1. Some remarks

Saturating Sigmoid 1
1+e−x

Tanh ex−e−x

ex+e−x

Non-saturating ReLU max(0, x)
Leaky ReLU max(ax, x), where a is a small value, e.g. 0.01

Parametric ReLU max(ax, x), with a learnable
Softplus ln(1 + ex)

GELU xΦ(x)
SiLU xσsigmoid(βx)

Table 1: Commonly used activation functions. Φ(·) is the CDF of N (0, 1).

goes as follows.
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• ReLU stands for rectified linear unit, which is the most popular activation function in computer vision.
But it lacks smoothness, which may be problematic in many applications.

• Softplus, Gaussian error linear unit (GELU), and sigmoid linear unit (SiLU) can be viewed as smoothed
versions of ReLU. Currently, ReLU and ReLU variants are the most popular ones.

• The non-monotonic GELU and SiLU become very popular very recently, in particular in the pre-
trained language models, such as BERT.

• For saturating activation functions, σ′(z) ≈ 0 when |z| is relatively large. This is bad for training.
ReLU partially solves this problem. But there is a dying ReLU issue. For ReLU-activated nets, if a
neuron is dead, it keeps dead for the whole training and cannot be re-activated anymore. Leaky ReLU
is proposed to solve this issue.
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Figure 2: Comparison of several activation functions.

The set of functions that can be represented by two-layer neural nets is given by

Fσ,d =
{
aσ(Wx+ b) : a ∈ Rm, c ∈ Rm,W ∈ Rm×d,m ∈ N

}
.

Next, we study the approximation power of two-layer neural nets.

1 Universal approximation properties

Definition 1.1 (UAP). Let X be a compact set. A function class F is said to be universal approximator if
F is dense in C(X ) with respect to the uniform metric. This is equivalent to say that for any f ∈ C(X ) and
ε > 0, there exists f ∈ F such that

sup
x∈X
|f(x)− h(x)| ≤ ε.

Theorem 1.2 ([Siegel and Xu, 2020]). Assume σ such that Fσ,1 is dense in C([0, 1]). Then, Fσ,d is dense
in C([0, 1]d).

Proof. First, we assume that σ ∈ C∞(R). Then, for any w ∈ Rd and b ∈ R,

∂

∂wi
σ(wTx+ b) = lim

ε→0

σ(wTx+ εeTi x+ b)− σ(wTx+ b)

ε
∈ Fσ,d
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for i = 1, . . . , d. Similarly, for any α = (α1, . . . , αd) ∈ Nd,

∂

∂wα
σ(wTx+ b) = xασ|α|(wTx+ b) ∈ Fσ,d.

Since Fσ,1 is dense in C([0, 1]), σ cannot be a polynomial. Hence, we can choose w = 0 and b ∈ R such
that σk(b) 6= 0 for any k ∈ N. Therefore, all the polynomials of the form xα1

1 · · ·x
αd
d are in F̄σ,d. This

implies that F̄σ,d contains all the polynomials. By Weierstrass-Stone theorem, F̄σ,d is dense in C(Ω).
For non-smooth σ, since Fσ,1 is dense in C([0, 1]), we can use a two-layer neural net to approximate a

smooth one. Then, the same results follow.

The preceding problem implies that we only need to consider the one-dimensional case, where explicit
constructive proof is always doable. The following lemma concerns the ReLU activation function.

Lemma 1.3. Assume σ(z) = max(0, z). For any Lipschitz continuous function f , there exits a two-layer
neural network fm(·; θ) such that

sup
x∈[0,1]

|fm(x; θ)− f(x)| . Lip(f)

m
.

Proof. Let h = 1
m and {xj = jh}mj=0 be the uniform grids in [0, 1]. Let t(x) = max(1 − |x|, 0) be the

triangular function. Then, the piecewise linear interpolator can be written as

f̃m(x) =
m∑
j=0

f(xi)t

(
x− xi
h

)
. (1.1)

Consider the approximation error in the interval [xj , xj + h]: for t ∈ [0, h],

|f(xj + t)− f̃(xj + t)| = |f(xj + t)− f(xj)−
f(xj + h)− f(xj)

h
t|

= |f ′(ξ1)t− f ′(ξ2)t| . Lip(f)h.

Hence,
sup
x∈[0,1]

|f̃m(x)− f(x)| = max
j∈[m−1]

sup
t∈[0,h]

|f(xj + t)− f̃(xj + t)| . Lip(f)h.

Notice that the triangular function can exactly represented with 3 ReLU neurons:

t(x) = σ(x+ 1) + σ(x− 1)− 2σ(x).

Plugging it into (1.1), it shows that f̃m can be represented with a two-layer neural net with 3m neurons.

Since the Lipschitz functions are dense in C([0, 1]), we thus prove the UAP for the ReLU activation
function. For other activation functions, we can use other constructive proofs. For a general proof, which
holds for all the sigmoidal function:

lim
z→−∞

σ(z) = 0, lim
z→∞

σ(z) = 1, (1.2)

we refer to [Cybenko, 1989].
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2 Approximation with rates

Note that UAP does not show any superiority of neural nets over the classical methods, such as polynomials,
spline, finite element methods, since all these methods also have UAP. To separate different methods, we
need to estimate the approximation rate. Let us review some classical results.

• Approximating functions in C(X ) does not have rate.

• Lemma 1.3 can be extended to d > 1, where the rate is O( 1
m1/d ). This means that to reach the

accuracy ε, the number of parameters needed is ε−d. For instance, taking ε = 0.1, d = 20, the
number of parameters needed is 1020. This issue is referred to as the curse of dimensionality (CoD).

• High-order smoothness. To obtain faster approximation rate, we need to consider smaller target
function space. The classical approach is to add more smoothness by assume the high-order differen-
tiability. Consider the Sobolev space defined by the Sobolev norm:

‖f‖Hs
d

=

∑
|α|≤s

|Dαf |2 dx

1/2

<∞.

For Hsd, it has been shown that the minimax approximation rate of any methods is O(m−s/d) (up to
some constants). This suffers from CoD unless s & d. In fact, when s > d/2, Hs

d is a RKHS. [LW: I
should add references for the approximation of the Sobolev spaces.]

• RKHS. We have seen that approximation rate of random features is O(1/m) for target functions in
the associated RKHS. This rate avoids CoD because of the expectation representation of the functions.

One of the core tasks of theoretical deep learning is:

Identify the appropriate function classes, for which neural nets can approximate without CoD.

2.1 Avoid CoD via Fourier transform

The following procedure as first developed in [Jones, 1992]. Let f̂ be the Fourier transform of f :

f̂(ω) =
1

(2π)d

∫
Rd

f(x)e−iω
T x dx.

The Fourier inversion theorem shows

f(x) =

∫
f̂(ω)eiωx dω. (2.1)

Naively thinking, we can think of (2.1) as a two-layer neural net with the activation function σ(z) = eiz .
Let f̂(ω) = |f̂(ω)|eib(ω) be the polar decomposition of f̂(ω). Then, we can rewrite (2.1) as follows

f(x) =

∫
|f̂(ω)|ei(b(ω)+ωT x) dω =

∫
|f̂(ω)| cos(b(ω) + ωTx) dω. (2.2)
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Assume Cf =
∫
|f̂(ω)| dω and let dπ(ω) = |f̂(ω)|

Cf
dω. Then,

f(x) = Cf Eω∼π[cos(ωTx+ b(ω))].

Thus, we represent the function as an expectation. Recall that the property of Monte-Carlo integration:

Ex∼ρ[h(x)]− 1

m

m∑
j=1

h(xj) ∼
Var(h)

m
,

where x1, . . . , xm are i.i.d. sampled from ρ. The following theorem shows that the similar result also hold
for function approximation.

Theorem 2.1. Let ρ be any probability distribution over Rd. Assume Cf =
∫
|f̂(ω)| dω < ∞, then there

exists a two-layer neural net fm(·; θ) such that

‖fm(·; θ)− f‖2L2(Px) .
C2
f

m
.

Proof. Let W = (ω1, . . . , ωm) with {ωj} being i.i.d. random variable sampled from π. Let

fm(x; θ̃) =
1

m

m∑
j=1

Cf cos(wTj x+ b(wj)) =:
1

m

m∑
j=1

Zj .

Moreover,
EW [Zj − f(x)] = 0

EW [(Zj − f(x))2] ≤ EW Z2
j ≤ C2

f .
(2.3)

Then, using the independence of Zj , we have

EW [‖fm(·; θ̃)− f‖2L2(Px)] = Ex EW |
1

m

m∑
j=1

(Zj − f(x))|2

= Ex
1

m2

m∑
j=1

E |Zj − f(x)|2 ≤
C2
f

m
,

where the last inequality follows from (2.3).

The preceding rate is a standard Monte-Carlo rate, which is independent of d. This explains the superi-
ority of neural networks for approximating functions with Cf = poly(d). Note that Cf may depend on d.
However, there are two issues.

• The cosine activation function is not often used in practice, though it is recently found effective in
solving some scientific computing problems [Sitzmann et al., 2020].

• The input domain is Rd. In practice, one often consider functions in a compact domain, e.g., the
image where the pixel value lies in [0, 1].

5



2.2 Barron’s trick

Andrew R. Barron developed some tricks in [Barron, 1993] to solve these issues. Let Ω be a compact domain
and define the dual norm

‖w‖Ω = sup
x∈Ω
|wTx|. (2.4)

Let ŵ = w/‖w‖Ω. In the following, the dependence of Ω will be omitted for simplicity, but we will
frequently use the property that |ŵTx| ≤ 1,∀x ∈ Ω.

Consider f ∈ C(Ω) and let fe be a L1(R) extension of f . Since, f(0) =
∫
f̂e(ω) dω, we can express f

as follows

f(x)− f(0) =

∫
(eiω

T x − 1)f̂e(ω) dω

=

∫
eiω

T x − 1

‖ω‖
‖ω‖f̂e(ω) dω

=

∫
cos(ωTx+ b(ω))− cos(b(ω))

‖ω‖
‖ω‖|f̂e(ω)|dω

=

∫
g(ω, x)‖ω‖|f̂e(ω)|dω, (2.5)

where

g(x,w) =
cos(ωTx+ b(ω))− cos(b(ω))

‖ω‖
.

Assume that
C(f) :=

∫
‖ω‖|f̂(ω)|dω <∞.

Then,
f(x)− f(0) = Cf Eω∼π[g(x, ω)]. (2.6)

Thus, we express f as an expectation. For a fixed ω, g(x, ω) only depends on ωTx. In other words, it
is essentially an one-dimensional function. What remains is to show that g(·, ω) can be approximated by
two-layer neural nets.

Theorem 2.2. Assume
Cf = inf

fe|Ω=f

∫
(1 + ‖ω‖)|f̂e(ω)| <∞,

where the infimum is taken over all the L1(R) extension of f . Consider the sigmoidal activation function
(1.2). Then, there exits a two-layer neural nets such that

‖fm(·; θ)− f‖2L2(ρ) .
C2
f

m
.

Proof. First, write g(x, ω) = h(ω̂Tx;w) with h(·;w) : [−1, 1] 7→ R given by

h(t;w) =
cos(‖w‖t+ b(w))− cos(b(w))

‖w‖
,
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for which supt∈[−1,1] max{|h(t;w)|, |h′(t;w)|} ≤ 1. Let H(t) = 1(t ≥ 1) be the Heaviside step function.
Then,

h(t;w) = h(−1) +

∫ t

−1
h′(s;w) ds

= h(−1) +

∫ 1

−1
h′(s;w)H(t− s;w) ds,

which means h can be represented by a two-layer neural nets activated by the step function. Plugging it into
(2.6) yields

f(x) = f(0) + C ′f Eω∼π[h(−1;ω)] + 2C ′f Eω∼π Es∼Unif[−1,1][h
′(s;ω)H(ω̂Tx− s)], (2.7)

whereC ′f =
∫
‖ω‖|f̂e(ω)|dω. Thus, we write f in an expectation form. Using the fact that max{h(−1;ω), h′(s;ω)} ≤

1 and |H(ŵTx− s)| ≤ 1. The approximation error is bounded by

app-err .
C ′2f + f2(0)

m
.

1

m

(
(

∫
|f̂e(ω)| dω)2 + (

∫
‖ω‖|f̂e(ω)| dω)2

)
.

1

m

(∫
(1 + ‖ω‖)|f̂e(ω)| dω

)2

.

Taking over all the L1(R) extension fe, we complete the proof.

3 An alternative Fourier analysis

3.1 Step functions

Notice that for c > t > 0,

eit − 1 = i

∫ t

0
eis ds = i

∫ c

0
eisH(t− s) ds.

Combining with the case of t < 0, we have

eit − 1 = i

∫ c

0
eisH(t− s) ds+ i

∫ −c
0

eisH(s− t) ds. (3.1)

Using this identity, we have

f(x)− f(0) =

∫
(eiω

T x − 1)f̂e(ω) dω

= i

∫
Rd

∫ ‖ω‖
0

eisH(ωTx− s) dsf̂e(ω) dω + I2

= i

∫
Rd

∫ 1

0
ei‖ω‖tH(ω̂Tx− t) dt‖ω‖f̂e(ω) dω + I2 (s = ‖ω‖t)

= i

∫
R

∫ 1

0
ei‖ω‖t+b(ω)H(ω̂Tx− t)‖ω‖|f̂e(ω)|dt dω + I2
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= −
∫
R

∫ 1

0
sin(‖ω‖t+ b(ω))H(ω̂Tx− t)‖ω‖|f̂e(ω)|dtdω︸ ︷︷ ︸

I1

+I2.

Note that I2 is similar to I1 and accounts for the case ωTx < 0. We omit I2 just for notation simplicity.
Hence, if

∫
‖ω‖|f̂e(ω)|dω < ∞, the f(x) can be written as an expectation, which is an infinite-wide

net.

3.2 ReLU activations

We can obtain similar Fourier-based characterization for the popular ReLU activation function. Notice that
∇̂f = iωf̂ leads to ∇f(0)Tx =

∫
Rd iω

Txf̂e(ω) dω. Thus,

f(x)−∇f(0)Tx− f(0) =

∫
Rd

(eiω
T x − iωTx− 1)f̂e(ω) dω. (3.2)

Similar to the case of step function, eiω
T x − iωTx− 1 can be written as an integral form of ReLU function.

The key technique is to use the identity:

eit − it− 1 =

∫ c

0
σ(t− s)eis ds+

∫ c

0
σ(−t− s)e−is ds. (3.3)

The two terms of the right hand side corresponds to t > 0 and t ≤ 0, respectively. Then,

f(x)−∇f(0)Tx− f(0) =

∫
Rd

(eiω
T x − iωTx− 1)f̂e(ω) dω

=

∫
Rd

∫ ‖ω‖
0

σ(ωTx− s)eis dsf̂e(ω) dω + I2

=

∫
Rd

∫ 1

0
σ(ω̂Tx− s)ei‖ω‖t dt‖ω‖2f̂e(ω) dω + I2

=

∫
Rd

∫ 1

0
cos(‖ω‖t+ b(ω))σ(ω̂Tx− t)‖ω‖2|f̂(ω)|dtdω︸ ︷︷ ︸

I1

+I2, (3.4)

where the I2 is similar to I1, accounting for the case ωTx ≤ 0. The explicit form of I2 is omitted for
notation simplicity. Hence, if

∫
‖ω‖2|f̂(ω)|dω < ∞, (3.4) can be written as an expectation. Thus, Monte-

Carlo discretization yields a similar rate.

3.3 general activation functions

The proceeding idea can be extended to the general ReLUk activation function:

ReLUk(z) = max(0, zk).

Definition 3.1 (Spectral Barron norm). For any f ∈ C(Ω), define

‖f‖Fs := inf
fe|Ω=f

∫
(1 + ‖ω‖)k|f̂e(ω)|dω,

where the infimum is taken over all the L1(Rd) extension.
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Theorem 3.2. If ‖f‖Fk+1
<∞, then there exits a two-layer neural net fm activated by ReLUk such that

‖fm − f‖2L2(ρ) .
‖f‖2Fk+1

m
.

For Fourier-based analysis of two-layer nets for more general activation functions, we refer to [Siegel and Xu, 2020].
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