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A deep fully-connected neural net is given by

z0 = x

zl+1 = σ(W l+1zl + bl), l = 0, 1, . . . , L− 1

fL(x; θ) = zL,

where W l ∈ Rml×ml−1 , bl ∈ Rml . Here, L denotes the depth and mj denotes the width of j-th layer.
A deep residual network (ResNet) is given by

z0 = V x+ b

zl+1 = zl + F (zl; θl)

fL(x; θ) = aT zL,

where V ∈ RD×d, b ∈ RD, a ∈ RD and F (·; θl) : RD 7→ RD is a small neural net. θ denotes all the
learnable parameters.

For these two deep nets, we ask the following questions?

• What is the continuum limit?

• What is the appropriate complexity measures? In other words, can we define associate function norm
‖ · ‖ induced by these networks such that the approximation can avoid the CoD?

• Can we show the benefits of depths, i.e., deep nets perform better than shallow nets in some sense.

1 Continuum limits and function norms

Following the Barron space theory, we first need to identify the appropriate continuum limits, which should
be in certain “expectation” form such that the approximation (“discretization”) is free of CoD. Accordingly,
then function norms are defined by the certain “second-order moment” of the corresponding “representa-
tions” (certain prob. distributions).

1.1 Fully-connected neural networks

For this case, we are interested in the limit: L fixed and m → ∞. Here, we only consider the case of L =
3. For general cases, we refer to [Pham and Nguyen, 2021, Nguyen and Pham, 2020, Araújo et al., 2019,
Sirignano and Spiliopoulos, 2021, Wojtowytsch et al., 2020]. It is worth mentioning that all these works
have their limitations, and how to define the appropriate function spaces for multilayer fully-connected
networks is still an open problem.
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Consider the scaled three-layer network:

fm(x; θ) =
1

m

m∑
i=1

aiσ

 1

m

m∑
j=1

bi,jσ(w
T
j x)

 . (1.1)

What is the limit of fm(·; θ) as m→∞? Let us take a look at the two-layer case,

fm(x; θ) =
1

m

m∑
j=1

ajσ(w
T
j x)→

∫
aσ(wTx) dρ(a,w).

Here, we can think of (a1, w1), · · · , (am, wm) asm independent input-output paths. Hence, a natural choice
is to consider parameterization with the distribution over the path space (a,w).

For the three-layer network (1.1), one may want to parameterize the network with a probability dis-
tribution over the path space: (a, b, w) ∈ R1×1×d. Unfortunately, this is impossible since the paths
{(ai, bi,j , wj)}i,j are not independent.

Path-based representations One can think the intermediate layer weight b as a function of a and w, i.e.,
bi,j = b(ai, wj). Notice that {ai, wj} are independent drawn from πa ⊗ πw ∈ P(R ⊗ Rd). Then, the limit
becomes

f(x;πa, πw, b) = Ea∼πa
[
aσ
(
Ew∼πw [b(a,w)σ(wTx)]

)]
. (1.2)

The function norm can be defined as

‖f‖F := inf
f=f(·;πa,πw,b)

Ea∼πa,w∼πw [a|b(a,w)|‖w‖].

Notice that this formulation excludes the case that b(a,w) can be different for the same a and w.

Index particle-based representations Let us take a further look at the path (ai, bi,j , wj). Essentially, only
the index i and j are independent. We can think of that (i, j) are drawn from certain index space I ⊗ J . let
πI ⊗ πJ ∈ P(I ⊗ J). Then, the limit becomes

f(x; a, b, w) = Es∼πI [asσ
(
Et∼πJ [bs,tσ(w

T
t x)]

)
], (1.3)

where a ∈ L2(πI), b ∈ L2(πI ⊗ πJ), w ∈ L2(πJ). In this formulation, the index space I and J can be
arbitrary. In particular, (1.2) can be viewed as a special index particle-based representation, where I = R
and J = Rd. This general index particle-based representations allow us to define the continuum limits of
multilayer fully-connected networks [Wojtowytsch et al., 2020].

1.2 Deep ResNets

Let the residual block F (·; θl) be parameterized by a scaled two-layer neural net:

F (z; θl) =
1

m

m∑
j=1

aljσ(b
l
j · z),
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where aj ∈ RD, bj ∈ RD. Then, the update of hidden state becomes

zl+1 = zl +
1

m

m∑
j=1

aljσ(b
l
j · zl).

Taking m→∞, we obtain
zl+1 = zl + E(a,b)∼ρl [aσ(b · z

l)].

To take L→∞, we need to introduce another explicit scaling factor:

zl+1 = zl +
1

L
E(a,b)∼ρl [aσ(b · z

l)] (1.4)

⇒ zl+1 − zl

L−1
= E(a,b)∼ρl [aσ(b · z

l). (1.5)

which can be viewed as a Forward Euler discretization of the following ODE:

dz(x; t)

dt
= E(a,b)∼ρt [aσ(b

T z(x; t))].

In a summary, the continuum net is

z(x; 0) = V x+ b

dz(x; t)

dt
= E(a,b)∼ρt [aσ(b

T z(x; t))]

f(x; {ρt}) = aT z(x; t),

(1.6)

where we omit the dependence of a, b, V for simplicity. Now, the primary parameters becomes a sequence
of probability measure {ρt}t∈[0,1].

For more details about how to define the function norms, please refer to [E et al., 2019].

2 Depth separation

In “deep” learning, it is observed that deep nets often perform much better than shallow nets. There exist
many reasons behind this benefit of depth. However, we will focus on understanding this issue from the
perspective of approximation power. In addition, in this section the activation function is ReLU.

In the following analysis, we once again will heavily use the (shift) triangular function. Let g(x) =
t(2x− 1) be the shift triangular function and

gl(x) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
l

(x).

An illustration of g (i.e, g1) and gl is provided in Figure 1. Obviously, gl has 2l+1 linear pieces.

Remark 2.1. Note that one challenge in examining the function composition is the change of input domains.
However, the shift triangular function satisfies that g : [0, 1] 7→ [0, 1], which dramatically simplifies the
analysis of function composition.
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Figure 1: Illustration of the shift triangular function and the triangular wave.

2.1 One-dimensional results

2.1.1 Approximating oscillated functions

Theorem 2.2 ([Telgarsky, 2016]). Consider the target function f∗ = gl. Then, gl can be implemented
as a c1l-layer neural nets with the width less than c2. For any 2-layer ReLU net fm(·; θ) with the width
m = poly(l), we have ∫ 1

0
|fm(x; θ)− gl(x)|dx ≥ c3.

Here c1, c2, c3 are absolute constants.

Proof. First, g(x) = ReLU(2x) + ReLU(2x− 2)− 2ReLU(2x− 1), i.e., g can be exactly represented as
three neurons. Hence, gl can be represented as 2l-layer neural net with the width less than or equal to 3.

For a two-layer neural network of width m, let M denote its number of linear pieces. Obviously,
M ∼ m. The proof of the lower bound proceeds by counting triangles as illustrated in Figure 2. Draw the
horizontal line y = 1/2. Then, there are 2l+1 (half) triangles.∫ 1

0
|fm(x; θ)− gl(x)|dx ≥ [number of surviving triangles] · [area of the triangle]

≥ (2l+1 − 2M) · (1
2
· 1

2l+1
· 1
2
)

≥ 1

4
− M

2l+2
≥ 1

8
. (2.1)

2.1.2 Approximating smooth functions

We first study the approximation of f(x) = x2, which will be used later for approximating general smooth
functions. We first need the following lemma.

Lemma 2.3. Let SM := (xk)
M
k=0 be the set of uniform grid points in [0, 1] with grid size h = 1/M . For any

function f , let PMf be the piecewise linear interpolation of f with the uniform grid points SM :

PMf(x) =

M∑
k=1

f(xk)t

(
x− xk
h

)
, (2.2)
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Figure 2: Illustration for the proof of Theorem 2.2

where, t(·) is the triangular function. Then,

sup
x∈[0,1]

|PMf(x)− f∗(x)| .
supx∈[0,1] |f ′′(x)|

m2

Proposition 2.4. For any ε > 0, there exits a neural net f̃ , whose depth and width isO(log(1/ε)) andO(1),
respectively, such that

sup
x∈[0,1]

|f̃(x)− x2| ≤ ε.

Proof. We can show that l = 2, 3, . . . ,

P2l−1f∗(x)− P2lf
∗(x) =

gl(x)

22l
, ∀x ∈ [0, 1]. (2.3)

Construct a neural net as follows

y0 = x

yl = g(yl−1)

f̃(x) =

L∑
l=1

yl
2l
.

Note that g can be implemented using 3 neurons. The last step introduces skip connections from each layer
to the output layer. So, the depth and width of this net is O(L) and O(1), respectively. By Lemma 2.3,

sup
x∈[0,1]

|f̃ − f(x)| = sup
x∈[0,1]

|P2Lf(x)− f(x)| .
1

4L
.

Taking 1/(4L) = ε, we complete the proof.

Lemma 2.5. Let Gm denote the set of piecewise linear functions with the number of linear pieces less than
or equal to m. Then, for any g ∈ Gm, we have

sup
x∈[0,1]

|g(x)− x2| & 1

m2
.
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Proof. First any interval [a, b] ⊂ [0, 1], we have

Ia,b := min
c,d∈R

max
t∈[a,b]

|cx+ d− x2| = min
c,d∈R

max
t∈[0,b−a]

|(x+ c)2 + d|

= min
c,d

max{(b− a+ c)2 + d, c2 + d, d}.

If c2 + d & (b− a)2 or d & (b− a)2. Then, Ia,b & (b− a)2. Otherwise, we must have c = o(|b− a|), d =
o(|b− a|2). This results in the first term satisfies (b− a+ c)2 + d & (|b− a|2). Combining them, we have
Ib,a & (b− a)2.

Since g ∈ Gm, the number of piecewise linear parts of g is at most m. Hence, for any g ∈ G, there must
exist a domain [a, b] such that (1) there exist c, d such that g(x) = cx+ d for x ∈ [a, b]; (2) |b− a| & 1/m.
Then,

sup
x∈[0,1]

|g(x)− x2| ≥ sup
x∈[a,b]

|cx+ d− x2| & |b− a|2 & 1

m2
.

Remark 2.6. For any fixed depth L ≥ 1 and width m ≥ 1, L-layer ReLU networks can only represent still
piecewise linear functions. Moreover, the number of linear pieces is not greater than (m/L)L (The case
L = 1, 2 is trivial. The proof of the general L > 0 can be found in Section 6 of [Telgarsky’s note] ). Hence,
for a target accuracy ε, the width needs to satisfies 1

(m/L)2L
≤ ε, which yields m ≥ Lε−1/(2L). Hence,

Total parameters & m2L & L3ε−1/L = poly(1/ε).

Comparison of Proposition 2.4 and Lemma 2.5 provides a interesting separation result for this specific
target function. Specifically, for a given target accuracy ε, deep ReLU network only need O(log(1/ε))
parameters, while shallow ReLU network needs at least O(poly(1/ε)) parameters.

Why is approximating x2 interesting? From the approximation of f(x) = x2, we can get many other
results.

• Fast approximation of the multiplication (x, y) 7→ xy using

xy =
(x+ y)2 − x2 − y2

2
.

• Fast approximation of any monomials: xk.

• Fast approximation of polynomials: a0 + a1x+ · · ·+ akx
k.

• Fast approximation of functions that can be efficiently approximated by polynomials, e.g., Sobolev
space.

Theorem 2.7 ([Yarotsky, 2017]). Assume that f ∈ Cr([0, 1]d) and max|α|≤r ess supx∈[0,1] |Dαf(x)| ≤ 1.
Then, there exists a neural net f̃ of depth at most C(log(1/ε)+ 1) and width at most Cε−d/r(log(1/ε)+ 1)
such that

sup
x∈[0,1]d

|f̃(x)− f(x)| ≤ ε.

Here, the constant C depends on d, r.
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Remark 2.8. The preceding result only separate deep and shallow nets for the non-smooth ReLU activation
function. If considering smooth activation function, such as, Tanh, we may do not have this separation. In
fact, [Maiorov and Meir, 2000, Mhaskar, 1996] shows that for the Tanh activation function, depth-3 nets can
achieve the same approximation rate as Theorem 2.7 (up to logarithmic terms). Can we achieve the same
rate for two-layer nets with some smooth activation functions?

2.2 High-dimensional results

The preceding separation results only apply to the one-dimensional case, since the extension to the high
one-dimensional case always suffer from CoD for both shallow and deep nets. [Eldan and Shamir, 2016]
provides some examples working for the high-dimensional setting.

Theorem 2.9. Suppose |σ(x)| . (1+ |x|α) for all x ∈ R and some constants α > 0. Then, for d & 1, there
exists µ ∈ P(Rd) and a radial function g(x) = g0(‖x‖) such that

• g0(‖x‖) can be approximated with 3-layer neural network with poly(1/ε, d) parameters.

• For any two-layer net of width at most exp(d),∫
|g0(‖x‖)− f(x)|2 dµ(x) & 1.

Remark.

• The proof is rather intricate, which heavily utilizes the property of Fourier transform of two-layer
neural nets. Moreover, this result is also unsatisfying in the sense that µ is not explicit.

• [Daniely, 2017] provides a more explicit construction: f : Sd−1 ⊗ Sd−1 7→ R,

f(x, x′) = sin(d3〈x, x′〉),

and the error is measure with respect to µ = Unif(Sd−1⊗Sd−1). However, this result needs to restrict
the parameter magnitudes of two-layer net is not larger than 2d.
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