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Residual networks

® Consider the scaled residual network (ResNet):

zo(x) =Va
11

zit1(x) = z1(x) + ——Uic(Wizi(x)), 1=0,...

Lm
fr(x;0) = aTzL(a:)

where = (27, 1)T € R W, € R™*P U, € RP*™ o € RP and

V= (Id()*l) € RDX(d+1),

We use 0 = {W,Uy,..., W, UL, a} to denote all the parameters to be learned.

® We assume that o(t) = max(0,t) and z € X := [0, 1]%.



The continuum limit

® Taking m — oo, the update of hidden state becomes

zi41(x) = z)(x) + %E(u,'w)wpl [uo(w? z/(x))]. (2)

® The above iteration can be viewed as the forward Euler disretization of the ODE:

dz(x,t)
dt

= E(u,w)mp: [uo(w? z(z,1))]. (3)

The scaling factor 1/L corresponds to the step size of disretization.

® In this continuous level, the parameters are {a, (p:)}.
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The compositional law of large numbers

Theorem 1 (LNN-type approximation)

Let (pt)iefo,1) be a sequence of probability distributions on R” x RP with the property that
there exist constants ¢; and co such that

Ep. [[lullw”[|F < e

|E, [uc(w?2)] - E,, [ua(sz)H < eolt — sl|z], Vs, t €[0,1]. (4)
Let z be the solution of the following ODE,
z(x,0) = Ve,

Ez(:l:,t) = E(u,w)pe [0 (w” z(z, 1)))]. (5)

Then, for any fixed x € X, we have

zr(x) = 2z(x,1)

in probability as L — +oc0. Moreover, the convergence is uniform in x
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The compositional law of large numbers

Remarks:

® The moment boundedness of (p;) is required to ensure the convergence of Monte-Carlo
discretization.

® The continuity wrt t of (p;) is required to ensure the convergence of the forward Euler
discretization.

® In this theorem, we view the ResNet (1) as a forward Euler discretization of ODE (5) with
a stochastic approximation of the expectation in RHS. As a result, the width m can be
fixed.

® This approximation does not provide any rate. The CLT-type approximation require
stronger regularity.
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Intuition of stochastic approximation

Consider the case of m = 1. Let L = L’M with L', M > 1, and dt = %At = % < 1. Let
t =1dt and 2(x;t) = z(x).

. 1
Z(wst + At) = zipp—1(z) + Zul+MU(wl7j§—Ma(zl+M—l(x))

J=l+M

=zi(z) + ¢ > ujo(w] o(zi(x)))
j=1+1
M1 M
= z(@t) + 797 > wio(w]o(z(x)  (wj,w;) ~pena- (6)
j=1+1
Note that (j — I)dt < At < 1, p; and z(z;t) are Lipschitz continuous in ¢. Therefore,

s
M > ujo(w]o(zj(@))) = Euuw)mp, [uo(w” 2(x;t))] + o(At).
=41

Hence, the ResNet can be viewed as a coarse discretization of the ODE:
2(x;t + At) = 2(x;t) + At By ), [ua('wT,é(:c; t))], (M)
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Flow-induced functions

Motivated by previous results, consider the set of functions f ,,) defined by:

z(x,0) = Ve,
dz(x,t)
(dt = E(w,w)~p: uo(w’ z(x, 1))
fa,(pf,)(w) = aTz(a:, 1), (8)

Let e be the all-one vector. Define the following linear ODE:

N,(0) = e,

Ny () = 3 (B (ful[w|")) 77 Ny (1) (9)
where |v| and |v|? are defined element-wise for any vector or matrix v.

We will use this linear ODE to control the complexity of the original nonlinear ODE (8).

The factor 3 is only required for the control of Rademacher complexity. For controlling the
approximation error, we can replace 3 by 1. But for simplicity, we use 3 for both scenarios.
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Flow-induced function spaces

e Let ||(pt)||Lip be the smallest constant C' such that for any ¢, s € [0,1], we have
B, Us(W2) — B, Us(Wz)| < Clt - sz,
1B, [U1IW I,y IE,, [0l | < O — sl (10)

where || - ||1,1 is the sum of the absolute values of all the entries in a matrix.

Definition 2
Let f be a function that satisfies f = f (,,) for a pair of {c, (p;)}. We define

= inf |a|TN,(1
I£lo, = ,_inf | Ny(1)

“Ja,(pt

I, = ,_inf : || TNp(1) + [Np (Dl = D + [ (pe) i,

—Ja,(pt

The space D, and D, are defined as the set all continuous functions that admit the ODE
representation with finite D, and D, norm, respectively.
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Flow-induced function spaces

® D, norm does no control the regularity of representation (p;), while ’DP does.

® We add a "~ D" term in the definition of D,, norm because || N,(1)||; > D and we want
the norm of the zero function to be 0.

® We use the terminology “norm"” loosely, and we do not care whether these are really
norms. Strictly speaking, they are just some quantities that can be used to bound
approximation /estimation errors.
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The embedding result

Proposition 1

Assume that D > d + 2 and m > 1. For any function f € B, we have f € Dy, and
I£ll5, <20Fls+1.
Moreover, f = fa.(p,) with py = p for any t € [0, 1].

Proof:
® Since f € B, there exit a distribution p such that
f(x) = E(a,b,C)Np[aa(bTa: + )]
1£1l8 = E(ap.op~pllal(1B] + [e])]-
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The embedding result

Proof:
® |t is easy to verify that f can be represented by an ODE as follows

T
z2(x,0)=| 1
0
d 0
£Z($,t) = ]E(a,b,c)Np 0 U([bT,C, O]Z(mvt)) (11)
a

flx) = edyp2(x, 1),

where eg. 2 = (0,0,...,0,1)T € R¥+2,

® It is obviously that p; = p for some 5 and any ¢ € [0, 1]. Hence,
calculation gives us that

[(p)|liip = 0. An explicit

la["Ni(1) + Ni(1) = D = 2||f||s + 1.

* Using the definitions of D; norm, we complete the proof.
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Weighted path norms for ResNets

When L is finite, the complexity is controlled by the quantity defined below.
® Given a ResNet f1(;60) define the weighted path norm as

3 3
-—_ T —_— e —_—
0lp = | (I+ [m|UL||WL|) <I+ [m|01||Wl|> €. (12)

It is a discrete analog of the Dy norm.

® This weighted path norm is a weighted sum over all paths from the input to the output,
and gives larger weight to the paths that go through more nonlinearities. Given a path P,
let w uf’, ..., wl ul be the weights, and a(P) be number of nonlinearities that P goes

through. Then
a(P) L

S SN E ) (e (13)

P :all paths =1
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Direct approximation

Theorem 3
Let f € Dy, 6 € (0,1). Then, there exists an absolute constant C, such that for any

>l

L2 C (m*DoIf 15, (If 15, + D))",
there is an L-layer residual network f1 (-; ©) that satisfies

2
17112,
[1-6"

If = fL(50))1% <

and
[©ll> <9 fll5,-

13/24



Inverse approximation

Theorem 4

Let f be a function defined on X . Assume that there is a sequence of residual networks
{fr(;0L)}32, such that fr(x;0) — f(x) for every x € X as L — co. Assume further that
the parameters in {fr,(-;0)}92, are (entry-wise) bounded by co. Then, we have f € D, and

Qem(cg+l)DQCO

m

Ifllp. <

Moreover, if for some constant ¢y,

frllp, < c1 holds for all L > 0, then we have

[fllDy < e
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Rademacher complexity

Let DS = {f €D, : I fll5, <@}, then we have

2log(2d)

Rad,(D§) < Q

n

The proof of the above theorem is a simple combination of the direct approximation theorem
with the following proposition.

Proposition 2

Let FQ = {f1(0) : ||0llp < Q} where f1(-;0) is the L-layer ResNet. We have

21og(2d)
n

Rad,,(F?) < 3Q
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Rademacher complexity

Proof: By the direct approximation theorem, for any € € (0,1) and f € DY, there exist a L
(sufficiently large), a constant ¢ > 0, and 0 such that

fZIf —fu@on)E < |6f]p < Q.
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Rademacher complexity

Proof: By the direct approximation theorem, for any € € (0,1) and f € DY, there exist a L
(sufficiently large), a constant ¢ > 0, and 64 such that

fZIf —fu@on)E < |6f]p < Q.

Therefore,

feDQ =1
< fIEE sup <Z£’ — fr(zs0 +Z§sz (z:;0 ))]
fED i=1 i=1

1
< -E 7 29
. 5[ sup foLfU

fr(- O)EJ:EQ i=1

2log(2d
og( )Jr5
n

< Rad, (F59) + ¢ < 3cQ (14)

Where the last inequality follows from Prop. 2. Taking € — 0, we complete the proof.
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* Proof of the upper bound for the Rademacher
complexity of ResNets.
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Define the intermediate quantities

* let g)(z) = o(W;z1_1), and g; be the i-th element of g;. Then, we have the following
recurrence relation:

gi = oW (WUI_1g1-1 +YUi_agi—o + - + U191 + 20),

where Wli’: is the i-th row of W, v = ﬁ is the scaling factor, and zy = V.

® g!is I-layer ResNet. We define its weighted path norm by

lgillp = 3|W, 7 |(I + 39 |Ui—1 [[Wi—a) - - (1 + 3y|UL || Wi )|V e, (15)
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Recurrence relation of path norms

With an abuse of notation, let || f||» and ||g}||» denote the path norm of the parameters. We
have

L m
1lle =3 D0 (I 10371) Igfllp + e "V e

=1 j=1
lobaalle = 3737 (WELI071) gkl + 81,1V,
k=1 j=1

where U; is the j-th column of Uj.
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Recurrence relation of path norms

With an abuse of notation, let || f||» and ||g}||» denote the path norm of the parameters. We
have

L m
1lle =3 D0 (I 10371) Igfllp + e "V e

=1 j=1
lobaalle = 3737 (WELI071) gkl + 81,1V,
=1j=1

where U; is the j-th column of Uj.
Proof: Recall the definition of || fL||p, we have

IfellP = |01|T(IﬂL 3VULIIWL]) - - - (I + 3v[Ur|[[Wh])|V]e
-1
—Z|a| U] - 3yIWi| [T + 39|05 [[Wi s DIV + e TV e
=1 7j=1

L m
=23 (1" w1) gl + el Ve,
=1 j=1

The proof for the recurrence relation of g; is similar.

19 /24



Recursion of hypothesis space

Lemma 6

Let G = {g} : |gillp» < Q}, then
(1) 62 CGP fork <1;

(2) G/ €G? and G = §G;? forq < Q.
Proof:
° Q,? C ng and G/ C ng are obvious.

® For any g; € G/, define g, by replacing the output parameters w by 2w, then we have
Ig:ll> = Zllgell» < Q. and hence g € G;°.

Therefore, we have %gf C g@. Similarly we
can obtain

gQ C G7. Consequently, we have G/ = le .
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Proof of Prop. 2

® To prove Prop. 2, we only need to prove that for any [ =0,1,...,L
2log(2d
Rad, (0%) < @y 21824 (16)
n

This will be done by induction.

® When I =1, gi(x) = o(W/"Vx). By the contraction lemma and the bound of
Rademacher complexity of linear class, (16) holds.

® Now assume that the result holds for 1,2,...,1. For [ + 1, we have

nR/‘;‘En(gﬁl) = EE sup Zgzgl-l-l wz

0l+1€gl+1 i=1

= E; SHPZ Gio(wl (VUIg1 + YUi_agi—1 + -+ +YU1g1 + 20))
1) =1

n
< Ee SUpii(wﬁﬂ(WUlQZ +4U;—191-1+ -+ + U191 + 20)), (contraction lemma)
M) =1

I m
where the condition (1) is Y > 3y (|wl+1\T
k=1j=1

) gt + 3w *|V]e < Q
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Proof of Prop. 2

® letap =7, (|wl+1|T|U,;’j|> lgll» and b = |w; 1|7 |V ]e. Then, the constraint
becomes l
3 ar+3b<Q. (17)
k=1
® Therefore, we have

(4)
nRad (QZH) < E¢ sup Zak sup Zfl x;)|+b sup Z«Ezoﬂwz
(2) k=1 g€gk i=1 Hqu<1
(i)
< E¢ sup < asup Zfl ()| +b sup Zfza x;
wv<d | ge0t | i<t |4
a,b>0
<9 g T
- ¢ Sup Zfz wz +E§ sup Zgza i, (18)
=3 9€6} |im lulli<1 |}

where (%) is due to the scaling invariance, and (i7) follows from Lemma 6.
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Proof of Prop. 2

® By symmetry,

E¢ sup Z& x;)| <E¢ sup Z& x;) + E¢ sup — Z& x;)
9€g} 9€6] i1 9€G! 41
2log(2d
= 2E¢ sup Z'El x;) = = 2nRad 2(GH) < w.
n
9€9} =1
And

- 2log(2d)

Ee sup &uTz;| =E¢ sup GuTe; <ny\| ————,

llulli<1 ; Hulhélg n

where the supremum is reached at u = > | &,
® Plugging the above bounds into (18) gives us

Rad,(62,) < ¢ [2\/210g(2d) +\/2log(2d)] -0 21%(24).

3 n n

(19)

(20)
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Summary

® The continuum limit of deep ResNet is an ODE: 2(x, t) = E(y,w)~p, [uo(w’ z(x;1))].

® The ResNet can be viewed as the forward Euler discretization of this ODE with stochastic
approximation for the RHS.

® To control the complexity of the flow map of the nonlinear ODE, we define the linear
ODE: Nl(t) =E,,[|ullw|T]Ny ().
® Bound the Rademacher complexity via the weighted path norm.
All the missing proofs can be found in the following papers.
® https://arxiv.org/abs/1903.02154.
® https://arxiv.org/abs/1906.08039.
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