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Residual networks

• Consider the scaled residual network (ResNet):

z0(x) = V x̃

zl+1(x) = zl(x) +
1

L

1

m
Ulσ(Wlzl(x)), l = 0, . . . , L− 1

fL(x; θ) = αTzL(x)

(1)

where x̃ = (xT , 1)T ∈ Rd+1,Wl ∈ Rm×D, Ul ∈ RD×m,α ∈ RD and

V =

(
Id+1

0

)
∈ RD×(d+1).

We use θ = {W1, U1, . . . ,WL, UL,α} to denote all the parameters to be learned.

• We assume that σ(t) = max(0, t) and x ∈ X := [0, 1]d.

2 / 24



The continuum limit

• Taking m→∞, the update of hidden state becomes

zl+1(x) = zl(x) +
1

L
E(u,w)∼ρl [uσ(wTzl(x))]. (2)

• The above iteration can be viewed as the forward Euler disretization of the ODE:

dz(x, t)

dt
= E(u,w)∼ρt [uσ(wTz(x, t))]. (3)

The scaling factor 1/L corresponds to the step size of disretization.

• In this continuous level, the parameters are {α, (ρt)}.
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The compositional law of large numbers

Theorem 1 (LNN-type approximation)

Let (ρt)t∈[0,1] be a sequence of probability distributions on RD × RD with the property that
there exist constants c1 and c2 such that

Eρt‖|u||wT |‖2F < c1∣∣Eρt [uσ(wTz)]− Eρs [uσ(wTz)]
∣∣ ≤ c2|t− s||z|, ∀ s, t ∈ [0, 1]. (4)

Let z be the solution of the following ODE,

z(x, 0) = V x,

d

dt
z(x, t) = E(u,w)∼ρt [uσ(wTz(x, t))]. (5)

Then, for any fixed x ∈ X, we have

zL(x)→ z(x, 1)

in probability as L→ +∞. Moreover, the convergence is uniform in x.
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The compositional law of large numbers

Remarks:

• The moment boundedness of (ρt) is required to ensure the convergence of Monte-Carlo
discretization.

• The continuity wrt t of (ρt) is required to ensure the convergence of the forward Euler
discretization.

• In this theorem, we view the ResNet (1) as a forward Euler discretization of ODE (5) with
a stochastic approximation of the expectation in RHS. As a result, the width m can be
fixed.

• This approximation does not provide any rate. The CLT-type approximation require
stronger regularity.
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Intuition of stochastic approximation

Consider the case of m = 1. Let L = L′M with L′,M � 1, and dt = 1
L ,∆t = M

L � 1. Let
t = l dt and ẑ(x; t) = zl(x).

ẑ(x; t+ ∆t) = zl+M−1(x) +
1

L
ul+Mσ(wT

l+Mσ(zl+M−1(x))

= zl(x) +
1

L

j=l+M∑
j=l+1

ujσ(wT
j σ(zj(x)))

= z(x; t) +
M

L

1

M

j=l+M∑
j=l+1

ujσ(wT
j σ(zj(x))) (uj ,wj) ∼ ρt+(j−l)dt. (6)

Note that (j − l)dt ≤ ∆t� 1, ρt and z(x; t) are Lipschitz continuous in t. Therefore,

1

M

j=l+M∑
j=l+1

ujσ(wT
j σ(zj(x))) = E(u,w)∼ρt [uσ(wT ẑ(x; t))] + o(∆t).

Hence, the ResNet can be viewed as a coarse discretization of the ODE:

ẑ(x; t+ ∆t) ≈ ẑ(x; t) + ∆tE(u,w)∼ρt [uσ(wT ẑ(x; t))], (7)
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Flow-induced functions

• Motivated by previous results, consider the set of functions fα,{ρt} defined by:

z(x, 0) = V x,

dz(x, t)

dt
= E(u,w)∼ρtuσ(wTz(x, t))

fα,(ρt)(x) = αTz(x, 1), (8)

• Let e be the all-one vector. Define the following linear ODE:

Np(0) = e,

Ṅp(t) = 3
(
Eρt(|u||w|T )p

)1/p
Np(t), (9)

where |v| and |v|q are defined element-wise for any vector or matrix v.

• We will use this linear ODE to control the complexity of the original nonlinear ODE (8).

• The factor 3 is only required for the control of Rademacher complexity. For controlling the
approximation error, we can replace 3 by 1. But for simplicity, we use 3 for both scenarios.
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Flow-induced function spaces

• Let ‖(ρt)‖Lip be the smallest constant C such that for any t, s ∈ [0, 1], we have

|EρtUσ(Wz)− EρsUσ(Wz)| ≤ C|t− s||z|,∣∣∣‖Eρt |U ||W |‖1,1 − ‖Eρs |U ||W |‖1,1∣∣∣ ≤ C|t− s|, (10)

where ‖ · ‖1,1 is the sum of the absolute values of all the entries in a matrix.

Definition 2

Let f be a function that satisfies f = fα,(ρt) for a pair of {α, (ρt)}. We define

‖f‖Dp = inf
f=fα,(ρt)

|α|TNp(1)

‖f‖D̃p = inf
f=fα,(ρt)

|α|TNp(1) + ‖Np(1)‖1 −D + ‖(ρt)‖Lip,

The space Dp and D̃p are defined as the set all continuous functions that admit the ODE

representation with finite Dp and D̃p norm, respectively.
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Flow-induced function spaces

• Dp norm does no control the regularity of representation (ρt), while D̃p does.

• We add a “−D” term in the definition of D̃p norm because ‖Np(1)‖1 ≥ D and we want
the norm of the zero function to be 0.

• We use the terminology “norm” loosely, and we do not care whether these are really
norms. Strictly speaking, they are just some quantities that can be used to bound
approximation/estimation errors.
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The embedding result

Proposition 1

Assume that D ≥ d+ 2 and m ≥ 1. For any function f ∈ B, we have f ∈ D̃1, and

‖f‖D̃1
≤ 2‖f‖B + 1.

Moreover, f = fα,(ρt) with ρt = ρ for any t ∈ [0, 1].

Proof:

• Since f ∈ B, there exit a distribution ρ such that

f(x) = E(a,b,c)∼ρ[aσ(bTx+ c)]

‖f‖B = E(a,b,c)∼ρ[|a|(‖b‖+ |c|)].
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The embedding result

Proof:

• It is easy to verify that f can be represented by an ODE as follows

z(x, 0) =

 x
1
0


d

dt
z(x, t) = E(a,b,c)∼ρ

 0
0
a

σ([bT , c, 0]z(x, t)) (11)

f(x) = eTd+2z(x, 1),

where ed+2 = (0, 0, . . . , 0, 1)T ∈ Rd+2.

• It is obviously that ρt = ρ̃ for some ρ̃ and any t ∈ [0, 1]. Hence, ‖(ρt)‖lip = 0. An explicit
calculation gives us that

|α|TN1(1) +N1(1)−D = 2‖f‖B + 1.

• Using the definitions of D̃1 norm, we complete the proof.
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Weighted path norms for ResNets

When L is finite, the complexity is controlled by the quantity defined below.

• Given a ResNet fL(·; θ) define the weighted path norm as

‖θ‖P := |α|T
(
I +

3

Lm
|UL||WL|

)
· · ·
(
I +

3

Lm
|U1||W1|

)
e. (12)

It is a discrete analog of the D1 norm.

• This weighted path norm is a weighted sum over all paths from the input to the output,
and gives larger weight to the paths that go through more nonlinearities. Given a path P ,
let wP1 , u

P
1 , . . . , w

P
L , u

P
L be the weights, and a(P ) be number of nonlinearities that P goes

through. Then,

‖θ‖P =
∑

P : all paths

(
3

mL

)a(P ) L∏
l=1

|wPl ||uPl |. (13)
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Direct approximation

Theorem 3

Let f ∈ D̃2, δ ∈ (0, 1). Then, there exists an absolute constant C, such that for any

L ≥ C
(
m4D6‖f‖5D̃2

(‖f‖D̃2
+D)2

) 3
δ

,

there is an L-layer residual network fL(·; Θ) that satisfies

‖f − fL(·; Θ)‖2 ≤
‖f‖2D̃2

L1−δ ,

and
‖Θ‖P ≤ 9‖f‖D̃1

.
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Inverse approximation

Theorem 4

Let f be a function defined on X. Assume that there is a sequence of residual networks
{fL(·; θL)}∞L=1 such that fL(x; θ)→ f(x) for every x ∈ X as L→∞. Assume further that
the parameters in {fL(·; θ)}∞L=1 are (entry-wise) bounded by c0. Then, we have f ∈ D∞, and

‖f‖D∞ ≤
2em(c20+1)D2c0

m

Moreover, if for some constant c1, ‖fL‖D1
≤ c1 holds for all L > 0, then we have

‖f‖D1
≤ c1
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Rademacher complexity

Theorem 5

Let D̃Q2 = {f ∈ D̃2 : ‖f‖D̃2
≤ Q}, then we have

R̂adn(D̃Q2 ) . Q

√
2 log(2d)

n
.

The proof of the above theorem is a simple combination of the direct approximation theorem
with the following proposition.

Proposition 2

Let FQ = {fL(·; θ) : ‖θ‖P ≤ Q} where fL(·; θ) is the L-layer ResNet. We have

R̂adn(FQ) ≤ 3Q

√
2 log(2d)

n
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Rademacher complexity

Proof: By the direct approximation theorem, for any ε ∈ (0, 1) and f ∈ D̃Q2 , there exist a L
(sufficiently large), a constant c > 0, and θf such that

1

n

n∑
i=1

|f(x)− fL(x; θf )|2 ≤ ε2 ‖θf‖P ≤ cQ.

Therefore,

R̂adn(DQ2 ) =
1

n
Eξ[ sup

f∈D̃Q2

n∑
i=1

ξif(xi)]

≤ 1

n
Eξ[ sup

f∈D̃Q2

(
n∑
i=1

ξi(f(xi)− fL(xi; θ)) +

n∑
i=1

ξifL(xi; θ
f )

)
]

≤ 1

n
Eξ[ sup

fL(·;θ)∈FcQL

n∑
i=1

ξifL(xi; θ)] + ε

≤ R̂adn(FcQL ) + ε ≤ 3cQ

√
2 log(2d)

n
+ ε. (14)

Where the last inequality follows from Prop. 2. Taking ε→ 0, we complete the proof.
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• Proof of the upper bound for the Rademacher
complexity of ResNets.
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Define the intermediate quantities

• let gl(x) = σ(Wlzl−1), and gil be the i-th element of gl. Then, we have the following
recurrence relation:

gil = σ(W i,:
l (γUl−1gl−1 + γUl−2gl−2 + · · ·+ γU1g1 + z0),

where W i,:
l is the i-th row of Wl, γ = 1

Lm is the scaling factor, and z0 = V x.

• gil is l-layer ResNet. We define its weighted path norm by

‖gil‖P = 3|W i,:
l |(I + 3γ|Ul−1||Wl−1|) · · · (I + 3γ|U1||W1|)|V |e, (15)
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Recurrence relation of path norms

With an abuse of notation, let ‖fL‖P and ‖gil‖P denote the path norm of the parameters. We
have

‖fL‖P = γ

L∑
l=1

m∑
j=1

(
|α|T |U :,j

l |
)
‖gjl ‖P + |α|T |V |e

‖gil+1‖P =

l∑
k=1

m∑
j=1

3γ
(
|W i,:

l+1||U
:,j
k |
)
‖gjk‖P + 3|W i,:

l+1||V |e,

where U :,j
l is the j-th column of Ul.

Proof: Recall the definition of ‖fL‖P , we have

‖fL‖P = |α|ᵀ(I + 3γ|UL||WL|) · · · (I + 3γ|U1||W1|)|V |e

=

L∑
l=1

|α|ᵀ|Ul| · 3γ|Wl|
l−1∏
j=1

(I + 3γ|Ul−j ||Wl−j |)|V |+ |α|ᵀ|V |e

= γ

L∑
l=1

m∑
j=1

(
|α|ᵀ|U :,j

l |
)
‖gjl ‖P + |α|ᵀ|V |e,

The proof for the recurrence relation of gil is similar.
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Recursion of hypothesis space

Lemma 6

Let GQl = {gil : ‖gil‖P ≤ Q}, then

(1) GQk ⊆ G
Q
l for k ≤ l;

(2) Gql ⊆ G
Q
l and Gql = q

QG
Q
l for q ≤ Q.

Proof:

• GQk ⊆ G
Q
l and Gql ⊆ G

Q
l are obvious.

• For any gl ∈ Gql , define g̃l by replacing the output parameters w by Q
q w, then we have

‖g̃l‖P = Q
q ‖gl‖P ≤ Q, and hence g̃l ∈ GQl . Therefore, we have Q

q G
q
l ⊆ GQ. Similarly we

can obtain q
QG

Q
l ⊆ Gq. Consequently, we have Gql = q

QG
Q
l .
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Proof of Prop. 2

• To prove Prop. 2, we only need to prove that for any l = 0, 1, . . . , L

R̂adn(GQl ) ≤ Q
√

2 log(2d)

n
. (16)

This will be done by induction.
• When l = 1, gi1(x) = σ(W i,:

1 V x). By the contraction lemma and the bound of
Rademacher complexity of linear class, (16) holds.

• Now assume that the result holds for 1, 2, . . . , l. For l + 1, we have

nR̂adn(GQl+1) = Eξ sup
gl+1∈GQl+1

n∑
i=1

ξigl+1(xi)

= Eξ sup
(1)

n∑
i=1

ξiσ(wT
l+1(γUlgl + γUl−1gl−1 + · · ·+ γU1g1 + z0))

≤ Eξ sup
(1)

n∑
i=1

ξi(w
T
l+1(γUlgl + γUl−1gl−1 + · · ·+ γU1g1 + z0)), (contraction lemma)

where the condition (1) is
l∑

k=1

m∑
j=1

3γ
(
|wl+1|T |U :,j

k |
)
‖gjk‖P + 3|wl+1|T |V |e ≤ Q
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Proof of Prop. 2

• Let ak = γ
∑m
j=1

(
|wl+1|T |U :,j

k |
)
‖gjk‖P and b = |wl+1|T |V |e. Then, the constraint

becomes

3

l∑
k=1

ak + 3b ≤ Q. (17)

• Therefore, we have

nR̂adn(GQl+1)
(i)

≤ Eξ sup
(2)

{
l∑

k=1

ak sup
g∈G1

k

∣∣∣∣∣
n∑
i=1

ξig(xi)

∣∣∣∣∣+ b sup
‖u‖1≤1

∣∣∣∣∣
n∑
i=1

ξiα
ᵀxi

∣∣∣∣∣
}

(ii)

≤ Eξ sup
a+b≤Q3
a,b≥0

{
a sup
g∈G1

l

∣∣∣∣∣
n∑
i=1

ξig(xi)

∣∣∣∣∣+ b sup
‖α‖1≤1

∣∣∣∣∣
n∑
i=1

ξiα
ᵀxi

∣∣∣∣∣
}

≤ Q

3

[
Eξ sup

g∈G1
l

∣∣∣∣∣
n∑
i=1

ξig(xi)

∣∣∣∣∣+ Eξ sup
‖u‖1≤1

∣∣∣∣∣
n∑
i=1

ξiα
ᵀxi

∣∣∣∣∣
]
, (18)

where (i) is due to the scaling invariance, and (ii) follows from Lemma 6.
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Proof of Prop. 2

• By symmetry,

Eξ sup
g∈G1

l

∣∣∣∣∣
n∑
i=1

ξig(xi)

∣∣∣∣∣ ≤ Eξ sup
g∈G1

l

n∑
i=1

ξig(xi) + Eξ sup
g∈G1

l

−
n∑
i=1

ξig(xi)

= 2Eξ sup
g∈G1

l

n∑
i=1

ξig(xi) = 2nR̂adn(G1l ) ≤ 2n

√
2 log(2d)

n
. (19)

And

Eξ sup
‖u‖1≤1

∣∣∣∣∣
n∑
i=1

ξiu
ᵀxi

∣∣∣∣∣ = Eξ sup
‖u‖1≤1

n∑
i=1

ξiu
ᵀxi ≤ n

√
2 log(2d)

n
, (20)

where the supremum is reached at u =
∑n
i=1 ξixi.

• Plugging the above bounds into (18) gives us

R̂adn(GQl+1) ≤ Q

3

[
2

√
2 log(2d)

n
+

√
2 log(2d)

n

]
≤ Q

√
2 log(2d)

n
.
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Summary

• The continuum limit of deep ResNet is an ODE: ż(x, t) = E(u,w)∼ρt [uσ(wTz(x; t))].

• The ResNet can be viewed as the forward Euler discretization of this ODE with stochastic
approximation for the RHS.

• To control the complexity of the flow map of the nonlinear ODE, we define the linear
ODE: Ṅ1(t) = Eρt [|u||w|T ]N1(t).

• Bound the Rademacher complexity via the weighted path norm.

All the missing proofs can be found in the following papers.

• https://arxiv.org/abs/1903.02154.

• https://arxiv.org/abs/1906.08039.
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