
Training neural networks beyond the kernel regime

Instructor: Lei Wu

PKU Summer School, 2021

1 / 45

A mean-field perspective

2 / 45

Scaled two-layer neural networks

Consider the two-layer neural network under the mean-field (MF) scaling:

fm(x; θ) =
1

m

m∑
j=1

ajσ(wTj x) =

∫
aσ(wTx) dπ(a,w),

where

π(a,w) =
1

m

m∑
j=1

δ(a− aj)δ(w − wj).

Observation:

• The above representation holds for any m ∈ N+.

• The represented function only depends on the distribution π.

• We only need to track the evolution of π instead of individual particles {(aj , wj)}.

3 / 45

Gradient descent at the continuous level

• Consider a general two-layer neural network:

fπ(x) =

∫
ψ(x;w) dπ(w).

For two-layer neural network, ψ(x;w) = aσ(bTx).

• The risk functional is given:

R(π) = Ex[(fπ(x)− y)2].

• Gradient flow:
∂tπt = −GradR(πt).

• What is the Grad operator?

4 / 45

The continuity equation

Consider a general problem:
min

π∈P(Ω)
J(π).

• Wasserstain gradient flow is given by the continuity equation:

∂tπt = ∇ ·
(
πt∇

δJ

δπ

)
, (0.1)

where δJ
δπ is the variational derivative defined by

〈δJ
δπ
, δπ〉 = lim

t→0

J(π + tδπ)− J(π)

t
,

where the inner product is with respect to the L2 metric.

5 / 45

Wasserstain gradient flow

Definition 1

For any p1, p2 ∈ P(Ω), the 2-Wasserstain metric is defined by

W2(p1, p2) = min
ρ∈Γ(p1,p2)

∫
‖x− x′‖22 dρ(x, x′), (0.2)

where Γ(p1, p2) denotes the set of joint distribution such that the marginal distributions are p1

and p2, respectively.

• Define the following proximal point iteration (minimizing movements scheme):

πk+1 = argmin J(π) +
W2(π, πk)

2η
(0.3)

• It is well-known that (0.3) converges to the continuity equation (0.1) as η → 0. This is
why (0.1) is the Wasserstain gradient flow for minimizing J(·).

6 / 45

Properties of the Wasserstain gradient flow

• Preserve the measure:

d

dt

∫
πt(w) dw =

∫
∇ ·
(
πt∇

δJ

δπ

)
dw = 0.

• Energy dissipation:

dJ(πt)

dt
=

∫
δJ

δπ
∂tπt dw =

∫
δJ

δπ
∇ ·
(
πt∇

δJ

δπ

)
dw = −

∫ ∥∥∥∥∇δJδπ
∥∥∥∥2

dπt(w).

7 / 45

Wasserstain gradient flow for two-layer networks

• For two-layer neural network, δR
δπ = Ex[(fπ(x)− y)ψ(x;w)].

• Hence, the GD flow becomes

∂tπt = ∇ · (πtv(w;πt)) , (0.4)

where the velocity field is given by

v(w;π) = Ex[(fπ(x)− y)∇wψ(x;w)].

• This is a McKean-Vlasov type equation. The PDE (0.4) should be understood in a weak
sense. The weak formulation of (0.4) is given by

d

dt

∫
g(w) dπt(w) =

∫
∇ · (πtv(πt, w))g(w) dw = −

∫
〈v(πt, w),∇g(w)〉dπt(w), (0.5)

where g is a test function.

8 / 45

Finite-width networks

Lemma 2

Given a set of initial data {w0
j : j ∈ [m]}. The solution of (0.4) with the initial distribution

π0 = 1
m

∑m
j=1 δw0

j
is given by

πt =
1

m

m∑
j=1

δ(wj(t)− ·),

where {wj(·) : j ∈ [m]} solves the following ODE:

dwj(t)

dt
= −v(wj ;πt), wj(0) = w0

j , j ∈ [m].

9 / 45

Proof

d

dt

∫
g(w) dπt(w) =

1

m

m∑
j=1

dg(wj(t))

dt
=

1

m

m∑
j=1

〈∇g(wj(t)), ẇj(t)〉

= − 1

m

m∑
j=1

〈∇g(wj(t)), v(wj(t);πt)〉

= −
∫
〈v(w;π),∇g(w)〉dπt(w).

πt satisfies the weak form (0.5). Hence, πt is a solution of the PDE (0.4).

10 / 45

The dynamics of {wj(t) : j ∈ [m]} can be explicitly written as

ẇj(t) = −Ex[(f(x; θ)− f∗(x))∇wψ(x;w)] = ∇wjR(θ), (0.6)

where

f(x; θ) =
1

m

m∑
j=1

ψ(x;wj). (0.7)

We can see that (0.6) is exactly the GD flow for minimizing the two-layer neural network (0.7).

11 / 45

Remarks

• GD flow for the scaled two-layer networks can be equivalently written as a
McKean-Vlasov PDE, which holds even when m =∞.

• The McKean-Vlasov PDE is exact for the finite-width case, if the initial condition is an
empirical measure. In other words, there does not exist so called mean-field “limit”.

• The “mean-field” means that each neuron interacts with other neurons through the
distribution formed by all the neurons: πt = 1

m

∑m
j=1 δ(wj − ·), which is the “mean-field”.

See (0.6) and the RHS only depends on πt instead of individual {wj}.

12 / 45

Benefit of the perspective of Wasserstain gradient flow

• The risk functional is convex with respect to L2 metric:

R(π) = Ex,y[

∫
ψ(x;w) dπ − y]2 (0.8)

=

∫
k(w,w′)π(w)π(w′) dw dw′ −

∫
g(w)π(w) dw + C, (0.9)

where k(w,w′) = Ex[ψ(x;w)ψ(x;w)], g(w) = Ex,y[ψ(x;w)y], C = Ey[y2].

• The McKean-Vlasov PDE is a GD flow with respect to the 2-Wasserstain metric.
However, R(·) is only convex with L2 metric. Hence, the gradient flow structure is not
really helpful. Only for some very special case, R(·) is displacement convex (Javanmard,
arXiv:1901.01375).

• The continuous PDE might be helpful if considering the continuous case, π0 and
πt are not singular.

13 / 45

Convergence

Theorem 3 (Informal, Chizat and Bach, NeurIPS 2019)

Suppose the initialization and activation function satisfy some very technical conditions. Let
(πt)t≥0 be a Wasserstain gradient flow of R(·). If (πt)t converges to π∞ in W2 metric. Then,
π∞ is a global minimizer of R(·) over P2(Ω).

The above technical condition is hard to verify.

Theorem 4 (Informal, E, Ma, Wu 2019)

Let f∗(x) =
∫
σ(wTx) dπ∗(w) and w ∈ S1. Assume π∗ is the uniform distribution and the

initialization π0 has a differentiable density function. Then, we have

lim
t→∞

W2(πt, π
∗) = 0.

14 / 45

Convergence

Theorem 3 (Informal, Chizat and Bach, NeurIPS 2019)

Suppose the initialization and activation function satisfy some very technical conditions. Let
(πt)t≥0 be a Wasserstain gradient flow of R(·). If (πt)t converges to π∞ in W2 metric. Then,
π∞ is a global minimizer of R(·) over P2(Ω).

The above technical condition is hard to verify.

Theorem 4 (Informal, E, Ma, Wu 2019)

Let f∗(x) =
∫
σ(wTx) dπ∗(w) and w ∈ S1. Assume π∗ is the uniform distribution and the

initialization π0 has a differentiable density function. Then, we have

lim
t→∞

W2(πt, π
∗) = 0.

14 / 45

Convergence in the teacher-student setting

Consider the problem:

J(π) = Ex
(∫

aσ(wTx) dπ(a,w)− f∗(x)

)2

+

∫
|a|‖w‖ dπ(a,w),

where σ is ReLU and the target function is finite neurons:

f∗(x) =
1

m

m∑
j=1

a∗jσ(w∗j
Tx).

Theorem 5 (Akiyama and Suzuki, ICML 2021)

Assume R̂n has a global minimizer π∗. Let πt be the solution of a variant of GD. Under some
smooth technical assumptions, and π0 = Unif(Sd−1)

• Global exploration: there exist k0 such that

J(πk)− J(π∗) ≤ J(π0)− J(π∗).

• Local convergence: There exist τ > 1 such that for any k ≥ k0, it holds that

J(πk)− J(π∗) ≤ τ−(k−k0)(J(π0)− J(π∗)).

15 / 45

Multilayer networks: Propagation of chaos

z0 = V x+ b

zl+1
i =

1

m
σ(

m∑
j=1

wl+1
i,j z

l
j)

fm,L(x; θ) =
1

m

m∑
j=1

ajz
L
j .

(0.10)

Let (θt)t≥0 be the solution of a (rescaled) GD flow with the initialization:

wli,j
iid∼ πl.

Theorem 6 (Informal: (Araujo, Oliveira et al. arXiv:1906.00193))

As m→∞, the GD solution fm,L(x; θt) converges to a network with L ≤ 5.

16 / 45

Intuitive explanation

Let δli = ∂R
∂zli

. Then,

δlj =
1

m

m∑
j=1

∂R
∂zl+1
j

zl+1
j

∂zli
=

1

m

m∑
j=1

wl+1
j,i δ

l+1
j

∂R
∂wl+1

i,j

= zliδ
l+1
j .

In the limit m =∞, ∂R
∂wl+1

i,j

becomes independent of i, j.

17 / 45

Remarks

• The 1/m scaling results in the depth collapse.

• The 1/
√
m scaling results in the lazy training.

• The 1/m scaling + deep ResNet works pretty well in the limit m→∞ and L→∞.

18 / 45

Implicit Biases of SGD

19 / 45

Motivation

• Modern neural networks usually work in the over-parameterized regime.

ImageNet # train 1.2× 106

AlexNet 6.1× 107

VGG19 1.43× 108

ResNet-152 6.0× 107

• To avoid overfitting, one may think that we must rely on the explicit regularization,
such as weight decay, dropout, batch normalization, etc.

• Surprisingly, practitioners often find that optimizers can find good solutions without the
need of any explicit regularizations.

R̂n(θ) =
1

n

n∑
i=1

`(f(xi; θ), yi).

• There must exist some implicit biases/regularizations mechanism at work for optimizers.

20 / 45

Motivation

• Modern neural networks usually work in the over-parameterized regime.

ImageNet # train 1.2× 106

AlexNet 6.1× 107

VGG19 1.43× 108

ResNet-152 6.0× 107

• To avoid overfitting, one may think that we must rely on the explicit regularization,
such as weight decay, dropout, batch normalization, etc.

• Surprisingly, practitioners often find that optimizers can find good solutions without the
need of any explicit regularizations.

R̂n(θ) =
1

n

n∑
i=1

`(f(xi; θ), yi).

• There must exist some implicit biases/regularizations mechanism at work for optimizers.

20 / 45

Motivation

• Modern neural networks usually work in the over-parameterized regime.

ImageNet # train 1.2× 106

AlexNet 6.1× 107

VGG19 1.43× 108

ResNet-152 6.0× 107

• To avoid overfitting, one may think that we must rely on the explicit regularization,
such as weight decay, dropout, batch normalization, etc.

• Surprisingly, practitioners often find that optimizers can find good solutions without the
need of any explicit regularizations.

R̂n(θ) =
1

n

n∑
i=1

`(f(xi; θ), yi).

• There must exist some implicit biases/regularizations mechanism at work for optimizers.

20 / 45

Motivation

• Modern neural networks usually work in the over-parameterized regime.

ImageNet # train 1.2× 106

AlexNet 6.1× 107

VGG19 1.43× 108

ResNet-152 6.0× 107

• To avoid overfitting, one may think that we must rely on the explicit regularization,
such as weight decay, dropout, batch normalization, etc.

• Surprisingly, practitioners often find that optimizers can find good solutions without the
need of any explicit regularizations.

R̂n(θ) =
1

n

n∑
i=1

`(f(xi; θ), yi).

• There must exist some implicit biases/regularizations mechanism at work for optimizers.

20 / 45

A large-scale example

Figure 1: Effects of implicit regularizations. (Taken from (Zhang et al, ICLR2017))

• For CIFAR10, the implicit regularizations account for 85%+ test accuracy. Explicit
regularizations only improve less than 5% accuracy.

• For ImageNet, explicit regularizations are more important but still not as crucial as the
implicit regularizations.

21 / 45

https://arxiv.org/pdf/1611.03530.pdf

A large-scale example

Figure 1: Effects of implicit regularizations. (Taken from (Zhang et al, ICLR2017))

• For CIFAR10, the implicit regularizations account for 85%+ test accuracy. Explicit
regularizations only improve less than 5% accuracy.

• For ImageNet, explicit regularizations are more important but still not as crucial as the
implicit regularizations.

21 / 45

https://arxiv.org/pdf/1611.03530.pdf

A large-scale example

Figure 1: Effects of implicit regularizations. (Taken from (Zhang et al, ICLR2017))

• For CIFAR10, the implicit regularizations account for 85%+ test accuracy. Explicit
regularizations only improve less than 5% accuracy.

• For ImageNet, explicit regularizations are more important but still not as crucial as the
implicit regularizations.

21 / 45

https://arxiv.org/pdf/1611.03530.pdf

Implicit regularizations of SGD

SGD:

θt+1 = θt − η
1

|St|
∑
i∈St

∇`(f(xi; θt), yi), (0.11)

where |St| = B is the batch size.

• GD: When B = n, θt+1 = θt − η∇R̂n(θt).

• GD flow: When η → 0, θ̇t = −∇R̂n(θt) [3].

Many factors affect the implicit regularizations:

• The initialization.

• The structure of model f(·; θ).

• For convex models, the pictures of implicit regularizations are rather clear.
• For NN models, not too much progress due to the non-convexity nature [3].

• The learning rate and batch size [3].

22 / 45

Implicit regularizations of SGD

SGD:

θt+1 = θt − η
1

|St|
∑
i∈St

∇`(f(xi; θt), yi), (0.11)

where |St| = B is the batch size.

• GD: When B = n, θt+1 = θt − η∇R̂n(θt).

• GD flow: When η → 0, θ̇t = −∇R̂n(θt) [3].

Many factors affect the implicit regularizations:

• The initialization.

• The structure of model f(·; θ).

• For convex models, the pictures of implicit regularizations are rather clear.
• For NN models, not too much progress due to the non-convexity nature [3].

• The learning rate and batch size [3].

22 / 45

Implicit regularizations of SGD

SGD:

θt+1 = θt − η
1

|St|
∑
i∈St

∇`(f(xi; θt), yi), (0.11)

where |St| = B is the batch size.

• GD: When B = n, θt+1 = θt − η∇R̂n(θt).

• GD flow: When η → 0, θ̇t = −∇R̂n(θt) [3].

Many factors affect the implicit regularizations:

• The initialization.

• The structure of model f(·; θ).

• For convex models, the pictures of implicit regularizations are rather clear.
• For NN models, not too much progress due to the non-convexity nature [3].

• The learning rate and batch size [3].

22 / 45

Implicit regularizations of SGD

SGD:

θt+1 = θt − η
1

|St|
∑
i∈St

∇`(f(xi; θt), yi), (0.11)

where |St| = B is the batch size.

• GD: When B = n, θt+1 = θt − η∇R̂n(θt).

• GD flow: When η → 0, θ̇t = −∇R̂n(θt) [3].

Many factors affect the implicit regularizations:

• The initialization.

• The structure of model f(·; θ).

• For convex models, the pictures of implicit regularizations are rather clear.
• For NN models, not too much progress due to the non-convexity nature [3].

• The learning rate and batch size [3].

22 / 45

Implicit regularizations of SGD

SGD:

θt+1 = θt − η
1

|St|
∑
i∈St

∇`(f(xi; θt), yi), (0.11)

where |St| = B is the batch size.

• GD: When B = n, θt+1 = θt − η∇R̂n(θt).

• GD flow: When η → 0, θ̇t = −∇R̂n(θt) [3].

Many factors affect the implicit regularizations:

• The initialization.

• The structure of model f(·; θ).

• For convex models, the pictures of implicit regularizations are rather clear.
• For NN models, not too much progress due to the non-convexity nature [3].

• The learning rate and batch size [3].

22 / 45

Implicit regularizations of SGD

SGD:

θt+1 = θt − η
1

|St|
∑
i∈St

∇`(f(xi; θt), yi), (0.11)

where |St| = B is the batch size.

• GD: When B = n, θt+1 = θt − η∇R̂n(θt).

• GD flow: When η → 0, θ̇t = −∇R̂n(θt) [3].

Many factors affect the implicit regularizations:

• The initialization.

• The structure of model f(·; θ).
• For convex models, the pictures of implicit regularizations are rather clear.

• For NN models, not too much progress due to the non-convexity nature [3].

• The learning rate and batch size [3].

22 / 45

Implicit regularizations of SGD

SGD:

θt+1 = θt − η
1

|St|
∑
i∈St

∇`(f(xi; θt), yi), (0.11)

where |St| = B is the batch size.

• GD: When B = n, θt+1 = θt − η∇R̂n(θt).

• GD flow: When η → 0, θ̇t = −∇R̂n(θt) [3].

Many factors affect the implicit regularizations:

• The initialization.

• The structure of model f(·; θ).
• For convex models, the pictures of implicit regularizations are rather clear.
• For NN models, not too much progress due to the non-convexity nature [3].

• The learning rate and batch size [3].

22 / 45

Implicit regularizations of SGD

SGD:

θt+1 = θt − η
1

|St|
∑
i∈St

∇`(f(xi; θt), yi), (0.11)

where |St| = B is the batch size.

• GD: When B = n, θt+1 = θt − η∇R̂n(θt).

• GD flow: When η → 0, θ̇t = −∇R̂n(θt) [3].

Many factors affect the implicit regularizations:

• The initialization.

• The structure of model f(·; θ).
• For convex models, the pictures of implicit regularizations are rather clear.
• For NN models, not too much progress due to the non-convexity nature [3].

• The learning rate and batch size [3].

22 / 45

A systematic study of the teacher-student setting

Setup: two-layer neural networks (2LNNs) in the teacher-student setting.

• Model:

fm(x;a,B) =

m∑
j=1

ajσ(bTj x),

where σ(z) = max(0, z) is the ReLU function.

• Target functions:

y = f∗(x) =
1

M

M∑
j=1

a∗jσ(b∗j
Tx).

We will consider the over-realized case, i.e., m > M .

• Initialization:
aj = 0, bj ∼ N (0, I/d).

• The empirical risk

R̂n(a,B) =
1

n

m∑
i=1

(fm(xi;a,B)− f∗(xi)).

• The associated random feature model (RFM): fm(·;a,B0). Here B0 is fixed after the
random initialization and only a is learnable.

23 / 45

A systematic study of the teacher-student setting

Setup: two-layer neural networks (2LNNs) in the teacher-student setting.

• Model:

fm(x;a,B) =

m∑
j=1

ajσ(bTj x),

where σ(z) = max(0, z) is the ReLU function.

• Target functions:

y = f∗(x) =
1

M

M∑
j=1

a∗jσ(b∗j
Tx).

We will consider the over-realized case, i.e., m > M .

• Initialization:
aj = 0, bj ∼ N (0, I/d).

• The empirical risk

R̂n(a,B) =
1

n

m∑
i=1

(fm(xi;a,B)− f∗(xi)).

• The associated random feature model (RFM): fm(·;a,B0). Here B0 is fixed after the
random initialization and only a is learnable.

23 / 45

A systematic study of the teacher-student setting

Setup: two-layer neural networks (2LNNs) in the teacher-student setting.

• Model:

fm(x;a,B) =

m∑
j=1

ajσ(bTj x),

where σ(z) = max(0, z) is the ReLU function.

• Target functions:

y = f∗(x) =
1

M

M∑
j=1

a∗jσ(b∗j
Tx).

We will consider the over-realized case, i.e., m > M .

• Initialization:
aj = 0, bj ∼ N (0, I/d).

• The empirical risk

R̂n(a,B) =
1

n

m∑
i=1

(fm(xi;a,B)− f∗(xi)).

• The associated random feature model (RFM): fm(·;a,B0). Here B0 is fixed after the
random initialization and only a is learnable.

23 / 45

A systematic study of the teacher-student setting

Setup: two-layer neural networks (2LNNs) in the teacher-student setting.

• Model:

fm(x;a,B) =

m∑
j=1

ajσ(bTj x),

where σ(z) = max(0, z) is the ReLU function.

• Target functions:

y = f∗(x) =
1

M

M∑
j=1

a∗jσ(b∗j
Tx).

We will consider the over-realized case, i.e., m > M .

• Initialization:
aj = 0, bj ∼ N (0, I/d).

• The empirical risk

R̂n(a,B) =
1

n

m∑
i=1

(fm(xi;a,B)− f∗(xi)).

• The associated random feature model (RFM): fm(·;a,B0). Here B0 is fixed after the
random initialization and only a is learnable.

23 / 45

A systematic study of the teacher-student setting

Setup: two-layer neural networks (2LNNs) in the teacher-student setting.

• Model:

fm(x;a,B) =

m∑
j=1

ajσ(bTj x),

where σ(z) = max(0, z) is the ReLU function.

• Target functions:

y = f∗(x) =
1

M

M∑
j=1

a∗jσ(b∗j
Tx).

We will consider the over-realized case, i.e., m > M .

• Initialization:
aj = 0, bj ∼ N (0, I/d).

• The empirical risk

R̂n(a,B) =
1

n

m∑
i=1

(fm(xi;a,B)− f∗(xi)).

• The associated random feature model (RFM): fm(·;a,B0). Here B0 is fixed after the
random initialization and only a is learnable.

23 / 45

The highly over-parameterized regime

Theorem 7 (Informal, (E, Ma, Wu, 2019))

Let ã(t) denote the GD solution of RFM. For any δ ∈ (0, 1), if m ≥ poly(n, log(1/δ)), with
probability 1− δ, we have

sup
x∈Sd−1,t∈[0,∞)

|fm(x;a(t),B(t))− fm(x; ã(t),B0)| ≤ poly(n, log(1/δ))√
m

.

• ‖B(t)−B(0)‖ ≤ poly(n)/m� 1.

• This result sheds no light on the origin of improved performance of NNs over kernel
methods. Does there exist strong implicit regularizations when NNs are less
over-parameterized?

24 / 45

The highly over-parameterized regime

Theorem 7 (Informal, (E, Ma, Wu, 2019))

Let ã(t) denote the GD solution of RFM. For any δ ∈ (0, 1), if m ≥ poly(n, log(1/δ)), with
probability 1− δ, we have

sup
x∈Sd−1,t∈[0,∞)

|fm(x;a(t),B(t))− fm(x; ã(t),B0)| ≤ poly(n, log(1/δ))√
m

.

• ‖B(t)−B(0)‖ ≤ poly(n)/m� 1.

• This result sheds no light on the origin of improved performance of NNs over kernel
methods. Does there exist strong implicit regularizations when NNs are less
over-parameterized?

24 / 45

GD for the population risk

Consider the target function is a single neuron: f∗1 (x) = σ(w∗Tx). Here, m = 100, d = 200.

0 5000 10000 15000 20000

Number of iterations

10−4

10−2

100

L
os

s NN

RF

0 50 100 150 200

Index of neuron

0.00

0.25

0.50

0.75

1.00

a
j

NN

RF

• RFM and 2LNN are close initially due to the time-scale separation.

ȧj(t) = O(‖bj‖) = O(1), ḃj(t) = O(|aj |) = o(1).

• GD for 2LNN is “implicitly” biased to pick sparse solutions, although there exist many
other solutions.

25 / 45

A self-sparsification behavior

Let us take a closer look at the dynamics of each neuron.

0 5000 10000 15000 20000

Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0
a
j‖

b
j‖

−1 0 1

b̂j[0]

−1.0

−0.5

0.0

0.5

1.0

b̂
j[

1]

T=20000

T=0

• Initially, all the neurons increase the magnitude due to the closeness to RFM.

• After the initial phase, one “activated” neuron keeps increasing the magnitude, while all
the other neurons are gradually “quenched”.

26 / 45

More examples

0 10000 20000 30000
Number of iterations

−0.05

0.00

0.05

0.10

0.15

0.20

a
j‖

b
j‖

2

0 20 40
Number of iterations

0.00

0.05

0.10

0.15

0.20

a
j‖

b
j‖

2
0.0 0.5 1.0

Number of iterations ×107

−0.10

−0.05

0.00

0.05

0.10

a
j‖

b
j‖

2

0 20 40
Number of iterations

−0.10

−0.05

0.00

0.05

0.10

a
j‖

b
j‖

2

Figure 2: Upper: m = 50,M = 5; Bottom: m = 50,M = 40.

27 / 45

What happens for the finite sample case?
• Highly over-parameterized regime: m� n. It is clear that NN = RFM.

• Highly under-parameterized regime: m� n/d. GD should exhibit the
quenching-activation behavior and tend to pick up sparse solutions.

• Mildly over- and under-parameterized regime: n/d . m . n. It is unclear!

28 / 45

What happens for the finite sample case?
• Highly over-parameterized regime: m� n. It is clear that NN = RFM.

• Highly under-parameterized regime: m� n/d. GD should exhibit the
quenching-activation behavior and tend to pick up sparse solutions.

• Mildly over- and under-parameterized regime: n/d . m . n. It is unclear!

28 / 45

What happens for the finite sample case?
• Highly over-parameterized regime: m� n. It is clear that NN = RFM.

• Highly under-parameterized regime: m� n/d. GD should exhibit the
quenching-activation behavior and tend to pick up sparse solutions.

• Mildly over- and under-parameterized regime: n/d . m . n. It is unclear!

28 / 45

GD for the empirical risk

Figure 3: The target function is a single neuron.

It suggests that the implicit biases of GD exhibit a transition when increasing the width from
m = n/(d+ 1) to m = n.

29 / 45

Test error and path norm curves

1 2 3
log10(width)

8

6

4

2

0

lo
g 1

0(
te

st
 e

rr
or

)

NN
RF

1 2 3
log10(width)

2

4

6

8

10

12

P
at

h
no

rm

(a)
1 2 3

log10(width)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g 1

0(
te

st
 e

rr
or

)

NN
RF

1 2 3
log10(width)

2

4

6

8

P
at

h
no

rm

(b)

Figure 4: (a) Single neuron. (b) Circle neuron f∗(x) = Eb∼π[σ(bTx)] with π be the
uniform distribution over the unit circle Ω = {b ∈ Sd−1 : b21 + b22 = 1}. Two dashed
lines correspond to m = n/(d+ 1) and m = n, respectively.

• Test error peaks around m ≈ n due to the closeness of NN and RFM at the early stage.
When m = n, the norm of RFM blows up, and GD for NN is not strong enough to cure it.

• The test errors of NN exhibits a “double descent”. The first descent is due to the decrease
of approximation error of NN; the second descent is due to the decrease of approximation
error of RFM. The mechanism is very different from that of RFM.

30 / 45

Test error and path norm curves

1 2 3
log10(width)

8

6

4

2

0

lo
g 1

0(
te

st
 e

rr
or

)

NN
RF

1 2 3
log10(width)

2

4

6

8

10

12

P
at

h
no

rm

(a)
1 2 3

log10(width)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g 1

0(
te

st
 e

rr
or

)

NN
RF

1 2 3
log10(width)

2

4

6

8

P
at

h
no

rm

(b)

Figure 4: (a) Single neuron. (b) Circle neuron f∗(x) = Eb∼π[σ(bTx)] with π be the
uniform distribution over the unit circle Ω = {b ∈ Sd−1 : b21 + b22 = 1}. Two dashed
lines correspond to m = n/(d+ 1) and m = n, respectively.

• Test error peaks around m ≈ n due to the closeness of NN and RFM at the early stage.
When m = n, the norm of RFM blows up, and GD for NN is not strong enough to cure it.

• The test errors of NN exhibits a “double descent”. The first descent is due to the decrease
of approximation error of NN; the second descent is due to the decrease of approximation
error of RFM. The mechanism is very different from that of RFM.

30 / 45

Test error and path norm curves

1 2 3
log10(width)

8

6

4

2

0

lo
g 1

0(
te

st
 e

rr
or

)

NN
RF

1 2 3
log10(width)

2

4

6

8

10

12

P
at

h
no

rm

(a)
1 2 3

log10(width)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g 1

0(
te

st
 e

rr
or

)

NN
RF

1 2 3
log10(width)

2

4

6

8

P
at

h
no

rm

(b)

Figure 4: (a) Single neuron. (b) Circle neuron f∗(x) = Eb∼π[σ(bTx)] with π be the
uniform distribution over the unit circle Ω = {b ∈ Sd−1 : b21 + b22 = 1}. Two dashed
lines correspond to m = n/(d+ 1) and m = n, respectively.

• Test error peaks around m ≈ n due to the closeness of NN and RFM at the early stage.
When m = n, the norm of RFM blows up, and GD for NN is not strong enough to cure it.

• The test errors of NN exhibits a “double descent”. The first descent is due to the decrease
of approximation error of NN; the second descent is due to the decrease of approximation
error of RFM. The mechanism is very different from that of RFM.

30 / 45

2LNN under the mean-field scaling

In theoretical studies, it is common to consider the 2LNN with the mean-field(MF) scaling:

fm(x; a,B) =
1

m

m∑
j=1

ajσ(bTj x). (0.12)

The GD dynamics (after rescaling the time by t→ mt) is given by

ȧj(t) = −
n∑
i=1

eiσ(bTj xi) (0.13)

ḃj(t) = −
n∑
i=1

eiajσ
′(bTj xi)xi. (0.14)

For this scaled 2LNN, ȧj(t) ∼ ‖bj‖ = O(1) and ḃj(t) ∼ |aj | = O(1). No time-scale separation.
Hence, we expect that all the neurons behave similarly. We will call (0.13) GD-MF.

31 / 45

2LNN under the mean-field scaling

In theoretical studies, it is common to consider the 2LNN with the mean-field(MF) scaling:

fm(x; a,B) =
1

m

m∑
j=1

ajσ(bTj x). (0.12)

The GD dynamics (after rescaling the time by t→ mt) is given by

ȧj(t) = −
n∑
i=1

eiσ(bTj xi) (0.13)

ḃj(t) = −
n∑
i=1

eiajσ
′(bTj xi)xi. (0.14)

For this scaled 2LNN, ȧj(t) ∼ ‖bj‖ = O(1) and ḃj(t) ∼ |aj | = O(1). No time-scale separation.
Hence, we expect that all the neurons behave similarly. We will call (0.13) GD-MF.

31 / 45

Implicit biases of GD for the scaled 2LNN

0 20 40

Index of neurons

0.0

0.5

1.0

1.5

2.0

a
j‖

b
j‖

GD-MF

−1 0 1

b̂j[0]

−1.0

−0.5

0.0

0.5

1.0

b̂
j[

1]

T=35000
T=0

1 2 3
log10(m)

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

lo
g 1

0
(te

st
er

ro
r)

MF
Conventional

Figure 5: GD-MF for learning the single neuron. Here m = 50, d = 100, n =∞. Left:
The “magnitude” of each neuron for the converged solution. Middle: The projection
to the first two coordinates of b̂ for each neuron. Right: The test error curves of the
scaled 2LNN and the conventional one.

32 / 45

Comparison between the scaled and unscaled 2LNNs

2.0 2.5 3.0 3.5 4.0 4.5
log10(m)

1.8

2.0

2.2

2.4

2.6
lo

g 1
0(

n)
Test errors

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

2.0 2.5 3.0 3.5 4.0 4.5
log10(m)

1.8

2.0

2.2

2.4

2.6

lo
g 1

0(
n)

Test errors

5.04

4.64

4.24

3.84

3.44

3.04

2.64

2.24

1.84

1.44

Figure 6: Heatmap of test errors of GD solutions. Left: GD solutions for the
conventional unscaled 2LNN. Right: GD solutions for the scaled 2LNN.

• Test errors of the unscaled 2LNNs are sensitive to the network width.

• Test errors of the scaled 2LNNs are more smoothly with the increase of network width.
There is almost no deterioration of performance even when the network is highly
over-parameterized.

33 / 45

Comparison between the scaled and unscaled 2LNNs

2.0 2.5 3.0 3.5 4.0 4.5
log10(m)

1.8

2.0

2.2

2.4

2.6
lo

g 1
0(

n)
Test errors

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

2.0 2.5 3.0 3.5 4.0 4.5
log10(m)

1.8

2.0

2.2

2.4

2.6

lo
g 1

0(
n)

Test errors

5.04

4.64

4.24

3.84

3.44

3.04

2.64

2.24

1.84

1.44

Figure 6: Heatmap of test errors of GD solutions. Left: GD solutions for the
conventional unscaled 2LNN. Right: GD solutions for the scaled 2LNN.

• Test errors of the unscaled 2LNNs are sensitive to the network width.

• Test errors of the scaled 2LNNs are more smoothly with the increase of network width.
There is almost no deterioration of performance even when the network is highly
over-parameterized.

33 / 45

Comparison between the scaled and unscaled 2LNNs

2.0 2.5 3.0 3.5 4.0 4.5
log10(m)

1.8

2.0

2.2

2.4

2.6
lo

g 1
0(

n)
Test errors

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

2.0 2.5 3.0 3.5 4.0 4.5
log10(m)

1.8

2.0

2.2

2.4

2.6

lo
g 1

0(
n)

Test errors

5.04

4.64

4.24

3.84

3.44

3.04

2.64

2.24

1.84

1.44

Figure 6: Heatmap of test errors of GD solutions. Left: GD solutions for the
conventional unscaled 2LNN. Right: GD solutions for the scaled 2LNN.

• Test errors of the unscaled 2LNNs are sensitive to the network width.

• Test errors of the scaled 2LNNs are more smoothly with the increase of network width.
There is almost no deterioration of performance even when the network is highly
over-parameterized.

33 / 45

SGD vs. GD

• SGD is originally suggested to speed up GD. Surprisingly, it is often observed that SGD
solutions generalize better than GD solutions.

• How can we characterize the difference between the solutions found by the two
optimizers? Why SGD generalizes better than GD?

34 / 45

Flatness hypothesis

The famous flatness hypothesis (Hochreiter and Schmidhuber, 1995; Keskar et al., 2016):

SGD converges to flatter solutions and flatter solutions generalize better.

Figure 7: The landscape for for θ(α) := αθSGD + (1− α)θGD. Taken from (Keskar et
al., 2016).

• Does SGD really prefer flat solutions? Why? [3]
• Why does the flat solutions generalize better than the sharp solutions? [7]

35 / 45

https://proceedings.neurips.cc/paper/1994/file/01882513d5fa7c329e940dda99b12147-Paper.pdf

Flatness hypothesis

The famous flatness hypothesis (Hochreiter and Schmidhuber, 1995; Keskar et al., 2016):

SGD converges to flatter solutions and flatter solutions generalize better.

Figure 7: The landscape for for θ(α) := αθSGD + (1− α)θGD. Taken from (Keskar et
al., 2016).

• Does SGD really prefer flat solutions? Why? [3]
• Why does the flat solutions generalize better than the sharp solutions? [7]

35 / 45

https://proceedings.neurips.cc/paper/1994/file/01882513d5fa7c329e940dda99b12147-Paper.pdf

Flatness hypothesis

The famous flatness hypothesis (Hochreiter and Schmidhuber, 1995; Keskar et al., 2016):

SGD converges to flatter solutions and flatter solutions generalize better.

Figure 7: The landscape for for θ(α) := αθSGD + (1− α)θGD. Taken from (Keskar et
al., 2016).

• Does SGD really prefer flat solutions? Why? [3]
• Why does the flat solutions generalize better than the sharp solutions? [7]

35 / 45

https://proceedings.neurips.cc/paper/1994/file/01882513d5fa7c329e940dda99b12147-Paper.pdf

Escape phenomenon

SGD = GD + noise. Let gi = ∇`(fi, f), g = Ei[gi].

θt+1 = θt − η∇g(θt) +
η

B
ξ(θt),

where E[ξ] = 0,E[ξξT] = 1
n

∑n
i=1(gi − g)(gi − g)T .

0 2000 4000 6000 8000 10000 12000 14000

Iteration

20

40

60

80

100

T
ra

in
A

cc
ur

ac
y(

%
)

GD

SGD

0 2000 4000 6000 8000 10000 12000 14000

Iteration

10

20

30

40

50

60

70

T
es

t
A

cc
ur

ac
y(

%
)

GD

SGD

Figure 8: Fast escape phenomenon in fitting corrupted FashionMNIST. This escape
phenomenon shows that the GD solutions are unstable for SGD dynamics.

36 / 45

Escape phenomenon

SGD = GD + noise. Let gi = ∇`(fi, f), g = Ei[gi].

θt+1 = θt − η∇g(θt) +
η

B
ξ(θt),

where E[ξ] = 0,E[ξξT] = 1
n

∑n
i=1(gi − g)(gi − g)T .

0 2000 4000 6000 8000 10000 12000 14000

Iteration

20

40

60

80

100

T
ra

in
A

cc
ur

ac
y(

%
)

GD

SGD

0 2000 4000 6000 8000 10000 12000 14000

Iteration

10

20

30

40

50

60

70

T
es

t
A

cc
ur

ac
y(

%
)

GD

SGD

Figure 8: Fast escape phenomenon in fitting corrupted FashionMNIST. This escape
phenomenon shows that the GD solutions are unstable for SGD dynamics.

36 / 45

An illustrative example

Consider the target function f(x) = 1
2 (f1(x) + f2(x)) with

f1(x) = min(x2, 0.1(x− 1)2), f2(x) = min(x2, 1.9(x− 1)2)

−0.5 0.0 0.5 1.0 1.5
x

0.0

0.1

0.2

0.3

0.4
f = 1

2(f1 + f2)

f1

f2

SGD trajectory

0 200 400
Number of iteration

0.00

0.05

0.10

0.15

0.20

O
bj

ec
ti

ve
va

lu
e

Figure 9: SGD with η = 0.7, x0 = 1− ε with ε = 1e− 5.

Observation:

• Flatness cannot fully characterize the difference between SGD and GD, in particular the
escape phenomenon.

37 / 45

A linear stability analysis

• Consider the one-dimensional problem:

f(x) =
1

2n

n∑
i=1

aix
2, ai ≥ 0 ∀i ∈ [n] (0.15)

• The SGD iteration is given by,

xt+1 = xt − ηaξxt = (1− ηaξ)xt, (0.16)

• So after one step update, we have

Ext+1 = (1− ηa)Ext, (0.17)

Ex2
t+1 =

[
(1− ηa)2 + η2s2

]
Ex2

t , (0.18)

where a = 1
n

∑n
i=1 ai, s =

√
1
n

∑n
i=1 a

2
i − a2. We call a: sharpness b: non-uniformity.

38 / 45

A linear stability analysis

• Consider the one-dimensional problem:

f(x) =
1

2n

n∑
i=1

aix
2, ai ≥ 0 ∀i ∈ [n] (0.15)

• The SGD iteration is given by,

xt+1 = xt − ηaξxt = (1− ηaξ)xt, (0.16)

• So after one step update, we have

Ext+1 = (1− ηa)Ext, (0.17)

Ex2
t+1 =

[
(1− ηa)2 + η2s2

]
Ex2

t , (0.18)

where a = 1
n

∑n
i=1 ai, s =

√
1
n

∑n
i=1 a

2
i − a2. We call a: sharpness b: non-uniformity.

38 / 45

A linear stability analysis

• Consider the one-dimensional problem:

f(x) =
1

2n

n∑
i=1

aix
2, ai ≥ 0 ∀i ∈ [n] (0.15)

• The SGD iteration is given by,

xt+1 = xt − ηaξxt = (1− ηaξ)xt, (0.16)

• So after one step update, we have

Ext+1 = (1− ηa)Ext, (0.17)

Ex2
t+1 =

[
(1− ηa)2 + η2s2

]
Ex2

t , (0.18)

where a = 1
n

∑n
i=1 ai, s =

√
1
n

∑n
i=1 a

2
i − a2. We call a: sharpness b: non-uniformity.

38 / 45

Linear stability condition

• Global minimum x∗ = 0 is stable for SGD with batch size B, if

(1− ηa)2 +
η2(n−B)

B(n− 1)
s2 ≤ 1, s ≥ 0. (0.19)

• Otherwise, a small perturbation will lead SGD to escape from 0.

• Diagram:

• The learning rate and batch size play different roles in the global minima selection.

39 / 45

Remarks

• Similar analyses can be extended for high-dimensional cases

λmax

{
(I − ηH)2 +

η2(n−B)

B(n− 1)
Σ

}
≤ 1.

Let a = λmax(H), s2 = λmax(Σ), then a necessary condition is

0 ≤ a ≤ 2

η
, 0 ≤ s ≤ 1

η

√
B(n− 1)

n−B ≈
√
B

η
.

• The dynamical stability perspective is applicable for general optimizers and “definition” of
stability.

• In practice, SGD for NNs lives at the edge of stability.

40 / 45

Learning rate is crucial for the flatness of the selected minima

Table 1: Sharpness of the solutions found by GD with different learning rates. Each
experiment is repeated for 5 times with independent random initialization.

η 0.01 0.05 0.1 0.5 1

FashionMNIST 53.5± 4.3 39.3± 0.5 19.6± 0.15 3.9± 0.0 1.9± 0.0

CIFAR10 198.9± 0.6 39.8± 0.2 19.8± 0.1 3.6± 0.4 -

prediction 2/η 200 40 20 4 2

41 / 45

The selection mechanism

0 2 4

sharpness

0

5

10

15
no

nu
ni

fo
rm

it
y

2/η

FashionMNIST
GD

SGD, B=25

SGD, B=10

SGD, B=4

0 10 20

sharpness

0

20

40

60

no
nu

ni
fo

rm
it

y

2/η

CIFAR10
GD

SGD, B=25

SGD, B=10

SGD, B=4

Figure 10: The sharpness-non-uniformity diagram for the minima selected by SGD.

• SGD prefer uniform solutions. [3]

• Non-uniformity is nearly proportional to the sharpness. [7]

• Combining them together, SGD is biased to solutions with small sharpness, i.e., flat
solutions.

42 / 45

Non-uniformity is strongly correlated to sharpness

0 10 20 30 40

Sharpness

0

20

40

60

N
on

-u
ni

fo
rm

it
y

FNN for FashionMNIST

0 100 200 300 400

Sharpness

0

200

400

600

N
on

-u
ni

fo
rm

it
y

VGG for CIFAR-10

0 1000 2000 3000 4000

Sharpness

0

1000

2000

3000

4000

N
on

-u
ni

fo
rm

it
y

ResNet for CIFAR-10

Figure 11: Scatter plot of sharpness and non-uniformity. For each case, we trained
about 500 models with different initializations, learning rates, batch sizes, etc.

Why the non-uniformity is strongly correlated with the sharpness?

43 / 45

Summary

GD for 2LNN

• In the highly over-parameterized regime, NN = kernel.

• In the less over-parameterized regime, bias to sparse solutions if the model is
over-realized.

• This implicit regularizations is sensitive to the change of network width. A sharp
transition happens within the midly over-parameterized regime.

• For scale networks, the implicit regularization is much more robust.

GD vs. SGD

• Minima selection via the (linear) dynamical stability.

• SGD favors solutions with large uniformity, while GD does not.

• The uniformity is strongly correlated with the flatness.

• Hence, SGD prefers flatter solution than GD.

44 / 45

Summary

GD for 2LNN

• In the highly over-parameterized regime, NN = kernel.

• In the less over-parameterized regime, bias to sparse solutions if the model is
over-realized.

• This implicit regularizations is sensitive to the change of network width. A sharp
transition happens within the midly over-parameterized regime.

• For scale networks, the implicit regularization is much more robust.

GD vs. SGD

• Minima selection via the (linear) dynamical stability.

• SGD favors solutions with large uniformity, while GD does not.

• The uniformity is strongly correlated with the flatness.

• Hence, SGD prefers flatter solution than GD.

44 / 45

Summary

GD for 2LNN

• In the highly over-parameterized regime, NN = kernel.

• In the less over-parameterized regime, bias to sparse solutions if the model is
over-realized.

• This implicit regularizations is sensitive to the change of network width. A sharp
transition happens within the midly over-parameterized regime.

• For scale networks, the implicit regularization is much more robust.

GD vs. SGD

• Minima selection via the (linear) dynamical stability.

• SGD favors solutions with large uniformity, while GD does not.

• The uniformity is strongly correlated with the flatness.

• Hence, SGD prefers flatter solution than GD.

44 / 45

Summary

GD for 2LNN

• In the highly over-parameterized regime, NN = kernel.

• In the less over-parameterized regime, bias to sparse solutions if the model is
over-realized.

• This implicit regularizations is sensitive to the change of network width. A sharp
transition happens within the midly over-parameterized regime.

• For scale networks, the implicit regularization is much more robust.

GD vs. SGD

• Minima selection via the (linear) dynamical stability.

• SGD favors solutions with large uniformity, while GD does not.

• The uniformity is strongly correlated with the flatness.

• Hence, SGD prefers flatter solution than GD.

44 / 45

Summary

GD for 2LNN

• In the highly over-parameterized regime, NN = kernel.

• In the less over-parameterized regime, bias to sparse solutions if the model is
over-realized.

• This implicit regularizations is sensitive to the change of network width. A sharp
transition happens within the midly over-parameterized regime.

• For scale networks, the implicit regularization is much more robust.

GD vs. SGD

• Minima selection via the (linear) dynamical stability.

• SGD favors solutions with large uniformity, while GD does not.

• The uniformity is strongly correlated with the flatness.

• Hence, SGD prefers flatter solution than GD.

44 / 45

Summary

GD for 2LNN

• In the highly over-parameterized regime, NN = kernel.

• In the less over-parameterized regime, bias to sparse solutions if the model is
over-realized.

• This implicit regularizations is sensitive to the change of network width. A sharp
transition happens within the midly over-parameterized regime.

• For scale networks, the implicit regularization is much more robust.

GD vs. SGD

• Minima selection via the (linear) dynamical stability.

• SGD favors solutions with large uniformity, while GD does not.

• The uniformity is strongly correlated with the flatness.

• Hence, SGD prefers flatter solution than GD.

44 / 45

Summary

GD for 2LNN

• In the highly over-parameterized regime, NN = kernel.

• In the less over-parameterized regime, bias to sparse solutions if the model is
over-realized.

• This implicit regularizations is sensitive to the change of network width. A sharp
transition happens within the midly over-parameterized regime.

• For scale networks, the implicit regularization is much more robust.

GD vs. SGD

• Minima selection via the (linear) dynamical stability.

• SGD favors solutions with large uniformity, while GD does not.

• The uniformity is strongly correlated with the flatness.

• Hence, SGD prefers flatter solution than GD.

44 / 45

Summary

GD for 2LNN

• In the highly over-parameterized regime, NN = kernel.

• In the less over-parameterized regime, bias to sparse solutions if the model is
over-realized.

• This implicit regularizations is sensitive to the change of network width. A sharp
transition happens within the midly over-parameterized regime.

• For scale networks, the implicit regularization is much more robust.

GD vs. SGD

• Minima selection via the (linear) dynamical stability.

• SGD favors solutions with large uniformity, while GD does not.

• The uniformity is strongly correlated with the flatness.

• Hence, SGD prefers flatter solution than GD.

44 / 45

Summary

GD for 2LNN

• In the highly over-parameterized regime, NN = kernel.

• In the less over-parameterized regime, bias to sparse solutions if the model is
over-realized.

• This implicit regularizations is sensitive to the change of network width. A sharp
transition happens within the midly over-parameterized regime.

• For scale networks, the implicit regularization is much more robust.

GD vs. SGD

• Minima selection via the (linear) dynamical stability.

• SGD favors solutions with large uniformity, while GD does not.

• The uniformity is strongly correlated with the flatness.

• Hence, SGD prefers flatter solution than GD.

44 / 45

Missing topics

What I should have covered:

• Refined analyses of RFM and KRR: implicit biases, double descent, and benign overfitting.

• (Deep) matrix factorization and linear networks.

• SDE-based interpretations of differences between SGD and GD.

• Dropout, batch normalization, weight decay, distillation, etc.

Less explored topics:

• RNN, LSTM, Transformer, CNN.

• GAN, Auto-encoder, normalized flow, etc.

• Self-supervised (contrastive) learning.

45 / 45

Missing topics

What I should have covered:

• Refined analyses of RFM and KRR: implicit biases, double descent, and benign overfitting.

• (Deep) matrix factorization and linear networks.

• SDE-based interpretations of differences between SGD and GD.

• Dropout, batch normalization, weight decay, distillation, etc.

Less explored topics:

• RNN, LSTM, Transformer, CNN.

• GAN, Auto-encoder, normalized flow, etc.

• Self-supervised (contrastive) learning.

45 / 45

