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Consider the problem of minimizing
m@in Rn(0).

The gradient descent (GD) iterates as follows
Opr1 =0, — 77tV7A3n(9t),

where 7 is the learning rate. When 7; — 0, the GD becomes the GD flow:
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Theorem 0.1 (Non-convex). For anyt > 0,
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Proof. The energy dissipation satisfies
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The above theorem shows that GD will converge to a stationary point, which is the best we can expect
for general non-convex problem. Next, we prove that GD will converge to a global minima, if the objective
function is convex.

Theorem 0.2. Assume that R, is convex and the minimizer is given by 6* with ||0*||2 < co. Then, we have

16"~ 6oll3

;%’n 9 - fan 9* <
PI’OOf. For any é, define

. .- 1 _
T(6) = tRa(00) — Ru(0)) + 5104 — 0113
Using the convexity, we have
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Hence, J(t) < J(0), i.e.,
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Taking 6 = #* completes the proof. O

A natural question is that: Can we prove the converge to global minima for non-convex problem? This
problem often strongly depends on the specific model. There exists a general condition as follows.

Definition 0.3 (Polyak-Lojasiewicz (PL) condition). 7%” is said to satisfy the PL condition if
Hvﬁ%wmgzcxﬁﬂw)—%gﬁ%w».
Theorem 0.4. Under the PL condition, we have
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Let Ay = Ry, (6;) — infp R (). Then, Ay < —CA;. Hence, Ay < e~ “tA. -

Remark 0.5. Strongly convex functions satisfy the PL condition.



