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Consider the problem of minimizing
min
θ
R̂n(θ).

The gradient descent (GD) iterates as follows

θt+1 = θt − ηt∇R̂n(θt),

where ηt is the learning rate. When ηt → 0, the GD becomes the GD flow:

dθt
dt

= −∇R̂n(θt).

Theorem 0.1 (Non-convex). For any t > 0,

min
s∈[0,t]

‖∇R̂n(θs)‖ ≤

√
R̂n(θ0)− infθ R̂n(θ)

t
.

Proof. The energy dissipation satisfies

dR̂n(θt)

dt
= −‖∇R̂n(θt)‖22.

Hence,

R̂n(θ0)− R̂n(θt) =

∫ t

0
‖∇R̂n(θs)‖22 ds ≥ t min

s∈[0,t]
‖∇R̂n(θs)‖2.

The above theorem shows that GD will converge to a stationary point, which is the best we can expect
for general non-convex problem. Next, we prove that GD will converge to a global minima, if the objective
function is convex.

Theorem 0.2. Assume that R̂n is convex and the minimizer is given by θ∗ with ‖θ∗‖2 <∞. Then, we have

R̂n(θt)− R̂n(θ∗) ≤ ‖θ
∗ − θ0‖22

2t
.

Proof. For any θ̄, define

J(t) = t(R̂n(θt)− R̂n(θ̄)) +
1

2
‖θt − θ̄‖22.

Using the convexity, we have

dJ(t)

dt
= R̂n(θt)− R̂n(θ̄)− t‖R̂n(θr)‖22 + 〈θt − θ̄,−∇R̂n(θt)〉
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= −t‖R̂n(θr)‖22 −
(
R̂n(θ̄)− R̂n(θt)− 〈θ̄ − θt,∇R̂n(θt)〉

)
≤ 0.

Hence, J(t) ≤ J(0), i.e.,

t(R̂n(θt)− R̂n(θ̄)) +
1

2
‖θt − θ̄‖22 ≤

1

2
‖θ0 − θ̄‖22

Taking θ̄ = θ∗ completes the proof.

A natural question is that: Can we prove the converge to global minima for non-convex problem? This
problem often strongly depends on the specific model. There exists a general condition as follows.

Definition 0.3 (Polyak-Lojasiewicz (PL) condition). R̂n is said to satisfy the PL condition if

‖∇R̂n(θ)‖2 ≥ C(R̂n(θ)− inf
θ
R̂n(θ)).

Theorem 0.4. Under the PL condition, we have

R̂n(θt)− inf
θ
R̂n(θ) ≤ e−Ct(R̂n(θ0)− inf

θ
R̂n(θ)).

Proof.

dR̂n(θt)

dt
= −‖∇R̂n(θ)‖22 ≤ −C(R̂n(θ)− inf

θ
R̂n(θ)) (0.1)

Let ∆t = R̂n(θt)− infθ R̂n(θ). Then, ∆̇t ≤ −C∆t. Hence, ∆t ≤ e−Ct∆0.

Remark 0.5. Strongly convex functions satisfy the PL condition.
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