
Theoretical Deep Learning

Lecture 1: Supervised learning
July 25, 2021

Lecturer: Lei Wu Scribe: Lei Wu

The task of machine learning is to discover useful information from the given finite data. Roughly
speaking, there are three categories of learning problems.

• Supervised learning. We are given S = {(xi, yi)}, where yi is the label of xi. Our task is to learn the
mapping from x to y using these samples.

• Unsupervised learning. We have only S = {xi} without any labels. The task is to discover some
useful information about the underlying distribution of x. The definition of “useful information”
varies with applications.

• Semi-supervised learning. We have two set of data: S1 and S2, where S1 = {xi} are unlabeled, and
S2 = {(xj , yj)} are labeled. The task of semi-supervised learning is either learning the input-output
map with the help of unlabeled data or discovering the relevant information of the input distribution
with the help of those labels.

This course will focus on the supervised learning setting. The unsupervised learning and semi-supervised
learning are also important but more challenging.

1 Setup of supervised learning

Assume that the label is generated by
yi = f∗(xi) + εi,

where f∗ is the target function and εi is the “measurement noise”. Our task is to learn (i.e., approximate)
f∗. There are two major categories of supervised learning problems:

• Regression problem: labels take continuous values.

• Classification problem: labels take the discrete values.

Let f be a hypothesis. The objective of supervised learning is to minimize the population risk

R(f) := Ex,y[`(f(x), y)].

However, in practice, we can only deal with the empirical risk:

R̂n(f) =
1

n

n∑
i=1

`(f(xi), yi),

where ` : Y × Y 7→ R is the loss function.

• For regression problem, Y = R and the popular loss function is `(y1, y2) = (y1 − y2)2.

1



• For classification problem, Y = {0, 1, . . . ,K}. The ideal loss function is the 0− 1 loss: `(y1, y2) =
1(y1 6= y2), i.e., 0 if y1 = y2 and 1 otherwise. Note that this loss is not differentiable and hence, one
often use other surrogate loss functions.

The standard approach of supervised learning to minimize the regularized empirical risk

f̂n = argmin
f∈F

R̂n(f) + λ‖f‖. (1.1)

Here, F denotes the hypothesis space, which is the set of functions that can be represented by our model.
‖f‖ measures the complexity of a candidate f , which usually encode our prior knowledge about the target
function f∗. λ is the tradeoff hyperparameter. A classical example is the LASSO regression:

β̂n = argmin
β∈Rd

1

n

n∑
i=1

(βTxi − yi)2 + λ‖β‖`1 .

In this case,

• f(x) = βTx and the hypothesis space is F = {βTx : β ∈ Rd}.

• The prior knowledge is that the ground truth β∗ is sparse. The learning procedure encodes this knowl-
edge via penalizing the `1 norm of β.

However, our ultimate goal is not minimizing the fitting error at the n points. We would like to minimize
the population risk. Notice that for a fixed f (independent of the training samples S)

ES [R̂n(f)] =
1

n

n∑
i=1

ES [`(f(xi), yi)] =
1

n
· nR(f) = R(f), (1.2)

which means that empirical risk is an unbiased estimator of the population risk. This explains why we want
to minimize the empirical risk.

Unfortunately, (1.2) does not hold for the estimator f̂n, since it depends on the samples (x1, y1), . . . , (xn, yn).
Only minimizing the empirical risk may yield a solution which generalizes badly on unseen data. This phe-
nomenon is called overfitting. The reason why we need to add the regularization term is to prevent from
selecting a overfitted solution. See Figure 1 for an illustration.

2 Generalization analysis via a priori estimates

There are two nature questions emerging for supervised learning.

• For the estimator 1.1, what kind of functions can be learned efficiently?

• How do we evaluate the performance of f̂n?

For the second question, the performance is characterized by the generalization error:

‖f̂n − f∗‖L2(Px). (2.1)

Here, we focus on the regression problem for simplicity. We need to understand how small (2.1) is.
Let f̃ = argminf∈F E[(f(x)− f∗(x))2]. Then, the generalization error can be decomposed as follows:

‖f̂n − f∗‖L2(Px) ≤ ‖f̂n − f̃‖L2(Px)︸ ︷︷ ︸
Estimation error

+ ‖f̃ − f∗‖L2(Px)︸ ︷︷ ︸
Approximation error

.

2



Figure 1: Illustration of overfitting.

• The approximation error is caused by the choice of our model. For instance, the target function is
nonlinear but the model is linear, this will introduce an inevitable approximation error. More often,
our model is parameterized by m parameters, e.g., f(x; a) =

∑m
j=1 ajψj(x) where {ψj} is a set

of nonlinear basis functions. Then, the approximation error will decay with m. It is important to
understand how fast the approximation error rate decays.

• The estimation error is because of the only accessibility of finite samples. This term decrease with the
number of samples.

Consider a specific model: piecewise polynomials. It is well-known that the generalization error goes
as follows

‖f̂n − f∗‖L2(Px) .
‖f∗‖Hs

ns/d
.

where Hs is the Sobolev space, s denotes the smoothness, and d is the input dimension. This means
that for a given accuracy ε, we need O(ε−d/s) samples. Unfortunately, this rate suffers from the curse of
dimensionality (CoD), i.e., number of samples needed depends on the input dimension exponentially.

Generally, we would like to seek a similar estimate (bound) of the generalization error for neural net-
works:

‖f̂n − f∗‖L2(Px) ≤ e(1/m, 1/n, ‖f
∗‖∗, d). (2.2)

This estimate is a priori since the RHS only depends on the target function f∗ not the solution f̂n 1.

• Note that the ‖ · ‖∗ norm measures the complexity of target function. Obviously, simpler functions
should be easier to estimate and approximate. The specific form of ‖ · ‖∗ depends on the choice of
model F and the regularization.

– Piecewise linear functions v.s. polynomials. The former works very well for less smooth func-
tions and the latter works well for smooth functions.

– For the linear regression, ridge works well for target with small `2 norm; lasso works well for
target with small `1 norm.

1The bound (2.2) is also called oracle inequality in statistics.

3



• The dependence of d is crucial in the high-dimensional case. For a given model F and the regulariza-
tion, we need to identify an appropriate function norm ‖ · ‖∗ such that the estimate 2.2 depends on d
only polynomially. In other words, we seek to identify the target functions such that the estimator 1.1
can learn them efficiently.

Throughout this course, we will attempt to use the above framework to quantitatively answer the follow-
ing questions:

• What kind of functions can be learned efficiently using neural networks?

• Why do neural networks outperform those traditional methods? Why do deep networks perform better
than shallow networks?

4


	Setup of supervised learning
	Generalization analysis via a priori estimates

