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If X1, . . . , Xn are i.i.d. random variables with expectation µ. Then,

E[
1

n

n∑
i=1

Xi] =
1

n

n∑
i=1

E[Xi] = µ.

We are interested in when the empirical mean 1
n

∑n
i=1Xi will concentrate in µ. Specifically:

• What conditions are required for the random variable Xi?

• What does the “concentration” means?

Let first review two classical results in standard probability theory textbook.

Theorem 0.1 (Strong law of large numbers (LLN)). LetX1, . . . , Xn be a sequence of i.i.d. random variables
with expectation µ. Then,

1

n

n∑
i=1

Xi → µ almost surely.

LLN shows that as long as the mean is finite, the empirical mean will converge. In other words, as
long as we have sufficient samples, 1

n

∑n
i=1Xi will always concentrate at µ. Unfortunately, the rate of

“concentration” in LLN can be arbitrarily slow. The next theorem, the central limit theorem, makes one step
further shows that if the second moment is finite, the convergence is guaranteed with the rate of O(1/

√
n).

Theorem 0.2 (Central limit theorem (CLT)). Let X1, . . . , Xn be a sequence of i.i.d. random variables with
mean µ and variance σ2. Then,

√
n

(
X1 +X2 + · · ·+Xn

n
− µ

)
→ N (0, σ2) in distribution.

CLT implies that 1
n

∑n
i=1Xi ≈ µ + σ√

n
Z, where Z is the standard normal random variable. Thus, it

provides a precise characterization how the empirical mean deviates from the population mean µ when the
deviation is in the order of 1/

√
n. CLT is strong in the sense that it provide a precise characterization of

the whole distribution of (small) deviations. However, it is also not sufficient if we are interested in “large
deviations”, whose magnitudes do not depend on n?

1 Concentration Inequalities

By Chebysheff’s inequality,

P{| 1
n

n∑
i=1

Xi − µ| ≥ t} = P{| 1
n

n∑
i=1

Xi − µ|2 ≥ t2} ≤
E[| 1n

∑n
i=1Xi − µ|2]

t2
≤ σ2

nt2
.
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This probability of having large deviations is in the order of O(1/n).
On the other hand, from CLT, we expect that

P{| 1
n

n∑
i=1

Xi − µ| ≥ t} ≈ P{|σZ√
n
| ≥ t} = 2P{Z ≥

√
nt

σ
}

=

√
2

π

∫ ∞
√
nt
σ

e−
x2

2 dx . e−
1
2

(
√
nt
σ

)2 = e−
nt2

2σ2 . (1.1)

This suggests that the tail can decay exponentially fast, which is much stronger than the one provided by
Chebysheff’s inequality. Unfortunately, this calculation is not correct since 1√

n

∑n
i=1Xi − µ→ σZ can be

arbitrarily slow. Therefore, we need to control somethings stronger than the variance/second moments.
Let us first look at a sample example.

Theorem 1.1 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. symmetric Bernoulli random variable, i.e.,
P(X = 1) = P(X = −1) = 1

2 . Then,

P{ 1

n

n∑
i=1

Xi ≥ t} . e−
nt2

2 .

Proof. We have

P{ 1

n

n∑
i=1

Xi ≥ t} = P{eλ
∑n
i=1 ≥ enλt} ≤ E[eλ

1
n

∑n
i=1Xi ]

enλt

= e−nλt
n∏
i=1

E[eλXi ] = e−nλt+nψ(λ), (1.2)

where

ψ(λ) = logE[eλX ] = log(
eλ + e−λ

2
) ≤ λ2/2. (1.3)

Plugging it into (1.2), we have

P{ 1

n

n∑
i=1

Xi ≥ t} ≤ inf
λ>0

e−nλt+nψ(λ) = inf
λ
e−n(λt−λ2/2) = e−nt

2/2.

Remark 1.2. The above approach is often referred as the Chernoff-Cramer method.

From the proof, we can see that the key ingredient is the log-moment generating function:

ψ(λ) = logE[eλ(X−E[X])] (1.4)

and the Legendre dual of the log-moment generating function:

ψ∗(t) = sup
λ>0
{λt− ψ(λ)}. (1.5)
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Lemma 1.3. If X has a log-moment generating function ψ with Legendre-dual ψ∗, then

P{X − E[X] ≥ t} ≤ e−ψ∗(t).

Let X1, . . . , Xn be i.i.d. random variable. Then,

P{| 1
n

n∑
i=1

Xi − E[X]| ≥ t} ≤ 2e−nψ
∗(t).

The above lemma implies that ψ∗(t) controls the rate of concentration.

Definition 1.4 (sub-Gaussian). A random variable X is said to be sub-Gaussian with variance proxy σ2 if
ψ(λ) ≤ λ2σ2

2 .

The sub-Gaussian assumption implies that

ψ∗(t) = sup
λ>0
{λt− ψ(λ)} ≥ sup

λ>0
{λt− λ2σ2

2
} =

t2

2σ2
.

By Lemma 1.3, the tail of X satisfies

P{|X − E[X]| ≥ t} ≤ 2e−
t2

2σ2 , (1.6)

which is similar to the tail of Gaussian. In fact, the tail estimate (1.6) is often used as the equivalent definition
of the sub-Gaussian class.

Corollary 1.5 (Chernoff bound). LetX1, . . . , Xn be i.i.d. sub-Gaussian random variables with mean µ and
variance proxy σ2. Then

P{| 1
n

n∑
i=1

Xi − µ| ≥ t} ≤ 2e−
nt2

2σ2 .

The following Hoeffding’s lemma implies that all the bounded random variables are sub-Gaussian.

Lemma 1.6 (Hoffding’s lemma). Assume a ≤ X ≤ b. Then, ψ(λ) ≤ λ2(b− a)2/8.

Proof. WLOG, assume that E[X] = 0. Recall that ψ(λ) = logE[eλX ]. Then,

ψ′(λ) =
E[XeλX ]

E[eλX ]
, ψ′′(λ) =

E[X2eλX ]

E[eλX ]
−
(
E[XeλX ]

E[eλX ]

)2

.

Let Q denote the distribution with dQ
dP = eλX/E[eλX ]. Then, we can rewrite the second-order derivative as

VarQ[X]. Since X ∈ [a, b], we have

VarQ[X] = EQ[|X − EX |2] ≤ EQ[|X − b− a
2
|2] ≤ EQ[|b− a

2
|2] =

(b− a)2

4
.

Hence,

ψ(0) = 0, ψ′(0) = 0, ψ′′(λ) ≤ (b− a)2

4
,

which implies

ψ(λ) = ψ(0) +

∫ λ

0

∫ s

0
ψ′′(s) ds ≤ (b− a)2λ2

8
.
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Remark 1.7. The Hoeffding’s lemma is sharp when X is the symmetric Bernoulli distribution, i.e., P(X =
1) = P(X = −1) = 1/2. See Eq. (1.3).

Corollary 1.8 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. random variables. If a ≤ Xi ≤ b, then,

P{| 1
n

n∑
i=1

Xi − µ| ≥ t} ≤ 2e
− 2nt2

(b−a)2 .

Let f : Rn 7→ R be a (nonlinear) function and consider the following concentration:

f(X1, . . . , Xn) ≈ E[f(X1, . . . , Xn)] with high probability?

The preceding results correspond to f(x1, . . . , xn) = 1
n

∑n
i=1 xi. Can we extend it to nonlinear functions?

• If f only depends on one coordinate, we expect a lot of oscillations.

• If f is equally robust to small changes for all coordinates, we anticipate that this case will behave like
the empirical mean.

Theorem 1.9 (McDiarmid’s inequality). Define

Dif(x) = sup
α
f(x1, . . . , xi−1, α, xi+1, . . . , xn)− inf

α
f(x1, . . . , xi−1, α, xi+1, . . . , xn).

Assume that Di is bounded for all i and let σ2 := 1
4

∑n
i=1 ‖Dif‖2L∞ . Then,

P{|f(X1, . . . , Xn)− E[f ]| ≥ t} ≤ 2e−
t2

2σ2 .

One can think Dif(x) as a measure of the sensitivity of f to the i-th coordinates. Considering the case
of empirical mean, Dif(x) = O(1/n) for every i. This recovers the Hoeffding’s inequality (Corollary 1.8).

The proof needs following lemmas.

Lemma 1.10 (Azuma’s lemma). Let {Fi}ni=1 be a filtration. Assume σi to be positive constants and {∆i}
random variables such that

1. E[∆i|Fi−1] = 0 (Martingale difference property).

2. logE[eλ∆i |Fi−1] ≤ λ2σ2
i

2 (Conditional sub-Gaussian property).

Then,
∑n

i=1 ∆i is sub-Gaussian with the proxy variance
∑n

i=1 σ
2
i .

Proof. This time, we do not have the independence. Instead, we can exploit the conditional independence,
i.e., the martingale property. Consider the condition on the filtration

E
[
eλ

∑n
i=1 ∆i

]
= E

[
E[eλ

∑n
i=1 ∆i |Fn−1]

]
E
[
eλ

∑n−1
i=1 ∆i E[eλ∆n |Fn−1]

]
≤ e

λ2σ2n
2 E

[
eλ

∑n−1
i=1 ∆i

]
By induction, we conclude that

E[eλ
∑n
i=1 ∆i ] ≤ e

λ2
∑n
i=1 σ

2
i

2 .

This means
∑n

i=1 ∆i is sub-Gaussian with the proxy variance
∑n

i=1 σ
2
i .
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Lemma 1.11 (Azuma-Hoeffding’s inequality). Under the assumption of Lemma 1.10, assume Ai ≤ ∆i ≤
Bi almost surely and Ai, Bi are Fi−1-measurable. Then,

∑n
i=1 ∆i is sub-Gaussian with the proxy variance

σ2 = 1
4

∑n
i=1 ‖Bi −Ai‖L∞ . In particular,

P{|
n∑
i=1

∆i| ≥ t} ≤ 2e−
t2

2σ2 .

Proof. Combining Lemma 1.3, 1.6 and 1.10, we complete the proof.

Proof of McDiarmid’s inequality. To analyze the behavior of f(X1, . . . , Xn), consider the following
decomposition

f(X)− E[f(X)] = f(X)− E[f(X)|X1, . . . , Xn−1]

+ E[f(X)|X1, . . . , Xn−1]− E[f(X)|X1, . . . , Xn−2]

+ · · ·+ E[f(X)|X1]− E[f(X)]

=

n∑
i=1

∆i, (1.7)

where ∆i = E[f(X)|X1, . . . , Xi]−E[f(X)|X1, . . . , Xi−1]. LetFi = σ(X1, . . . , Xi). Then, E[∆i|Fi−1] =
0 and

∆i = E
[
E[f(X1, . . . , Xi, . . . , Xn)|Xi]− f(X)|X1, . . . , Xi−1

]
.

Let

Ai = E[inf
α
f(X1, . . . , Xi−1, α,Xi+1, . . . , Xn)− f(X1, . . . , Xn)|X1, . . . , Xi−1]

Bi = E[sup
α
f(X1, . . . , Xi−1, α,Xi+1, . . . , Xn)− f(X1, . . . , Xn)|X1, . . . , Xi−1]

By the assumption of f , it is easy to verify that

Ai ≤ ∆i ≤ Bi, |Bi −Ai| ≤ ‖Dif‖L∞ .

Using the Azuma-Hoeffding lemma, f(X) − E[f(X) is a sub-Gaussian with the variance proxy σ2 =
1
4

∑n
i=1 ‖Dif‖2L∞ . This directly implies that

P{|f(X)− E[f(X)]| ≥ t} ≤ 2e
− 2∑n

i=1
‖Dif‖2L∞ .

Thus, we complete the proof.

Lemma 1.12 (Maximal inequality). Assume that X1, . . . , Xn be independent sub-Gaussian random vari-
able with the variance proxy σ2. Then,

E[max
i∈[n]

Xi] ≤ σ
√

2 log n.
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Proof. For any λ > 0,

E[max
i∈[n]

Xi] =
1

λ
E[log eλmaxi∈[n]Xi ] ≤ 1

λ
logE[eλmaxi∈[n]Xi ]

≤ 1

λ
logE[max

i∈[n]
eλXi ] ≤ 1

λ
log

n∑
i=1

E[eλXi ]

≤ 1

λ
log

n∑
i=1

e
σ2λ2

2 =
log n

λ
+
σ2λ

2
.

Taking λ =
√

2 log(n)/σ2 completes the proof.

Remark 1.13. Note that in the maximal inequality, we do not assume that X1, . . . , Xn are independent.
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