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1 Feature-based methods

We start by considering the linear regression, for which the hypothesis class is

F = {βTx : β ∈ Rd},

where we omit the bias term for simplicity. The ridge regression penalizes the squared `2 norm of β:

β̂n = argmin
β∈Rd

1

n

n∑
i=1

(βTxi − yi)2 + λ‖β‖22.

The minimizer has a closed-form solution:

β̂n =

(
1

n
XTX + I

)−1 1

n
Xy,

where X = (x1, . . . , xn)T ∈ Rn×d, y = (y1, . . . , yn)T ∈ Rn. Another population one is LASSO, which
penalizes the `1 norm of parameters:

min
β∈Rd

1

n

n∑
i=1

(βTxi − yi)2 + λ‖β‖1.

To consider nonlinear functions, we can consider the model:

f(x;β) =
m∑
j=1

βjϕj(x).

Here, ϕ1, . . . , ϕn are a set of (nonlinear) basis functions, which are often referred to as features in machine
learning. Accordingly, the feature map is defined as Φ : X 7→ Rm with Φ(x) = (ϕ1(x), . . . , ϕn(x))T ∈
Rm. Typical examples includes

• Spectral methods: {ϕj} are either Fourier basis or orthogonal polynomials.

• Splines: {ϕj} are piecewise polynomials.

• Computer vision: Some hand-crafted features.

We can consider two types of feature-based methods.

1

n

n∑
i=1

(βTΦ(xi)− yi)2 + λ‖β‖22

1

n

n∑
i=1

(βTΦ(xi)− yi)2 + λ‖β‖1.
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1.1 General feature-based methods

`2 extension. The previous idea can be extended to a general feature-based model:

f(x;β) = 〈β,Φ(x)〉H, (1.1)

where

• H is the feature space, which can be any Hilbert space;

• Φ : X 7→ H is the feature map;

• The “coefficients” are β ∈ H.

If taking H = Rm and Φ(x) = (φ(x1), . . . , φ(xn))T ∈ Rm, we recover the classical ones. However,
the advantage of the formulation (1.1) is that it includes the case where m =∞. Below is an example:

Random feature models (RFMs). Consider

f(x;β) =

∫
β(w)ϕ(x;w) dπ(w) = 〈β, ϕ(x; ·)〉L2(π), (1.2)

where π is a fixed distribution. In this case, the feature map is given by

Φ : X 7→ L2(π), Φ(x) = ϕ(x; ·),

and the parameter is β ∈ L2(π). The model (1.2) can be viewed as the continuum limit of the following
random feature model

f(x;β) =
1

m

m∑
j=1

βjϕ(x;wj),

where w1, . . . , wm are independently sampled from π and fixed.
Now, the model (1.1) is well-defined. The objective function of the corresponding ridge regression can

be written as

R̂n(β) =
1

n

n∑
i=1

(〈β,Φ(xi)〉H − yi)2 + λ‖β‖2H. (1.3)

How can we optimize (1.3), which is an infinitely dimensional problem?

1.2 `1 extension.

Consider the random feature methods:

1

n

n∑
i=1

 m∑
j=1

βjϕ(xi;wj)− yi

2

+
λ

m

m∑
j=1

|βj |.

Assume for any x ∈ X , ess supw |ϕ(x;w)| < ∞. Then, the continuum limit of the above method is given
by

min
β∈L1(π)

1

n

n∑
i=1

(∫
β(w)ϕ(xi;w) dπ(w)− yi

)2

+ λ

∫
|β(w)|dπ(w).

This method can not be analyzed using the kernel theory.
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2 Representer theorem and kernel methods

When it is clear from the context, we will drop the subscripts in 〈, 〉H and ‖ · ‖H for simplicity. Let us
consider a general problem:

R̂n(β) =
1

2n

n∑
i=1

`(f(xi;β), yi) + λr(‖β‖), (2.1)

• f(x;β) = 〈β,Φ(x)〉

• ` is a general loss function.

• r : [0,∞) 7→ [0,∞) is a strictly increasing function.

Theorem 2.1 (Representer theorem). Let β̂ the a minimizer of (2.1). Then, there must exist a1, . . . , an ∈ R
such that β̂ =

∑n
i=1 aiΦ(xi) and

f(x; β̂) = 〈β̂,Φ(x)〉 =
n∑
i=1

aik(xi, x), (2.2)

where k(x, x′) := 〈Φ(x),Φ(x′)〉.

Proof. Let Vn = span{Φ(x1), . . . ,Φ(xn)} ⊂ H. For any β ∈ H, we can decompose it as follows

β = β‖ + β⊥,

where β‖ ∈ Vn, β⊥ ∈ V ⊥n . Hence, ‖β‖2 = ‖β‖‖2 + ‖β⊥‖2. Since r(·) is non-decreasing,

r(‖β‖) ≥ r(‖β‖‖). (2.3)

On the other hand, for any xi,

f(xi;β) = 〈β,Φ(xi)〉 = 〈β‖,Φ(xi)〉+ 〈β⊥,Φ(xi)〉 = 〈β‖,Φ(xi)〉, (2.4)

where the last equality is due to β⊥ ∈ V ⊥n . Combining (2.3) and (2.4), we have for any β ∈ H,

R̂n(β) ≥ R̂n(β‖).

Therefore, we can take β̂‖ =
∑n

i=1 aiΦ(xi). Then, the function represented can be written as

f(x;β) = 〈β̂‖,Φ(x)〉 =

n∑
i=1

ai〈Φ(xi),Φ(x)〉 =

n∑
i=1

aik(xi, x).

This theorem allows transforming the infinite-dimensional optimization problem (2.1) into a finite di-
mensional problem. Moreover, we only need to access the kernel k(·, ·) without needing to evaluate the
feature maps.
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The reduced model. Representer theorem implies that we only need to choose

β =
n∑
j=1

ajΦ(xj), f(x;β) =
n∑
j=1

ajk(xj , x).

Moreover,

‖β‖2 = 〈
n∑
j=1

ajΦ(xj),
n∑
j=1

ajΦ(xj)〉 =
n∑

i,j=1

k(xi, xj)aiaj = aTKa,

where a = (a1, . . . , an)T ∈ Rn and K = (k(xi, xj)) ∈ Rn×n is the kernel matrix.
The kernel ridge regression (KRR) corresponds to the case where `(y, y′) = (y − y′)2 and r(t) = t2,

i.e., the problem (1.3). Then, the problem can be reduced to the following n-dimensional problem

R̂n(a) =
1

n
‖Ka− y‖22 + λaTKa, (2.5)

whose solution is given by

a = (
1

n
K + I)−1y.

In general, kernel methods refer to methods whose hypothesis class is given by

F =


n∑
j=1

ajk(xj , ·) : a ∈ Rn
 .

Mathematically, the kernel is defined as follows.

Definition 2.2 (kernel). k : X ×X 7→ R is said to be a kernel if there exists a feature map Φ : X 7→ H such
that

k(x, x′) = 〈Φ(x),Φ(x′)〉.

Below is a list of popular kernels.

Polynomial kernel: k(x, x′) = (1 + xTx′)s is a kernel for any s ∈ N+.

• Linear (s = 1). We have k(x, x′) = 〈Φ(x),Φ(x′)〉 with

Φ(x) = (1, x1, . . . , xd).

• Quadratic (s = 2): The feature map is given by

Φ(x) = (x2d, . . . , x
2
1︸ ︷︷ ︸

quadratic

,
√

2xdxd−1, . . . ,
√

2xdx1,
√

2xd−1xd−2, . . . ,
√

2x2x1︸ ︷︷ ︸
cross terms

,
√

2xd, . . . ,
√

2x1︸ ︷︷ ︸
linear terms

, 1︸︷︷︸
constant

).

〈Φ(x),Φ(x′)〉 =

d∑
i=1

(xi)
2(x′i)

2 + 2
∑
i 6=j

xixjx
′
ix
′
j + 2

∑
i

xix
′
i + 1

= (
d∑
i=1

xix
′
i)
2 + 2

∑
i

xix
′
i + 1

= (xTx′ + 1)2 (2.6)
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Gaussian kernel: k(x, x′) = e−
‖x−x′‖22

2 . Considering d = 1, we have

k(x, x′) = e−
x2

2
−x
′2
2 exx

′
= e−

x2

2
−x
′2
2

∑
n

1

n!
(x)n(x′)n

= 〈Φ(x),Φ(x)〉,

where Φ(x) = e−
x2

2 (1, x, 1√
2
x2, . . . , 1√

n!
xn, . . . ).

Laplace kernel:

k(x, x′) = e−
‖x−x′‖2

σ .

This kernel is less smooth than the Gaussian kernel. Recently, it has been shown that the Laplace kernel is
intimately related to neural network models in the kernel regime.

For a specific problem, choosing appropriate kernels is highly non-trivial. One may need to incorporate
the domain knowledge into the kernel design.

3 Reproducing kernel Hilbert spaces

In this section, we ask the question:

What kind of functions can be “efficiently” learned by kernel methods?

By representer theorem, consider
F = ∪∞n=1Fn,

where

Fn =


n∑
j=1

ajk(·, xj) : xj ∈ X , aj ∈ R, j ∈ [n]

 .

This intuition tells us that what kind of functions can be “approximated” by kernel methods. We are inter-
ested in functions f ∈ F̄ . However, the problem is how to take the closure and measure the complexity
of f ∈ F̄? Without imposing constraints on the norm of coefficients {aj} in taking the closure, this space
can be extremely large. For example, if the corresponding features are polynomials, then F contains all
the continuous functions because of the Stone-Weierstrass theorem. However, C(X ) is too large since the
Rademacher complexity is O(1). We hope that the Rademacher complexity is on the order of O(1/

√
n).

We need to define an “appropriate” norm for f ∈ F .

Let us take a step back to the feature-based representation:

β =
n∑
j=1

ajΦ(xj), f(x;β) =
n∑
j=1

ajk(xj , ·).

In KRR, we penalize ‖β‖2 of the hypothesis. This means that ‖β‖2 should be a good norm of the represented
function f(x;β), i.e,

‖f(·;β)‖2 = ‖β‖2 = 〈
n∑
i=1

aiΦ(xi),

n∑
j=1

ajΦ(xj)〉 =

n∑
i,j=1

aiajk(xi, xj).

This intuition can be made rigorous by the following theorem.
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Theorem 3.1 (Moore-Aronsajn theorem). Let k : X × X 7→ R be any kernel. Let H0 = span({k(·, x) :
x ∈ X}) and endow it with the inner product:

〈f, g〉H0 =
n∑
i=1

m∑
j=1

αiβjk(xi, x
′
j), (3.1)

where f =
∑n

i=1 αik(·, xi), g =
∑m

j=1 βjk(·, x′j). Then, H0 is a valid pre-Hilbert space, i.e, the pointwise
closureHk = H0 is a Hilbert space.

Proof. We show that (3.1) indeed defines a valid inner product. First,

〈f, g〉H0 =

n∑
i=1

αig(xi) =

n∑
j=1

βjf(x′j).

It is implied that that the inner product is independent of the specific representation of f and g. The triangular
inequality is easy to verify. Next, we show that ‖f‖H0 = 0 if and only if f = 0. If there exist x0 ∈ X such
that f(x0) 6= 0. Assume f(x) =

∑m
j=1 ajk(xj , ·) and consider

0 ≤ ‖λf + f(x0)k(·, x0)‖2H0 = λ2‖f‖2H0 + 2λf2(x0) + f2(x0)k(x0, x0).

Taking λ→ −∞, the RHS will be negative and this causes contradictory.
What remains is to show that the convergence of Cauchy sequence. We refer to Link for a complete

proof.

Lemma 3.2. The Hilbert space defined in Theorem 3.1 satisfies the reproducing property:

〈f, k(·, x)〉Hk = f(x).

Proof. For f ∈ H0, we can write f(x) =
∑m

j=1 ajk(·, xj). By definition,

〈f, k(·, x)〉Hk =
m∑
j=1

ajk(x, xj) = f(x).

For any f ∈ Hk, let limn→∞ fn(x) = f(x). Then,

〈f, k(·, x)〉Hk = lim
n→∞

〈fn, k(·, x)〉Hk = lim
n→∞

fn(x) = f(x).

The reproducing property is the most important property of this Hilbert space.

Definition 3.3 (RKHS). Let X be an arbitrary set andH a Hilbert space of real-valued functions on X . We
sayH is a reproducing kernel Hilbert space (RKHS) if there is a kernel k : X × X 7→ R such that

• ∀x ∈ X , k(·, x) ∈ H.

• Reproducing property: ∀x ∈ X, f ∈ H, 〈f, k(·, x)〉H = f(x)

Lemma 3.4. For a RKHS, the evaluation functional Lx(f) = f(x) is continuous.
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Proof. For any x ∈ X and f ∈ H,

sup
‖f‖H≤1

|Lx(f)| = sup
‖f‖H≤1

|〈f, k(·, x)〉H| ≤ ‖k(·, x)‖H <∞.

This continuity of the evaluation functional is sometimes used as the equivalent definition of RKHS. An
important implication is that the convergence in norm implies the pointwise convergence. If limn→∞ ‖fn−
f‖H = 0, then

|fn(x)− f(x)| ≤ ‖Lx‖‖fn − f‖H → 0 as n→∞.

Lemma 3.5. For a RKHS, the reproducing kernel k is unique.

Proof. For any two kernels k1, k2,

〈f, k1(·, x)− k2(·, x)〉H = f(x)− f(x) = 0,∀x ∈ X, ∀ f ∈ H.

Taking f = k1(·, x)− k2(·, x), we have ‖k1(·, x)− k2(·, x)‖2H = 0, ∀x ∈ X . Hence, k1 = k2.

Theorem 3.6. For any kernel k, there is a unique RKHS, for which k is the reproducing kernel.

Proof. First, by Moore-Aronsajn theorem, there exists a RKHS with k being the reproducing kernel. As-
sume H1 and H2 be two RKHSs with k being the reproducing kernel. First, by definition, k(·, x) ∈ H1 for
any x ∈ X . Hence, H0 ⊂ H1. Moreover, H0 is dense in H1 since if there exists f ∈ H such that f ⊥ H0,
we must have

〈f, k(·, x)〉H1 = f(x) = 0 ∀x ∈ X .

For f =
∑m

j=1 ajk(·, xj),

‖f‖2H1
= 〈

n∑
i

aik(·, xi),
m∑
j=1

ajk(·, xj)〉H1 =

n∑
i,j=1

aiaj〈k(·, xi), k(·, xj)〉H1

(i)
=

n∑
i,j=1

aiajk(xi, xj) = ‖f‖2H0 .

where (i) follows from the reproducing property. Hence, ‖f‖H1 = ‖f‖H0 for f ∈ H0. By the same
argument, the same results hold for H2. For any f ∈ H1, there must exits (fn) ⊂ H0 such that f(x) =
limn→∞ fn(x). This implies that f ∈ H2. Similarly,H1 andH2 contains the same functions. What remains
is to check that the two norms coincide, which results from

‖f‖H1 = lim
n→∞

‖fn‖H1 = lim
n→∞

‖fn‖H0 = lim
n→∞

‖fn‖H2 = ‖f‖H2 .

Theorem 3.7. A Hilbert space of functions H ⊂ RX is a RKHS if and only if the evaluation functional is
continuous.
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Proof. If Lx is continuous, by Riesz representation theorem, there exist Kx ∈ H such that

Lx(f) = 〈Kx, f〉H.

Define the kernel:
k(x, x′) = 〈Kx,Kx′〉H = Kx′(x) = Kx(x′),

for which
〈f, k(·, x)〉H = 〈f,Kx〉 = f(x), ∀f ∈ H.

This means k(·, ·) is a reproducing kernel ofH.

4 A generalization analysis of kernel ridge regression

We first provide the upper bound of the Rademacher complexity.

Proposition 4.1. For any kernel k, let Hk the corresponding RKHS. Let HQk = {f ∈ Hk : ‖f‖Hk ≤ Q}.
Then, we have

R̂adn(HQk ) ≤ Q
√∑n

i=1 k(xi, xi)

n
.

Proof.

nR̂adn(HQk ) = Eξ[ sup
‖f‖Hk≤Q

n∑
i=1

ξif(xi)] = Eξ[ sup
‖f‖Hk≤Q

n∑
i=1

ξi〈f, k(·, xi)〉Hk ](reproducing property)

= Eξ[ sup
‖f‖Hk≤Q

〈f,
n∑
i=1

ξik(·, xi)〉H] ≤ QEξ[‖
n∑
i=1

ξik(·, xi)‖Hk ]

= QEξ

√√√√ n∑
i,j=1

ξiξjk(xi, xj) ≤ Q

√√√√Eξ[
n∑

i,j=1

ξiξjk(xi, xj)] (Jensen inequality)

= Q

√√√√ n∑
i=1

k(xi, xi) (E[ξiξj ] = 0,∀ i 6= j).

Given data {(xi, f∗(xi))}ni=1, consider the kernel ridge regression (KRR) estimator

f̂n = argmin
f∈Hk

R̂n(f) + λ‖f‖Hk . (4.1)

Theorem 4.2 (A priori estimate). Assume that `(·, y) isL-Lipschitz and bounded byB, and supx∈X k(x, x) ≤
1. Then, for any δ ∈ (0, 1), with probability 1− δ over the choice of training set, we have

R(f̂n) . λ‖f∗‖Hk +
L‖f∗‖Hk√

n
+B

√
log(1/δ)

n
.
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Proof. (1) Let Q = ‖f∗‖Hk . By the definition of f̂n,

R̂n(f̂n) + λ‖f̂n‖Hk ≤ R̂n(f∗) + λ‖f∗‖Hk = λ‖f∗‖Hk = λQ,

which yields
‖f̂n‖Hk ≤ Q, R̂n(f̂n) ≤ λQ.

(2) Let FQ = {`(h(x), h∗(x)) : h ∈ HQk }. By the contraction lemma, we have

R̂n(FQ) ≤ LR̂n(HQk ).

Using the Rademacher complexity-based generalization bound, we have

|R̂n(f̂n)−R(f̂n)| ≤ sup
‖f‖H≤Q

|R̂n(f)−R(f)| . R̂n(FQ) +B

√
log(4/δ)

n

. LR̂n(HQk ) +B

√
log(4/δ)

n
≤ LQ√

n
+B

√
log(1/δ)

n
(use sup

x∈X
k(x, x) ≤ 1).

(3) R(f̂n) ≤ R̂n(f̂n) + |R̂n(f̂n)−R(f̂n)| ≤ λQ+ (LQ+B
√

log(4/δ))/
√
n.

The preceding estimate is a priori, since it depends on the norm of f∗ instead of that of f̂n. Taking
λ = O(1/

√
n), we have that R(f̂n) = O(1/

√
n), which does not suffer from the curse of dimensionality.

This means that the functions in the RKHS can be efficiently learned by the KRR.

• Similar results hold for any regularizations of the form r(‖f‖Hk), where r : [0,∞) → [0,∞) is
strictly increasing.

• Note that Theorem 4.2 holds as long as λ > 0 and one can even take λ → 0+, which may seem
strange at the first glance. This is due to that there is no label noise. In fact, the optimal λ depends on
the level of noise as shown in the following theorem.

Consider the estimator

f̂n = argmin
f∈Hk

1

n

n∑
i=1

(T ◦ f(xi)− yi)2 + λ ‖f‖Hk , (4.2)

where T (t) = min(max(t,−1), 1). We make the following non-essential technical assumptions.

• supx |f∗(x)| ≤ 1 and supx k(x, x) ≤ 1.

• yi = f∗(xi) + ξi. {ξ}i are i.i.d. random noises with |ξi| ≤ σ. Assume that σ ≤ 1.

Theorem 4.3. Under the preceding assumptions and taking λ = σ√
n

, for any δ ∈ (0, 1), we have

‖f̂n − f∗‖2L2(Px) .
‖f∗‖Hk +

√
log(2/δ)√

n
.

We refer to [E et al., 2019] for the proof.
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Tightness. It is worth noting that preceding bounds are not tight for the square loss: `(y1, y2) = (y1−y2)2.
When applying the contraction lemma, we use the worst-case Lipschitz norm Lip(t2/2) ≤ 1 for t ∈ [0, 1].
However, around the estimator, we should have ε(x) = f̂(x) − f∗(x) � 1. Therefore, we should use
the “local” Lipschitz norm to bound the Rademacher complexity. This will in turn gives rise to a fast rate.
Usually, the fast rate is close to O(1/n) and this approach is called “local Rademacher complexity”. Please
refer to [Bartlett et al., 2005] for more details.
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