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1 A feature perspective

We know that KRR in the feature space corresponds to

1

n

n∑
i=1

(〈β,Φ(xi)〉H − yi〉2 + λ‖β‖2H.

Naturally, we can consider the following target function space.

Definition 1.1. Given a kernel k, let Φ : X 7→ H be a feature map of k. Let

F = {f(x;β) = 〈β,Φ(x)〉H : β ∈ H}.

For f ∈ F , define
‖f‖F = inf

f=〈β,Φ(·)〉H
‖β‖H.

The infimum is taken such that the norm is independent of the specific representation β.

Lemma 1.2. ‖ · ‖F is indeed a well-defined norm.

Proof. Assume f1 = 〈β1,Φ(·)〉H, f2 = 〈β2,Φ(·)〉H. Then,

λ1f1 + λ2f2 = 〈λ1β1 + λ2β2,Φ(·)〉H.

By the definition,

‖λ1f1 + λ2f2‖F ≤ ‖λ1β1 + λ2β2‖H ≤ |λ1|‖β1‖H + |λ2|‖β2‖H.

Taking infimum over β1 and β2 yields

‖λ1f1 + λ2f2‖F ≤ |λ1|‖f1‖F + |λ2|‖f2‖F .

In addition, let ‖f‖F = 0. By definition, for any ε > 0, there exist βε such that f = 〈βε,Φ(·)〉H and
‖βε‖H ≤ ε. Hence, for any x ∈ X ,

|f(x)| = |〈βε,Φ(x)〉H| ≤ ‖βε‖H‖Φ(x)‖H ≤ ε‖Φ(x)‖H.

Taking ε→ 0, we obtain f(x) = 0 for any x ∈ X .

Presumably, the associated function space should only depend on the kernel k instead of the specific
feature map. After all, the feature map may not be uniquely defined, in particular when k is rank degenerate.
Does the above definition relies on the specific choice of Φ andH?
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Definition 1.3. Given a kernel k, let F be the function space defined in Definition 1.1. For any f, g ∈ F ,
define

〈f, g〉F =
‖f + g‖2F − ‖f − g‖2F

4
.

Lemma 1.4. For any f, g ∈ F , there exists βf , βg ∈ H such that f = 〈βf ,Φ(·)〉, g = 〈βg,Φ(·)〉 and

〈f, g〉F = 〈βf , βg〉.

Proof. Taking βf , βg such that

‖f‖2F = ‖βf‖2H
‖g‖2F = ‖βg‖2H.

Hence,

〈f, g〉F =
‖βf + βg‖2H − ‖βf − βg‖2H

4
= 〈βf , βg〉.

The above lemma shows that the inner product of the functions are equivalent to the inner product of the
corresponding coefficients.

Lemma 1.5. For any x ∈ X , ‖k(·, x)‖F = ‖k(·, x)‖H.

Proof. Notice that
k(x, x′) = 〈Φ(x),Φ(x′)〉H.

For any βx such that
k(x, x′) = 〈βx,Φ(x′)〉H,

we have
〈βx − Φ(x),Φ(x′)〉H = 0, ∀x′ ∈ X .

This means that βx − Φ(x) ⊥ span{Φ(x′)}. Hence,

‖βx‖2H = ‖βx − Φ(x) + Φ(x)‖2H = ‖βx − Φ(x)‖2H + ‖Φ(x)‖2H ≥ ‖Φ(x)‖2H.

Theorem 1.6. (F , 〈·〉F ) = (Hk, 〈·, ·〉Hk),Hk is the RKHS constructed in Moore-Aronsajn theorem.

Proof. By the uniqueness of RKHS, we only need to verify that (F , 〈·〉F ) is a RKHS, for which k is the
reproducing kernel. First, by Lemma 1.5, k(·, x) ∈ F for any x ∈ X . For any f ∈ F , assume f(x) =
〈βf ,Φ(x)〉 and ‖βf‖2H = ‖f‖2F . Then,

〈f, k(·, x)〉F = 〈βf ,Φ(x)〉H = f(x).

Combining them, we show that F is a RKHS.
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The above perspective is useful in understanding the random feature models (RFMs) and two-layer
neural networks. Consider the RFM:

fm(x;β) =
1

m

m∑
j=1

βjψ(x;wj),

where ψ : X × Ω 7→ R and {wj} are independently drawn from a fixed distribution π. It can be viewed as
the discretization of the continuous model:

f(x;β) = Ew∼π[β(w)ψ(x;w)],

where β ∈ L2(π) and ψ(x; ·) ∈ L2(π).
Consider the ridge regularization,

min
a∈R

1

n

n∑
i=1

(fm(x;β)− yi)2 +
λ

m

m∑
j=1

β2
j , (1.1)

As m→∞, it corresponds to

min
a∈L2(π)

1

n

n∑
i=1

(f(x;β)− yi)2 +
λ

m
‖β‖2L2(π).

1.1 A generalization analysis of the RFM

For the random feature model, define the associate kernel

kπ(x, x′) =

∫
ψ(x;w)ψ(x′;w) dπ(w). (1.2)

Theorem 1.7. Assume f∗ ∈ Hkπ . LetW = (w1, . . . , wm) with bj
iid∼ π, and β(W ) = (β(w1), . . . , β(wm))T .

Then,

EW ‖fm(·;β(W ))− f∗‖2L2(Px) ≤
‖f∗‖2Hkπ

m
.

Proof. Note that f∗(x) = Ew∼π[β(w)ψ(x;w)]. Then,

EW Ex |
1

m

m∑
j=1

β(wj)φ(x;wj)− f∗(x)|2

= Ex EW
1

m2

m∑
i,j=1

(β(wi)ψ(x;wi)− f∗(x)) (β(wj)ψ(x;wj)− f∗(x))

= Ex
1

m2

m∑
i=1

Ewi (β(wi)ψ(x;wi)− f∗(x))2 (Use the independence)

≤ 1

m
Ew∼π[β(w)2] ( sup

x∈X ,w∈Ω
|ψ(x;w)| ≤ 1).
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The approximation error is a nonlinear function of w1, . . . , wm. McDiarmid’s inequality needs L∞

boundedness.

Theorem 1.8. Assume f∗(x) = Ew∼π[β(w)φ(x;w)] with ess supw |β(w)| ≤ Q. Let W = (w1, . . . , wm)

with wj
iid∼ π, and β(W ) = (β(w1), . . . , β(wm))T . Then, for any δ ∈ (0, 1), with probability 1− δ over the

sampling of W , we have

‖fm(·;β(W ))− f∗‖L2(Px) .
Q√
m

(1 +
√

log(2/δ)).

Moreover, supj |βj | ≤ Q.

Remark.

• In comparison to Theorem 1.7, the above theorem provide a high probability guarantee.

• The extra technical condition is that β(·) ∈ L∞(π). In contrast, for Theorem 1.7, we only need
β(·) ∈ L2(π).

Proof. (1) Let W = (w1, . . . , wm), and Sm(w1, . . . , wm) = ‖fm(·;β(W )) − f∗‖L2(Px). Let W̃ be a
copy of W but with i-th element different. Then,

|Sm(W )− Sm(W̃ )| ≤ ‖fm(·;β(W ))− fm(·;β(W̃ ))‖L2(Px)

= ‖ 1

m
β(wi)ψ(x;wi)−

1

m
β(w̃i)ψ(x; w̃i)‖L2(Px) ≤

2Q

m
.

(2) By McDiarmid’s inequality, with probability 1− δ, we have

Sm(W ) . EW [Sm(W )] +

√
log(2/δ)

m
Q.

(3) Similar to the proof of Theorem 1.7, we have

EW [Sm(W )] ≤
√

EW [Sm(W )2] =
√
EW ‖fm(·;β(W ))− f∗‖2

L2(Px)
.

Q√
m
.

(4) Combining them, we have

Sm(W ) .
Q√
m

+

√
log(2/δ)

m
Q.

Proposition 1.9. LetHQπ = {f(x) = Ew∼π[β(w)ψ(x;w)] : Ew∼π[β(w)2] ≤ Q2}. Then, we have

R̂adn(HQπ ) ≤ Q√
n
.

Proof. By Theorem 1.6, HQπ = HQkπ . Hence by the bound of the Rademacher complexity of RKHS and
supx kπ(x, x) ≤ 1, we complete the proof.

4



Taking π = 1
m

∑m
j=1 δ(· − wj) yields the bound of the Rademacher complexity for random feature

models. LetHQ = { 1
m

∑m
j=1 βjψ(x;wj) : ‖β‖2√

m
≤ Q}. Then,

R̂adn(HQ) ≤ Q√
n
.

Consider

β̂ = argmin
β∈Rm

R̂n(β) +
1√
n

‖β‖√
m
. (1.3)

Here, the loss function `(y, y′) = (y − y′)2 is not globally Lipschitz . Hence, for technical simplicity,
we assume supx∈X |f∗(x)| ≤ 1 and consider the truncated random feature model:

f̃m(x;β) = min(max(fm(x;β),−1), 1).

Theorem 1.10. Suppose f∗(x) = Ew∼π[β(w)ψ(x;w)] with ess supw |β(w)| ≤ Q. Then, for any δ1, δ2 ∈
(0, 1), with probability 1− δ1 − δ2, we have

R(β̂) .
Q

m
(1 +

√
log(1/δ1)) +

Q√
n

+

√
log(1/δ2)

n
.

• The log(1/δ1) term comes from the random sampling of features.

• The log(1/δ2) term comes from the random sampling of training set.

Proof. (1) By Theorem 1.8, for any δ1 ∈ (0, 1), with probability 1 − δ1 over the sampling of random
features, there exist a β̃ ∈ Rm such that

R̂n(β̃) ≤
Q(1 +

√
log(1/δ1))

m
,

‖β̃‖√
m
≤ Q.

(2) By the definition of β̂, we have

R̂n(β̂) +
1√
nm
‖β̂‖ ≤ R̂n(β̃) +

1√
nm
‖β̃‖ ≤ Q

m
(1 +

√
log(1/δ1)) +

Q√
n
.

Hence, 1√
m
‖β̂‖ ≤ Q(1 +

√
n(1+
√

log(1/δ1))

m ) =: C(m,n,Q)

(3) Let HC = {fm(·;β) : ‖β‖√
m
≤ C} and Let FC = {`(f, f∗) : f ∈ HC}. Since `(·, y) is 2-Lipschitz

continuous, the contraction lemma implies that

R̂adn(FC) ≤ 2R̂adn(HC).

(4) By the Rademacher complexity-based generalization bound, for any δ2 ∈ (0, 1), with probability
1− δ2 over the sampling of training set, we have

R(β̂) ≤ R̂n(β̂) + 2R̂adn(FC(m,n,Q)) +

√
log(1/δ2)

n

5



≤ R̂n(β̂) + 2R̂adn(HC(m,n,Q)) +

√
log(1/δ2)

n

.
Q

m
(1 +

√
log(1/δ1)) +

Q√
n

+
C(m,n,Q)√

n
+

√
log(1/δ2)

n

Inserting the expression of C(m,n,Q), we complete the proof.

2 The spectral perspective

For a kernel k : X × X 7→ R, define an integral operator Tk : L2(X ;µ) 7→ L2(X ;µ),

Tkf(x) =

∫
k(x, x′)f(x′) dµ(x′).

Here, µ is a probability measure on X .

Theorem 2.1 (Mercer’s theorem). Let k be a continuous kernel on a compact set X . Then, ∀x, x′ ∈ X ,

k(x, x′) =
∞∑
j=1

λjej(x)ej(x
′).

The convergence is uniform on X × X , and absolute for each (x, x′) ∈ X × X .

(λj)j≥1 and (ej)j≥1 are the eigenvalues and eigenfunctions of the integral operator Tk, respectively.
Mercer’s theorem gives a feature map for the kernel k. Let

Φ : X 7→ `2, Φ(x) =
(√
λ1e1(x),

√
λ2e2(x), . . . ,

√
λjej(x), . . .

)T
.

Then,

k(x, x′) =
∞∑
j=1

√
λjej(x)

√
λjej(x

′) = 〈Φ(x),Φ(x′)〉`2 .

Theorem 2.2. Let k be a continuous kernel on a compact set X , and {ej} be the orthonormal basis given
in Mercer’s theorem. Define

H =
{
f =

∑
j

ajej :
∑
j

a2
j

λj
<∞

}
,

with the inner product 〈∑
j

ajej ,
∑
j

bjej
〉
H =

∑
j

ajbj
λj

.

Then,H = Hk.

Proof. By Mercer’s theorem, k(·, x) =
∑

j(λjej(x))ej . Hence,

‖k(·, x)‖2H =
∑
j

λ2
jej(x)2

λj
=
∑
j

λjej(x)ej(x) = k(x, x) <∞.
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So, k(·, x) ∈ H for any x ∈ X . Reproducing property: Let f =
∑

j ajej ∈ H. Then,

〈f, k(·, x)〉H =
∑
j

ajλjej(x)

λj
= f(x). (2.1)

So, H is a RKHS with the reproducing kernel k. By the uniqueness of RKHS, we conclude that H =
Hk.

Remark 2.3. Note that the integral operator Tk and the associated eigenfunctions {ej} depend on the under-
lying distribution µ. However,H coincide with the RKHSHk. This means thatH actually does not depend
on the choice of µ at all.

Weighted L2 space. In this way, RKHS can be viewed as a L2 space weighted by the eigenvalues. The
faster is the eigenvalue decay, the smaller is the RKHS. Consider λj = 1

js . Then,

‖f‖2H =
∞∑
j=1

jsa2
j <∞ ⇒ a2

j = O(
1

js+1+α
) for some α > 0.

The previous Rademacher complexity analysis needs the following quantity to be finite:∫
k(x, x) dµ(x) =

∫ ∞∑
j=1

λjej(x)ej(x) dµ(x) =
∞∑
j=1

λj‖ej‖2L2(µ) =
∞∑
j=1

λj <∞,

i.e., the trace of k is finite. The previous analysis cannot distinguish the RKHSs with different eigenvalue
decays. A refined analysis need to reflect the fact that the faster is the eigenvalue decay, the smaller is the
RKHS, i.e., the easier is the learning. For this type of sophisticated analysis, we refer to [Bach, 2017] and
references therein.

References

[Bach, 2017] Bach, F. (2017). On the equivalence between kernel quadrature rules and random feature
expansions. The Journal of Machine Learning Research, 18(1):714–751.

7


	A feature perspective
	A generalization analysis of the RFM

	The spectral perspective

