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Consider the two-layer ReLU nets. The Fourier analysis has shown that a sufficient condition for a
function can be efficiently approximated is

‖f‖F2 = inf
fe|Ω=f

∫
Rd

(1 + ‖ω‖)2|f̂e(ω)|dω <∞ (0.1)

We ask the question: Is the spectral Barron norm (0.1) also tight in characterize the “efficient” approximation
characteristic of two-layer neural nets? Unfortunately, it is not. A counter example is given by the triangular
function

Lemma 0.1. Let f : [−2, 2] 7→ R be given by f(x) = max(1 − |x|, 1). Then, ‖f‖F2 = ∞ and f(x) =
σ(x+ 1) + σ(x− 1)− 2σ(x).

Proof. Let fe be the zero extension of f , which is the triangular function in the whole space. Its Fourier
transform is

f̂e(ω) =
sin2(ω)

ω2
,

which leads to ∫
R
|ω|2|f̂e(ω)| dω =

∫
R

sin2(ω) dω =∞.

Then, we still need to show that over all the extension, we still have
∫
R |ω|

2|f̂e(ω)| dω = ∞. We omit this
part for simplicity.

1 The Barron space

The previous study motivate us to consider all the functions that admit the following integral representation:

fπ(x) = E(a,w)∼π[aσ(wTx)]. (1.1)

This can be viewed as an infinitely-wide two-layer net. It is the continuum limit of the scaled two-layer
neural net:

fm(x; θ) =
1

m

m∑
j=1

ajσ(wTj x). (1.2)

For any f that admit the representation (1.1), the representation π is usually not not unique. Define

Rf =
{
π ∈ P(R1 ⊗ Rd) : fπ(x) = E(a,w)∼π[aσ(wTx)]

}
. (1.3)
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Definition 1.1 (The Barron space). Assume that σ is ReLU. Let

‖f‖pBp := inf
π∈Rf

E(a,w)∼π[|a|p‖w‖p]. (1.4)

The Barron space Bp := {f : ‖f‖Bp <∞}.

• For a function f , one can think of π as the representation. Hence, the proceeding definition means
that we use the moments of π to quantify the complexity of fπ.

• The specific moment (1.4) is scaling invariant, which is consistent with the fact that fπ is also scaling
invariant. Note that the specific forms of “moment” may be different for different activation functions.

• The taking-infimum step in (1.4) is essential. First, it make the function norm well-defined in the
sense that ‖·‖Bp is independent of the choice of representations. Second, it means that the complexity
of f is measured by choosing the best representation π (adaptivity). For instance, a single neuron,
we can have two representations:

σ(x1) = σ(x1) + rσ(x2)− rσ(x2). (1.5)

The according distributions π’s are given by

π1(a,w) = δ(a− 1)δ(w − e1)
π2(a,w) = δ(a− 1)δ(w − e1) + rδ(a− 1)δ(w − e2) + rδ(a+ 1)δ(w − e2),

respectively. For the former, the moment is 1; for the latter, the moment is (1 + 2rp)1/p. The latter
can be much larger than the former. This justifies why we must take the infimum. As shown latter, it
is also the key to separate neural nets and random feature models.

The following lemma actually show that Bq are the same for any q = [1,∞]. Hence, we will simplify
use B to denote the Barron space.

Lemma 1.2. For any p, q ≥ 1, we have ‖f‖Bp = ‖f‖Bq .

Proof. By Holder’s inequality, obviously ‖f‖B1 ≤ ‖f‖B∞ . To complete the proof, we only need to show
that ‖f‖B∞ ≤ ‖f‖B1 also holds.

• Assume f ∈ B1. For any ε > 0, there exists a ρ such that f(x) = E(a,w)∼ρ[aσ(wTx)] and
Eρ[|a|‖w‖] < ‖f‖B1 + ε. For any w, let ŵ = w/‖w‖. Then,

f(x) =

∫
aσ(wTx) dρ(a,w) =

∫
a>0

aσ(wTx)dρ(a,w)−
∫
a<0

(−a)σ(wTx)dρ(a,w)

=

∫
a>0

a‖w‖σ(ŵTx) dρ(a,w)−
∫
a<0

(−a)‖w‖σ(ŵTx) dρ(a,w)

=

∫
Sd−1

σ(wTx) dρ+(w)−
∫
Sd−1

σ(wTx) dρ−(w).

Here ρ+, ρ− are defined as follows. For any Borel set A ⊂ Sd−1, define

ρ+(A) =

∫
{(a,w):ŵ∈A,a>0}

|a|‖w‖ dρ(a,w),

ρ−(A) =

∫
{(a,w):ŵ∈A,a<0}

|a|‖w‖dρ(a,w),
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• Let M+ = ρ+(Sd−1),M− = ρ−(Sd−1). Obviously M = M+ +M− = Eρ[|a|‖w‖], and

f(x) =

∫
Sd−1

σ(wTx) dρ+(w)−
∫
Sd−1

σ(wTx) dρ−(w)

=

∫
Sd−1

Mσ(wTx)
ρ+(w)

M
dw +

∫
Sd−1

(−M)σ(wTx)
ρ−(w)

M
dw = E(a,w)∼ρ̃[aσ(wTx)],

where ρ̃(a,w) = δ(a−M)ρ+(w)
M + δ(a+M)ρ−(w)M .

• Hence, ‖f‖B∞ ≤M ≤ ‖f‖B1 + ε. Taking ε→ 0, we complete the proof.

Examples of Barron functions.

• We have shown that ‖f‖B . ‖f‖F2 . This contains a lot of functions.

• Finite-width neural nets: fm(x) =
∑m

j=1 ajσ(bTj x). Obviously,

‖fm‖B ≤
m∑
j=1

|aj |‖bj‖,

where the right hand side is usually called the path norm, which can be used to regularize neural nets.

• General functions with a linear low-dimensional structure: f(x) = g(W Tx) with g : Rk 7→ R.
Obviously,

‖f‖B ≤ ‖W‖2‖g‖B.

This implies that ‖f‖B only depends on the intrinsic dimension k rather than the ambient dimension
d.

2 Approximation theorems

For a two-layer neural network fm(·; θ), define the path norm

‖θ‖P :=
1

m

m∑
j=1

|aj |‖bj‖. (2.1)

The path norm is a discrete analog of the B1 norm. It is very useful in analyzing two-layer neural networks.

Theorem 2.1 (Direct Approximation Theorem, L2-version). For any f ∈ B and m ∈ N, there exists a
two-layer neural network fm(·; θ) such that

‖f − fm(·; θ)‖2L2(ρ) .
‖f‖2B
m

‖θ‖P ≤ 2‖f‖B.
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Proof. For f ∈ B, there exists a ρ such that f(x) = Eπ[aσ(w · x)] and E[a2‖w‖2] ≤ 2‖f‖2B. Consider
{(aj , wj)}j i.i.d. drawn from ρ. Then,

E(aj ,wj) Ex|
1

m

m∑
j=1

ajσ(wj · x)− f(x)|2 = Ex E(aj ,wj) |
1

m

m∑
j=1

ajσ(wj · x)− f(x)|2

= Ex
1

m

m∑
j=1

E(aj ,wj) |ajσ(wj · x)− f(x)|2 (Use the independence of (aj , wj))

≤ Ex
1

m

m∑
j=1

E(aj ,wj) a
2
jσ(wj · x)2 ≤ 1

m

m∑
j=1

E(aj ,wj) a
2
j‖wj‖2

≤
2‖f‖2B
m

.

Then, there must exist {(aj , wj)} such that the theorem holds.

Note that the control of path norm for the approximator is important for our later analysis of the gener-
alization performance.

Theorem 2.2 (Inverse approximation). Let f∗ ∈ C(Ω). If there exists a constant Q and a sequence of
two-layer neural networks fm(·; θ(m)) with the path norm uniformly bounded, i.e., ‖θ(m)‖P ≤ Q such that

fm(x; θ(m))→ f∗(x), ∀x ∈ Ω.

Then, there exists ρ∗ ∈ P(R⊗ Rd) such that

f∗(x) =

∫
aσ(wTx) dρ∗(a,w), ∀x ∈ Ω.

Moreover, f∗ ∈ B and ‖f∗‖B ≤ Q.

Inverse approximation theorem implies that the Barron space is sufficiently large, since the functions of
interest lie in it.

Proof. Let θ(m) = {(a(m)
k , w

(m)
k )}mk=1. WLOG, assume ‖w(m)

k ‖ = 1. Let Am =
∑m

k=1 |a
(m)
k |. Define the

“weighted” empirical measure

ρm(a,w) =
m∑
k=1

|a(m)
k |
Am

δ
(
a− sign(a

(m)
k )Am

)
δ(w − w(m)

k ).

• It is easy to verify that

E(a,w)∼ρm [aσ(wTx)] =
m∑
k=1

|a(m)
k |
Am

sign(a
(m)
k )Amσ(w

(m)
k · x) =

m∑
k=1

akσ(w
(m)
k · x) = f(x; θ(m))

supp(ρm) ⊂ KQ = {(a, b) : |a| ≤ Q, ‖w‖ ≤ 1}.

• Since KQ is compact, (ρm) is tight. By Prokhorov’s Theorem, there exists a subsequence (ρmk) and
ρ∗ such that ρmk converges to ρ∗ weakly.
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• Since h(a,w) = aσ(wTx), g(a,w) = |a|‖w‖ are continuous with respect (a,w), we have

f∗(x) = lim
k→∞

∫
aσ(wTx) dρmk(a,w) =

∫
aσ(wTx) dρ∗(a,w)

‖f∗‖B ≤
∫
|a|‖w‖dρ∗(a,w) = lim

k→∞

∫
|a|‖w‖dρmk(a,w) ≤ Q.

Note that the naive choice of the empirical measure sequence is (ρ̃m) with

ρ̃m(a, b) =
1

m

m∑
j=1

δ(a− a(m)
k )δ(b− b(m)

k ).

However, (ρ̃m) may be not tight since a(m)
k = O(mQ) in the worst case.

3 Generalization analysis

Proposition 3.1. Let FQ = {f ∈ B : ‖f‖B ≤ Q}. Then,

R̂adn(FQ) .
QCd√
n

Cd is a constant depending on the domain Ω. Assume Ω is a `p ball. If Ω is the L∞ ball, then Cd = log d,
otherwise Cd = 1.

Proof. Let ξ = (ξ1, . . . , ξn). By definition, we have

nR̂adn(FQ) = Eξ[ sup
f∈FQ

n∑
i=1

ξi Eρ[aσ(wTxi)]] = Eξ[ sup
f∈FQ

Eρ[|a|‖w‖
n∑
i=1

ξiσ(ŵTxi)]]

≤ Eξ[ sup
f∈FQ

Eρ[|a|‖w‖ sup
‖w‖≤1

|
n∑
i=1

ξiσ(wTxi)|]

≤ QEξ[ sup
‖w‖≤1

|
n∑
i=1

ξiσ(wTxi)|]

≤ QEξ[ sup
‖w‖≤1

n∑
i=1

ξiσ(wTxi)] +QEξ[ sup
‖w‖≤1

−
n∑
i=1

ξiσ(wTxi)]

= 2QEξ[ sup
‖w‖≤1

n∑
i=1

ξiσ(wTxi)] (Use the symmetry of ξ)

≤ 2QEξ[ sup
‖w‖≤1

n∑
i=1

ξiw
Txi] (Use the contraction lemma).

Hence, the problem is reduced to bound the Rademacher complexity of linear class.
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The regularized estimator. Consider the path norm-regularized estimator:

θ̂n = argmin
θ

R̂n(θ) +
λ√
n
‖θ‖P . (3.1)

For technical simplicity, assume supx∈X |f∗(x)| ≤ 1 and use the truncated network:

f̃m(x; θ) = min(max(fm(x; θ),−1), 1).

Theorem 3.2. Assume λ ≥ C, where C is an absolute constant. For any δ ∈ (0, 1), with probability 1− δ
over the choice of training samples, we have

R(θ̂n) .
‖f∗‖2B
m

+
‖f∗‖B√

n
+

√
log(1/δ)

n
.

• The three terms of the RHS denote the approximation error, estimation error, and error caused by the
exception set, respectively.

• The estimate does not suffer from the curse of dimensionality (CoD), and works well in the over-
parameterized regime, i.e., m > n.

Proof. Let Q = ‖f∗‖B.

(1) By the direct approximation theorem, there exits θ̃ such that

R̂n(θ̃) ≤ 3Q2

m
, ‖θ̃‖P ≤ 2Q.

By definition,
R̂n(θ̂n) +

λ√
n
‖θ̂n‖P ≤ R̂n(θ̃) +

λ√
n
‖θ̃‖P ≤

3Q2

m
+ 2

λ√
n
Q.

Hence,

‖θ̂n‖P ≤ 2Q+
3Q2√n
λm

=: C(m,λ,Q)

R̂n(θ̂n) ≤ 3Q2

m
+

2λ√
n
Q. (3.2)

(2) Let HC = {(f̃m(x; θ) − f∗(x))2 : ‖θ‖P ≤ C}. Since t2 is 2-Lipschitz continuous for t ∈ [−1, 1].
By the contraction lemma,

R̂adn(HC) ≤ 2R̂adn(FC). (3.3)

By (3.2), f̂m(·; θ̂n) ∈ FC(m,λ,Q).

(3) Using the Rademacher complexity-based generalization bound, we have

R(θ̂n) ≤ R̂n(θ̂n) + 2R̂adn(HC(m,λ,Q)) +

√
log(2/δ)

n

≤ R̂n(θ̂n) + 4R̂adn(FC(m,λ,Q)) +

√
log(2/δ)

n
(Use Eq.(3.3))
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. R̂n(θ̂n) +
C(m,λ,Q)√

n
+

√
log(2/δ)

n
(Use Prop.3.1 and Eq.(3.2))

≤ 3Q2

m
+

2λ√
n
Q+

1√
n

(
2Q+

3Q2√n
λm

)
+

√
log(2/δ)

n
(Use Eq.(3.2))

.
Q2

m
+

Q√
n

+

√
log(2/δ)

n
.

Remark 3.3. • The generalization error analysis can be extended to the noisy case, i.e., yi = f∗(xi)+εi.
As long as εi is sub-Gaussian, we can use the truncation method. But this will introduce a log(n)
factor. See Theorem 4.2 of [E et al., 2019].

• Currently, we focus on the ReLU activation function. The theory of Barron space can be extended to
more general activation functions (see Section 3&4 in [Li et al., 2020])

4 Connection with kernel methods

The Barron space is closely related to a family of RKHSs. WLOG, assume w ∈ Sd−1. Then,

f(x) =

∫
R×Sd−1

aσ(wTx) dρ(a,w) =

∫
Sd−1

a(w)σ(wTx) dπ(w), (4.1)

where

π(w) =

∫
R
ρ(a,w) da, a(w) =

∫
R aρ(a,w) da

π(w)
.

In this form, we have
‖f‖2B2

= inf
π∈P (Sd−1)

inf
f(x)=Eπ [a(w)σ(wT x)]

E[a(w)2].

Given a fixed π, we can define a kernel:

kπ(x, x′) = Ew∼π[σ(wTx)σ(wTx′)]

LetHkπ denote the RKHS induced by kπ.

Proposition 4.1.
B =

⋃
π∈P(Sd−1)

Hkπ , ‖f‖B = inf
π∈P(Sd−1)

‖f‖Hkπ .

Proof. By the theory of random feature models,

‖f‖2Hkπ = inf
f(x)=Ew∼π [a(w)σ(wT x)]

E[a(w)2].

Then,

‖f‖2B2
= inf

f(x)=Eρ[aσ(wT x)]
E[a2‖w‖2] = inf

π∈P(Sd−1)
inf

f(x)=Eπ [a(w)σ(wT x)]
E[a(w)2]

= inf
π∈P(Sd−1)

‖f‖2Hkπ ,

which implies that B = ∪π∈P (Sd−1)Hkπ .
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This proposition means that two-layer neural networks can be viewed adaptive kernel method with the
kernel adaptively chosen from the kernel family: K = {kπ : π ∈ P(Sd−1)}.

4.1 Separation results

Theorem 4.2 (Modifying from [Barron, 1993], Theorem 6). Let Ω = [0, 2π]d and h1, h2, . . . , hn be n
arbitrary fixed functions. Then,

sup
‖f‖B≤1

inf
h∈span{h1,...,hn}

‖h− f‖L2(Px) &
1

d2n2/d
.

It states that any linear methods, including the random feature models, suffer from CoD in learning
functions in Barron space. On the contrary, two-layer neural networks can learn functions in Barron space
without CoD. The comparison between the proceeding lower bound and Theorem 3.2 provides a clear sep-
aration between two methods.

Before proceeding to the proof, we first need the following lemma.

Lemma 4.3. Suppose (H, 〈·, ·〉) to be a Hilbert space. Let {g1, . . . , g2n} be 2n orthonormal functions in
H. For any linear subspace Vn with dim(Vn) = n, we have

sup
j∈[2n]

d2(gj , Vn) ≥ 1

2
,

where d2(g, Vn) := infc1,...,cn∈R ‖g −
∑n

i=1 ciei‖2 with assuming {ei}ni=1 to be the orthonormal basis Vn.

Proof. WLOG, assume e1, . . . , en to be an orthonormal basis of Vn. Then, for any ‖g‖ = 1, d(g, Vn) =
1−

∑n
i=1〈g, ei〉2.

sup
j∈[2n]

d2(gj , Vn) ≥ 1

2n

2n∑
j=1

d2(gj , Vn) = 1− 1

2n

2n∑
j=1

n∑
i=1

〈gj , ei〉2

= 1− 1

2n

n∑
i=1

2n∑
j=1

〈gj , ei〉2

≥ 1− 1

2n

n∑
i=1

‖ei‖2 = 1− 1

2
=

1

2

An important fact. Define a set of functions:

Gm =

{
cos(bTx) :

n∑
i=1

bi ≤ m, bi ∈ N

}
.

Then, |Gm| =
(
m+d
d

)
. By Stirling formula and letting m = sd, we have(

m+ d

d

)
∼
√
d+m

md

(m+ d)m+d

ddmm
(4.2)
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∼ 1√
d

(
(s+ 1)

(
1 +

1

s

)s)d
&

1√
d

(1 + s)d. (4.3)

Meanwhile, for any g, g′ ∈ Gm with g 6= g′, we have 〈g, g′〉L2(Px) = 0.Moreover, notice that ̂cos(bT ·)(ω) =
1
2(δ(ω − b) + δ(ω + b)). Then, for any g ∈ Gm,

‖g‖B ≤ ‖g‖F2 =

∫
R
‖ω‖21|q̂(ω)| dω . ‖b‖21 ≤ m2.

Hence, the important fact is:

Let Bs = {f ∈ B : ‖f‖B ≤ s2d2}. Then, Bs contains 1√
d
(1 + s)d (exponentially many) orthonormal functions.

Remark 4.4. The above fact will be also used later to show that the training of two-layer neural networks
suffer from CoD for target functions in the Barron space.

Proof of Theorem 4.2 Choose m̄ to be the smallest m such that |Gm| ≥ 2n. For any dim(Vn) = n,

sup
‖f‖B≤1

d(f, Vn) & sup
f∈ 1

m̄2 Gm̄
d(f, Vn) ≥ 1

m̄2
sup
f∈Gm̄

d(f, Vn) &
1

m̄2
, (4.4)

Let m̄ = sd. Let 1√
d
(1 + s)d ∼ 2n. Then, s ∼ n1/d. Plugging it into (4.4), we have

sup
‖f‖B≤1

d(f, Vn) &
1

s2d2
&

1

d2n2/d
.

Single neurons Theorem 4.2 provides a lower bound, showing the exponential separation. Can we con-
struct some concrete hard functions? Fortunately, the simple single neuron can serve this purpose. Let
σv(x) = σ(vTx) with ‖v‖1 = 1.

• On the one hand, ‖σv‖B . 1 since σv(x) =
∫
σ(wTx) dπ(w) with π(w) = δ(w − v).

• On the other hand, we can show that σv is hard to approximate by using the random feature model:

fm(x; a) =
1

m

∑
j

ajσ(wTj x),

where wj ∼ π0, and π0 denotes the uniform distribution over the ball {w : ‖w‖1 = 1}. We can write

σv(x) =

∫
a(w)σ(wTx)dπ0(w),

where a(w) = δ(w − v). Obviously, ‖f‖2Hkπ0
= E[a(w)2] =∞.

• One can actually prove that, approximating σv with the above random features require exponentially
(in terms d) many features and See [Yehudai and Shamir, 2019]. [Caveat: The result of [Yehudai and Shamir, 2019]
is still restricted. For examples, it requires that the coefficient magnitudes can not be exponential in
d.]

9



References

[Barron, 1993] Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information theory, 39(3):930–945.

[E et al., 2019] E, W., Ma, C., and Wu, L. (2019). A priori estimates of the population risk for two-layer
neural networks. Communications in Mathematical Sciences, 17(5):1407–1425.

[Li et al., 2020] Li, Z., Ma, C., and Wu, L. (2020). Complexity measures for neural networks with general
activation functions using path-based norms. arXiv preprint arXiv:2009.06132.

[Yehudai and Shamir, 2019] Yehudai, G. and Shamir, O. (2019). On the power and limitations of ran-
dom features for understanding neural networks. Advances in Neural Information Processing Systems,
32:6598–6608.

10


	The Barron space
	Approximation theorems
	Generalization analysis
	Connection with kernel methods
	Separation results


