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Outline

• Classical convergence results of gradient descent (GD).

• Hardness in training neural networks.

• Convergence in the over-parameterized regime.
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A brief review of classical results
for gradient descent
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Gradient descent

• Consider the problem of minimizing

min
θ
R̂n(θ).

• The GD iterates as follows
θt+1 = θt − ηt∇R̂n(θt),

where ηt is the learning rate.

• When ηt → 0, the GD becomes the GD flow:

dθt
dt

= −∇R̂n(θt).
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Convergence of GD

Theorem 1 (Non-convex)

For any t > 0,

min
s∈[0,t]

‖∇R̂n(θs)‖ ≤

√
R̂n(θ0)− infθ R̂n(θ)

t
.

Theorem 2

Assume that R̂n is convex and the minimizer is given by θ∗ with ‖θ∗‖2 <∞. Then, we have

R̂n(θt)− R̂n(θ∗) ≤
‖θ∗ − θ0‖22

2t
.
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Convergence of GD (Cont’d)

• Can we prove the converge to global minima for non-convex problem? This problem often
strongly depends on the specific model. There exists a general condition as follows.

• R̂n is said to satisfy the Polyak-Lojasiewicz (PL) condition if

‖∇R̂n(θ)‖2 ≥ C(R̂n(θ)− inf
θ
R̂n(θ)).

Theorem 3

Under the PL condition, we have

R̂n(θt)− inf
θ
R̂n(θ) ≤ e−Ct(R̂n(θ0)− inf

θ
R̂n(θ)).
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Hardness in learning Barron functions:
Training two-layer neural networks suffers

CoD
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Motivation

• Both the approximation and estimation error for Barron functions obey the Monte-Carlo
rate, which is free of CoD. A nature questions is then: Do there exist algorithms that can
learn these functions efficiently?

• We say an algorithm A is efficient in learning a function class F , if for every ε > 0,
f∗ ∈ F , the time complexity of returning an solution f̂ such that ‖f̂ − f∗‖ ≤ ε satisfies:

Time complexity = poly(1/ε, d).

• We will show that the class of Barron functions is not efficiently learnable.
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Learning intersections of halfspaces

• Let x ∈ X = {−1, 1}d and consider the binary classification problem, i.e.,
f∗ : X 7→ {−1, 1}.

• Let σstep be the step function, i.e., σstep(t) = 1(t ≥ 0).

We will need the following hardness result for learning the intersection of halfspaces.

Theorem 4 (Theorem 1.2, Kalai, Klivans, 2008)

Let H = {x 7→ σstep(w
Tx− b− 1/2) : b ∈ N, w ∈ Nd, |b|+ ‖w‖1 ≤ poly(d)}. Define

HK = {x 7→ h1(x) ∧ h2(x) ∧ · · · ∧ hK(x) : hi ∈ H}.

Assume k ≥ dρ with ρ > 0. Then, under a certain cryptographic assumption, HK is not
efficiently learnable.

• The proof is to reduce it to some classical hard problems, e.g., k-coloring. The
cryptographic assumption means that we assume that these hard problems are indeed
hard in certain sense. If this assumption does not hold, the modern cryptosystem can be
broken in a polynomial time.

• We shall show two-layer neural networks can simulate the functions in HK .
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Hardness of learning two-layer ReLU networks

Theorem 5 ( Livni, et al, 2014)

Let X = {−1, 1}d, and G = {f ∈ B : ‖f‖B ≤ poly(d)}. Then, G is not efficiently learnable.

• The intuition is that 2-layer neural network can simulate the intersections of hyperspaces.

• The step function can be approximated by two ReLU functions very well:

σstep(t) = lim
a→∞

ReLU(at)− ReLU(at− 1).
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Hardness of learning two-layer neural networks

Proof:

• Let c(x) = wTx− b− 1/2. Since w ∈ Nd, x ∈ {−1, 1}d, b ∈ N, we have |c(x)| ≥ 1/2.
Assume ‖w‖1 + |b| ≤ poly(d).

• Consider k hyperplanes {ci}ki=1. Let hi(x) = σstep(ci(x)) ∈ H.

• Let

g(x) =
1

2k

(
k∑
i=1

(ReLU(2ci(x))− ReLU(2ci(x)− 1))− k + 1

3

)
.

Obviously, g is a 2-layer ReLU network with the path norm bounded by

1

2k

(
k +

1

3
+

k∑
i=1

(2(2‖wi‖1 + |bi|+ 1/2) + 1

)
= poly(d).
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• The blue part is equal to σstep(ci(x)) due to σstep(z) = ReLU(2z)− ReLU(2z − 1) for
|z| ≥ 1/2.
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1.0 step
ReLU(2x)-ReLU(2x-1)

• We can verify that

sign(g(x)) = h1(x) ∧ h2(x) ∧ · · · ∧ hk(x), ∀x ∈ {−1, 1}d.
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Remarks

• Note that similar results also hold for two-layer networks with the sigmoid activation
function, since the sigmoid function can approximate the step function as well. See [Livni,
et al, 2014] for more details.

• The above results rely on the hardness of certain classical hard problems.
• Pros: It is implied that the hardness holds for any algorithms.
• Cons: This perspective is too abstract. It does not provide any concrete examples and

intuitions behind the hardness of training.

• In the following, we will provide some understandings from a landscape perspective.
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Orthonormal classes

Denote by D the distribution over the input space X . For any two functions f1, f2, define the
inner product 〈f1, f2〉 = Ex∼D[f1(x)f2(x)].

Definition 6 (Orthonormal class)

Let F be a function class. We say that it is an orthonormal class, if 〈fi, fj〉 = δi,j for any
fi, fj ∈ F .

• Let Bd = {f ∈ B : ‖f‖B . d2}. We will show that Bd contains an orthonormal subset
F = {f1, . . . , fm} with m = exp(d).

• We will show that learning the orthonormal class F is hard if |F| = exp(d).
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Parity functions

• F1 = {fv(x) = (−1)〈v,x〉 : v ∈ {0, 1}d}, where x ∈ {0, 1}d.

• Consider D = Unif({0, 1}d). Then, we have

〈fv, fv′〉 = Ex[(−1)(v+v
′)T x] = Ex[

d∏
i=1

(−1)(vi+v
′
i)xi ] (0.1)

=

d∏
i=1

Exi [(−1)(vi+v
′
i)xi ] = δv,v′ . (0.2)

Hence, F1 is an orthonormal class with |F1| = 2d.
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Parity functions as two-layer neural networks
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• Observation:
• The function (−1)s for s ∈ N can be implemented using the triangle wave.
• The triangle wave can be written as a linear combination of the hat function, which is a

linear combination of ReLU function (left figure).

• Note that vTx ∈ {0, 1, . . . , d}. Let σ be the ReLU function. Then,

(−1)v
T x = σtri(v

Tx) =

d∑
i=0

(−1)iσhat(vTx− i) (0.3)

=
d∑
i=0

(−1)i
(
σ(2vTx− 2i+ 1)− 2σ(2vTx− 2i) + σ(2vTx− 2i− 1)

)
(0.4)

• It is easy to show that the path norm of this network is bounded by Cd2.
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Cosine neurons

Consider the domain X = [0, 2π]d.

• Let Sd = {cos(wTx) : w ∈ Nd,
∑d
i=1 wi ≤ d}.

• In the previous lecture, we have shown that

|Sd| &
2d√
d

(0.5)

‖f‖B . d2, ∀f ∈ Sd. (0.6)

• Hence, for this continuous case, Bd contains exponential many orthonormal functions.
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Remark

• Fφ := {φ(wTx) : ‖w‖ =
√
d}. D = N (0, Id). [Shamir, 2017] shows that as long as φ is

periodic, under some mild condition, Fφ contains an orthonormal subset
F1 = {f1, . . . , fm} with m = exp(d).
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Gradients for an orthonormal class

Let h(·; θ) be any parametric model. Denote by Rf (θ) = Ex[(h(x; θ)− f(x))2] the risk. Then,
we have the following theorem.

Theorem 7

Let F be an orthonormal class. Let P denote the uniform distribution over the space of F and
g(θ) = Ef∼P [∇Rf (θ)]. We have

Ef∼P [(∇Rf (θ)− g(θ))2] ≤
Ex[‖∇θh(x; θ)‖2]

|F|
. (0.7)

• If |F| is exponentially in d, e.g., the parity functions. The variance of gradients is
exponentially small.

• This theorem implies that the “information” about the target function contained in the
gradient is exponentially small. Therefore, one would expect that gradient-based methods
will be unlikely to learn the function class F .
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Proof:

• First, the gradient can be written as follows

∇θRf = Ex[(h(x; θ)− f)∇θh(x; θ)] = Cθ − 〈f,∇θh(x; θ)〉,

where Cθ is independent of the target function f .

• Hence,

Ef [(∇θRf − g(θ))2] ≤ Ef [〈f,∇θh(x; θ)〉2] (0.8)

≤ 1

|F|
∑
f

〈f,∇θh(x; θ)〉2 (0.9)

≤ Ex[‖∇θh(x; θ)‖2]
|F|

. (0.10)
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Hardness of learning with GD: Setup

Setup:

• Assume F to be an orthonormal class with |F| = 2d. Consider the binary classification
with the hinge loss. The risk is given by

Rf (θ) := Ex[max(0, 1− h(x; θ)f(x))]. (0.11)

• Assume |h(x; θ)| ≤ 1 and |f(x)| ≤ 1 for any x ∈ X . Then we have

Ef [‖∇θRf (θ)‖2] = Ef (Ex[f(x)∇θh(x; θ)])2

=
1

|F|
∑
i

〈fi,∇h(·; θ)〉2 ≤
‖∇θh‖2

|F|
≤ Gθ

2d
.

Remark: the above assumption holds for parity functions.
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Hardness of learning with GD

Theorem 8

Assume the model satisfies that supx∈X |h(x; θ)| ≤ 1 and

Ex[‖∇θh(x; θ1)−∇θh(x; θ2)‖2] ≤ L‖θ1 − θ2‖2. Let θ0, θ
f
t be the GD solution at time 0 and

time t, respectively. Then, there exist C1, C2 such that

Ef [‖θft − θ0‖2] ≤ C1(e
C2t

2d/2 − 1), (0.12)

where C1, C2 only depend on L and θ0.

The above theorem implies that GD solution is exponentially close to the initialization in
polynomial time. More rigorously, we have the following corollary.

Corollary 9

For any T = poly(d), there exists a f ∈ F such that

‖θft − θ0‖ ≤ C
poly(d)

2d
, ∀t ∈ [0, T ]

where C only depends on L and θ0.
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Hardness of learning with GD

Proof:

• G(θ) = Ex[‖∇θh(x; θ)‖2] satisfies

G(θ) ≤ G(θ0) + 2L‖θ − θ0‖2. (0.13)

• Therefore,

dEf [‖θft − θ0‖2]
dt

= 2Ef [〈θft − θ0,−∇θRf (θ
f
t )〉] (0.14)

≤ 1

2
d
2−1

√
Ef [‖θft − θ0‖2]Ef [G(θ

f
t )] (0.15)

≤ 1

2
d
2−1

√
Ef [‖θft − θ0‖2]Ef [G(θ0) + 2L‖θft − θ0‖2]. (0.16)
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Hardness of learning with GD

Proof: Let δt =
√

Ef [‖θft − θ0‖2]. Then, we have

δ̇t ≤ 22−
d
2 (
√
2Lδt +

√
G(θ0)). (0.17)

By Gronwall’s inequality, we obtain

δt ≤
√
G(θ0)

2L
(e2

2− d
2
√
Lt − 1).
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Numerical evidence

Consider learning parity functions with online SGD. Fig. 1 shows the convergence of SGD.
Here, the model is two-layer neural networks with width being 2000. The hinge loss
`(y, y′) = max(0, 1− yy′) is used, batch size is 2000 and learning rate is 0.002. We see clearly
that when d = 20, the training process does not show any improvement in a reasonable time.
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Learn parity functions with SGD
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Figure 1: Learning party functions with SGD and two-layer neural networks.
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An illustration of the landscape of cosine neuron

Consider a two-dimensional case. RL(w) = Ex∼D[(sin(LwTx)− sin(Lw∗Tx))2], where L can
be viewed as a proxy of the dimension d.

• For the population landscape, the global minima locate in a deep well with other place is
extremely flat. This confirms Theorem 5.

• The empirical landscape is full of bad local minima.
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Summary

• Learning a subset of two-layer neural networks, whose path norms are bounded by
poly(d), can be reduced to certain classical hard problems, whose hardness is assumed to
be true. Otherwise, the modern cryptosystem can be broken in polynomial time. This type
of hardness results hold for any algorithms.

• For orthonormal classes, we show that the gradient variance (wrt the target function) of is
exponentially small. Hence, gradient-based algorithms are unlikely to succeed. This
observation hold for any parametric model as long as they satisfy some smooth condition.

• Typical examples include the parity function and the cosine neuron: f(x) = cos(wTx).
The Barron norms of these functions are not greater than O(d2).

• These hardness results suggest that the Barron space is very likely too large to study the
training of two-layer neural networks.
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Convergence of GD in the kernel regime
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Setup

• Consider the two-layer neural network (2LNN):

fm(x; θ) =

m∑
j=1

ajσ(b
T
j x), (0.18)

where θ = (a,B) be the parameters, and σ(z) = max(0, z). The results can be extended
to general Lipschitz activation functions with small modifications.

• The empirical risk with the square loss is given by

R̂n(θ) =
1

2n

n∑
i=1

(fm(xi; θ)− yi)2. (0.19)

• Let ei = fm(xi; θ)− yi. The GD flow is given by

ȧj = −
n∑
i=1

eiσ(b
T
j xi)

ḃj = −
n∑
i=1

eiajσ
′(bTj xi)xi. (0.20)

• Let π0 = Unif(Sd−1). We will mainly focus on the initialization:

aj = 0, bj ∼ π0, for j = 1, . . . ,m. (0.21)
29 / 48



Convergence results

Define an associate kernel

k(x, x′) = Eb∼π0 [σ(b
Tx)σ(bTx′)].

Let K = (k(xi, xj)) ∈ Rn×n be the kernel matrix, and λn(K) be the smallest eigenvalue of K.

Theorem 10

Let θ(t) be the GD solution at time t. For any δ ∈ (0, 1), assume that m ≥ 10n log(2n2/δ)
λ2
n(K) .

Then, with probability 1− δ over the initialization, we have

R̂n(θ(t)) ≤ e−mλntR̂n(θ0).
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A general observation

The proof relies on the following observation.
• The GD flow can be written as

θ̇(t) = − 1

n

n∑
i=1

(f(xi; θ(t))− yi)∇θf(xi; θ(t))

• Let ei(t) = f(xi; θ(t))− yi. Then, we have

dei(t)

dt
= 〈∇f(xi; θ(t)), θ̇(t)〉 = −

n∑
i′=1

〈∇f(xi; θ(t)),∇f(xi′ ; θ(t))〉 ei′(t).

• Let G = (Gi,i′) ∈ Rn×n with Gi,i′ = 〈∇f(xi; θ),∇f(xi′ ; θ)〉 be the Gram matrix, and
e = (e1, . . . , en)

T ∈ Rn. Then,

de(t)

dt
= −G(θ(t))e(t). (0.22)

• If λn(G(θt)) is bounded away from zero for any t ≥ 0, then the empirical risk converges to
zero exponentially fast, since

d‖e(t)‖2

dt
= −2e(t)TG(θt)e(t) ≤ −2λn(G(θt))‖e(t)‖2. (0.23)
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The Gram matrix for a 2LNN

• In this case, G(θ) = mK̂(θ)

K̂i,i′(θ) =
1

m

m∑
j=1

σ(bTj xi)σ(b
T
j xi′) + a2jσ

′(bTj xi)σ
′(bTj xi′)x

T
i xi′ .

• As m→∞, we have
K̂i,i′ → Ki,i′ = k(xi, xi′).

where
k(x, x′) = Ea,b[σ(bTx)σ(bTx′) + a2σ′(bTx)σ′(bTx′)xTx′]. (0.24)

• For the initialization considered here,

k(x, x′) = Eb∼π0
[σ(bTx)σ(bTx′)]. (0.25)

Here, only the gradients wrt a contribute to the kernel.
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Positivity of the Gram matrix at initialization

Lemma 11

Assume λn(K) > 0. For any δ ∈ (0, 1), if m ≥ log(n2/δ)
2λ2
n(K) , with probability 1− δ over the

random initialization, we have

λn(G) ≥
m

2
λn(K).

Remark:

• The condition: λn(K) > 0 does not allow two samples xi and xj to align with each other
for i 6= j.

• If {xi}ni=1 are independently drawn from Unif(Sd−1), [Braun, 2006] proved that with high
probability, λn(K) > nλn/2, where λn is the n-th largest eigenvalue of the kernel function
k(·, ·).

• For the ReLU activation function, one can show that λn ≥ Cd
n1+1/d . So, λn(K) ≥ Cd/n1/d

(see the appendix of (Ma et al, MSML2020)).

• We will leave λn(K) > 0 as a basic assumption.
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Positivity of the Gram matrix at initialization

Proof:

• By Hoeffding’s inequality, we have for any i, j ∈ [n]

P{|K̂i,j−Ki,j | ≥ ε} = P

{∣∣∣∣∣ 1m
m∑
s=1

σ(bTs xi)σ(b
T
s xj)− E[σ(bTs xi)σ(bTs xj)]

∣∣∣∣∣ ≥ ε
}
≤ e−2mε

2

.

• Taking the union bound leads to

P{‖K̂ −K‖F ≤ ε} ≥ 1−
n∑

i,j=1

P{|K̂i,j −Ki,j | ≥ ε} ≥ 1− n2e−2mε
2

.

• Using the Weyl’s inequality, we have

λn(K̂) ≥ λn(K)− ‖K̂ −K‖F ≥ λn(K)− ε.

• Take ε = λn(K)/2 and let the failure prob. n2e−2mε
2 ≤ δ. This leads to m ≥ log(n2/δ)

2λ2
n(K) .
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Gradient descent near the initialization

• Define a neighbor of the initialization by

I(θ0) :=
{
θ : ‖K̂(θ)− K̂(θ0)‖F ≤

λn(K)

4

}
• Using Lemma 11, for any δ ∈ (0, 1) with probability 1− δ, we have for any θ ∈ I(θ0) that

λn(K̂(θ)) ≥ λn(K̂(θ0))− ‖K̂(θ0)− K̂(θ)‖F ≥
λn(K)

2
− λn(K)

4
=
λn(K)

4
.

Lemma 12

Let t0 = inf {t : θ(t) /∈ I(θ0)}. For any δ ∈ (0, 1), assume m ≥ log(n2/δ)
2λ2
n(K) . For any t ∈ [0, t0],

R̂n(θ(t)) ≤ e−
mλn(K)

2 tR̂n(θ0).

Proof:

d

dt
R̂n(θ(t)) =

1

2n

d‖e(t)‖2

dt
=
−m
n
eT K̂e ≤ −m

n

λn(K)

4
‖e(t)‖2 =

−mλn(K)

2
R̂n(θt)
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Long-time convergence of GD

Proof of Theorem 10:

• We only need to prove that t0 =∞. Otherwise, assume that t0 <∞.
• First, the empirical risk is smooth in the sense that

‖∇R̂n(θ)‖2 ≤ ‖θ‖2R̂n(θ).

• Then,

‖θ(t)− θ0‖ ≤
∫ t0

0

‖∇R̂n(θ(t))‖dt ≤ max
t∈[0,t0]

‖θ(t)‖
∫ t0

0

√
R̂n(θ)dt

≤ max
t∈[0,t0]

‖θ(t)‖
∫ t0

0

e−
mλn(K)

4 t

√
R̂n(θ0)dt .

maxt∈[0,t0] ‖θ(t)‖
mλn(K)

.

Let γ = maxt∈[0,t0] ‖θ(t)− θ0‖. Using the fact that ‖θ0‖ =
√∑m

s=1 ‖bs(0)‖2 =
√
m, we

have

γ .
γ +
√
m

mλn(K)
,

which leads to

γ .
1√

mλn(K)
.
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Long-time convergence of GD (Cont’d)

Proof of Theorem 10:

• Since σ is 1-Lipschitz continuous, we have for any t ∈ [0, t0],

‖K̂(θ(t))−K(θ0)‖2F =
∑
i,j

| 1
m

m∑
s=1

σ(bs(t)
Txi)σ(bs(t)

Txj)−
1

m

m∑
s=1

σ(bs(0)
Txi)σ(bs(0)

Txj)|2

.
n2

m2
(‖θ(t)− θ0‖+ ‖θ(t)− θ0‖2)

.
n2

m2
(γ + γ2).

• By the assumption, γ ≤ 1. Hence, m ≥ 20n/λn(K) leads to

‖K̂(θ(t))−K(θ0)‖F ≤
λn(K)

8
,

which contradicts the definition of t0. Therefore, t0 =∞.
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Remarks

• In the above analysis, the main ingredient is the positivity of the Gram matrix G, which
relies on the positivity of the tangent kernel:

k(x, x′) = lim
m→∞

m−α〈∇f(x; θ),∇f(x′; θ)〉,

where α is a specific factor related to the initialization such that the limit exists.

• The key observation is that bj(t)− bj(0) ∼ 1
m . The parameters of the convergent solution

is close to the initialization.

• The results can be extended to general initializations. For instance, consider the balanced
initialization: aj ∼ N (0, 1/m), bj ∼ N (0, Id/(md)), for which the Gram matrix

Gi,i′ =

m∑
j=1

σ(bTj xi)σ(b
T
j xi′) + a2jσ

′(bTj xi)σ
′(bTj xi′)x

T
i xi′

→ k(xi, xi′) := Eb∼N (0,Id/d)[σ(b
Txi)σ(b

Txi′) + σ′(bTxi)σ
′(bTxi′)x

T
i xi′ ] as m→∞.

We only need to show that smallest eigenvalue of the kernel matrix:
K = (k(xi, xi′)) ∈ Rn×n is away from zero.
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Characterization of the whole GD trajectory

The following theorem concerns the function class that the GD solutions can represent. Let
fm(x; a,B0) =

∑m
j=1 ajσ(bj(0)

Tx) be the random feature model (RFM).

Theorem 13 (E, Ma, Wu, 2019)

Let θt = {a(t), B(t)} be the GD solution at time t, and ã(t) be the GD solution of RFM with

zero initialization. For any δ ∈ (0, 1), assume that m & n4

λ2
n(K) log(

n2

δ ). Then, with probability

1− δ over the random initialization, we have

sup
t∈[0,∞],x∈Sd−1

|fm(x; a(t), B(t))− fm(x; ã(t);B0)| ≤
1 +

√
log(1/δ)

λn(K)
√
m

.

Remark:
• The theorem implies that the GD trajectory of a wide 2LNN is uniformly close to that of

the associate RFM.

• The result is implicit in the proof of convergence result: θ(t)− θ0 � 1.

• Time-scale separation: To fit n labels, we only need aj(t) = O(poly(n)/m). Then,

ȧj(t) ∼ O(‖bj‖) = O(1) and ḃj(t) ∼ O(|aj |) = O(poly(n)/m). Hence, bj(t) is essentially
frozen when m→∞.

39 / 48



Proof sketch

|fm(x; a(t), B(t))− fm(x; a(t), B0)| ≤
m∑
s=1

as(t)|σ(bs(t)Tx)− σ(bs(0)Tx)|

≤
m∑
s=1

as(t)‖bs(t)− bs(0)‖

≤ 1

2

m∑
s=1

(a2s(t) + ‖bs(t)− bs(0)‖2)

=
1

2
‖θ(t)− θ0‖2 .

1

mλ2n(K)

The closeness of a(t) and ã(t) is a consequence of the closeness of B(t) and B0. The proof is
lengthy but straightforward.
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Representer theorem of GD solutions

Lemma 14

Let km(x, x′) = 1
m

∑m
j=1 σ(bj(0)

Tx)σ(bj(0)
Tx′). Then, there exist w1(t), . . . , wn(t) such that

the GD solution of RFM with zero initialization can be written as

fm(x; ã(t), B0) =

n∑
i=1

wi(t)km(xi, x).

Proof: Note that
dãj(t)

dt
= −

n∑
i=1

ei(t)σ(bj(0)
Txi).

Hence,

f(x; ã(t), B0) =

m∑
j=1

aj(t)σ(bj(0)
Tx) = −

m∑
j=1

(∫ t

0

n∑
i=1

ei(t
′)dt′σ(bj(0)

Txi)

)
σ(bj(0)

Tx)

=

n∑
i=1

wi(t)km(xi, x), (0.26)

where wi(t) = −m
∫ t
0
ei(t
′)dt′.
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Curse of dimensionality

• Lemma 14 shows that the GD solutions of RFM always lie in the span of {km(xi, ·)}ni=1

no mater how big m is.

• Recall the definition of Barron space

‖f‖B = inf
f(x)=E(a,b)∼ρ[aσ(bT x)]

E[|a|‖b‖].

• With explicit regularization, the generalization error for learning Barron functions obeys
the Monte-Carlo rate: O(1/m+ 1/

√
n).

• However, [Barron 1993] shows that for any h1, . . . , hn ∈ L2(X)

sup
‖f‖B≤1

inf
h∈span(h1,...,hn)

‖f − h‖L2(X) ≥
C

dn1/d
.

Therefore, GD solutions of 2LNN suffer from the curse of dimensionality.

• Note that the uniform closeness implies that any early stopping “regularization” cannot
cure the CoD.
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Compare the NN and RFM under GD dynamics
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Figure 2: GD dynamics for fitting a single neuron f∗(x) = σ(x1) where x ∈ Sd−1.
Here d = 20, n = 50. Left: m = 4; Middle: m = 50; Right: m = 1000.
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Comparison between the implicit and explicit regularization

Consider the explicit regularization:

min
θ
R̂n(θ) + λ

√
log(d)

n

m∑
j=1

|aj |‖bj‖2.
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Figure 3: Fitting a single neuron f∗(x) = σ(x1) where x ∈ Sd−1. Here d = 20, n = 50.
The nn-Reg solution is the GD solution without any regularization.
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Lazy training

• In the previous analysis, the main insight is that for the highly over-parameterized setting,
the perturbation satisfies ‖θ − θ0‖ � 1.

• Why is a small deviation enough? Consider the expansion around the initialization:

fm(x; θ) = fm(x; θ0) + 〈θ − θ0,∇fm(x; θ0)〉+ o(‖θ − θ0‖). (0.27)

• Note that the each entry of θ − θ0 is in the order of O(1/m) is enough to ensure the
change of output: fm(x; θ)− fm(x; θ0) ∼ 1. Meanwhile, ‖θ − θ0‖ = O(1/

√
m)� 1.

• So essentially, only the linear part contributes to the final model. In our case, the linear
part is a RFM.

• In the literature, training methods that essentially only explore the linear part of a
nonlinear model to fit data are called lazy training (Chizat, Oyallon, Bach, 2018).
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Neural tangent kernel

• In the lazy training regime, the model essentially performs kernel method with the kernel
given by:

km(x, x′) = 〈∇fm(x; θ0),∇fm(x; θ0)〉,

which is called tangent kernel.

• Large width limit: For neural network models fm(·; θ), km often has a limit with a proper
rescaling:

k(x, x′) = lim
m→∞

m−αkm(x, x′).

k(·, ·) is called the neural tangent kernel (NTK) (Jacot, Gabriel and Hongler, 2018).
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Multi-layer fully-connected networks

The observation that GD only performs lazy training can be extended to general wide neural
networks. The proof is similar to the case of 2LNN and can be summarized as follows.

• Recall that

d‖e(t)‖2

dt
= −2e(t)TG(θ(t))e(t). (0.28)

• First show that if m is sufficiently large, at initialization λn(G(θ0)) ≥ mλn(K), where K
is the kernel matrix of NTK. Assume that λn(K) > 0 (Justify it).

• Let I(θ0) be the ball around the initialization such that the λn(G(θ)) ≥ mλn(K)/2. Let
t0 be the time that θ(t) first leaves the ball. Then, for any t ∈ [0, t0], we have
R̂n(θ(t)) ≤ e−cmλn(K)tR̂n(θ0) for a constant c > 0.

• The combination of exponential convergence and continuity of R̂n implies

‖θt − θ0‖ ≤
∫ t0

0

‖∇R̂n(θ′t)‖dt′ ≤
∫ t0

0

C(‖θ(t)‖)
√
R̂n(θ(t′))dt′ ≤

poly(n, λn(K))

m
.

• When m is sufficiently large, we must have θt ∈ I(θ0) for any t ≥ 0.

We refer to (Arora et al, 2019) for a detailed proof for multi-layer fully-connected networks.
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Summary

• Under conventional setting, neural networks trained by GD converges to kernel method.
Moreover, the convergence is uniform in time. It means only when f∗ lies in the
appropriate RKHS, the GD solution can generalize well.

• What happens when the network is less over-parameterized?

• Can we still learn larger class of target functions in the over-parameterized regime?

48 / 48


