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Outline

• One-dimensional cases: poly(1/ε) (shallow) v.s. log(1/ε) (deep).

• High-dimensional cases: CoD (shallow nets) v.s. Free of CoD (deep nets)
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Some useful facts

Let t(x) = max(1− |x|, 0) be the triangular function.

• Let g(x) = t(2x− 1) be the shift triangular function and

gl(x) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
l

(x).

Obviously, gl has 2l linear pieces.
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• One challenge in examining the function composition is the change of input domains. The
choice of g such that g : [0, 1] 7→ [0, 1], which dramatically simplifies the analysis of
function composition.
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Approximating oscillated functions

Theorem 1 (Telgarsky, 2016)

• On the one hand, gl can be implemented as a O(l)-layer neural nets with the width less
than 3.

• On the other hand, for any 2-layer ReLU net fm(·; θ) with the width m = poly(l), we have∫ 1

0

|fm(x; θ)− gl(x)|dx & 1.

Proof. (1). First, g(x) = ReLU(2x) + ReLU(2x− 2)− 2ReLU(2x− 1), i.e., g can be exactly
represented as three neurons. Hence, gl can be represented as 2l-layer neural net with the
width less than or equal to 3.
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Proof

Proof.

• For a two-layer neural network of width m, let M denote its number of linear pieces.
Obviously, M ∼ m.

• The proof of the lower bound proceeds by counting triangles as illustrated in the following
figure. Draw the horizontal line y = 1/2.∫ 1

0

|fm(x; θ)− gl(x)|dx ≥ [number of surviving triangles] · [area of the triangle]
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Proof (Cont’d)

Then, there are 2l+1 (half) triangles.∫ 1

0

|fm(x; θ)− gl(x)|dx ≥ [number of surviving triangles] · [area of the triangle]

≥ (2l+1 − 2l −M) · (1
2
· 1

2l+1
· 1
2
)

≥ 1

8
− M

2l+3
& 1. (0.1)
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Remarks

Lemma 2

For any fixed depth L ≥ 1 and width m ≥ 1, L-layer ReLU networks can only represent still
piecewise linear functions. Moreover, the number of linear pieces is not greater than (m/L)L

Proof. The case L = 1, 2 is trivial. The proof of the general L > 0 can be found in Section 6
of [Telgarsky’s note].

• The number of linear pieces increases with the depth exponentially.

• For fixed-depth ReLU networks, approximating gl needs (m/L)L = 2l. This implies that
the number of total parameters:

Lm2 = O(LL2(2l)2/L) = O(L32
2l
L ),

which suffer from the curse of oscillation unless L & l.
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Approximating x2

Here, we consider the target function f(x) = x2, which will be used to approximating general
smooth functions.

Lemma 3

Let SM := (xk)
M
k=0 be the set of uniform grid points in [0, 1] with grid size h = 1/M . For any

function f , let PMf be the piecewise linear interpolation of f with the uniform grid points SM :

PMf(x) =

M∑
k=1

f(xk)t

(
x− xk
h

)
, (0.2)

where, t(·) is the triangular function. Then,

sup
x∈[0,1]

|PMf(x)− f∗(x)| .
supx∈[0,1] |f ′′(x)|

m2

8 / 23



Proof

For each interval xj + t ∈ [xj , xj+1],

|f(xj + t)− PMf(xj + t)| = |f(xj + t)− f(xj)−
f(xj+1)− f(xj)

xj+1 − xj
| (0.3)

= |f ′(ξ1)t− f ′(ξ2)t| ≤ max
x
|f ′′(x)|t2. (0.4)

Piecewise linear approximators can only explore the second-order smoothness.
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Approximating x2 with deep ReLU nets

Proposition 1

Let f∗(x) = x2. For any ε > 0, there exits a neural net f̃ , whose depth and width is
O(log(1/ε)) and O(1), respectively, such that

sup
x∈[0,1]

|f̃(x)− f∗(x)| ≤ ε.
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Proof I

Proof. One can show that l = 2, 3, . . . ,

P2l−1f∗(x)− P2lf
∗(x) =

gl(x)

22l
, ∀x ∈ [0, 1]. (0.5)
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Proof II

Construct a neural net as follows

y0 = x

yl = g(yl−1)

f̃(x) =

L∑
l=1

yl
2l
.

Note that g can be implemented using 3 neurons. The last step introduces skip connections
from each layer to the output layer. So, the depth and width of this net is O(L) and O(1),
respectively. By Lemma 3,

sup
x∈[0,1]

|f̃ − f(x)| = sup
x∈[0,1]

|P2Lf(x)− f(x)| .
1

4L
.

Taking 1/(4L) = ε, we complete the proof.
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Low bounds of approximating x2 with piecewise linear functions

Lemma 4

Let Gm denote the set of piecewise linear functions with the number of linear pieces less than
or equal to m. Then, for any g ∈ Gm, we have

sup
x∈[0,1]

|g(x)− x2| & 1

m2
.

Remark. Similar results hold for the error measured by L1 norm.
Proof.

• First any interval [a, b] ⊂ [0, 1], we have

Ia,b := min
c,d∈R

max
t∈[a,b]

|cx+ d− x2| = min
c,d∈R

max
t∈[0,b−a]

|(x+ c)2 + d|

= min
c,d

max{(b− a+ c)2 + d, c2 + d, d}.
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Proof

• If c2 + d & (b− a)2 or d & (b− a)2. Then, Ia,b & (b− a)2.

• Otherwise, we must have c = o(|b− a|), d = o(|b− a|2). This results in the first term
satisfies (b− a+ c)2 + d & (|b− a|2). Combining them, we have Ib,a & (b− a)2.

• Since g ∈ Gm, the number of piecewise linear parts of g is at most m. Hence, for any
g ∈ G, there must exist a domain [a, b] such that (1) there exist c, d such that
g(x) = cx+ d for x ∈ [a, b]; (2) |b− a| & 1/m. Then,

sup
x∈[0,1]

|g(x)− x2| ≥ sup
x∈[a,b]

|cx+ d− x2| & |b− a|2 &
1

m2
.

14 / 23



Comparison

• For a depth-L ReLU net, the number of pieces is at most (m/L)L.

• For a target accuracy ε, the width needs to satisfies 1
(m/L)2L

≤ ε, which yields

m ≥ Lε−1/(2L). Hence,

Total parameters & m2L & L3ε−1/L = poly(1/ε).

• In a summary, for approximating x2 to reach the accuracy ε,
• deep ReLU network only need O(log(1/ε)) parameters;
• shallow ReLU network needs at least O(poly(1/ε)) parameters.
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Why is approximating x2 interesting?

From the approximation of f(x) = x2, we can get many other results.

• Fast approximation of the multiplication (x, y) 7→ xy using

xy =
(x+ y)2 − x2 − y2

2
.

• Fast approximation of any monomials: xk.

• Fast approximation of polynomials: a0 + a1x+ · · ·+ akx
k.

• Fast approximation of functions that can be efficiently approximated by polynomials, e.g.,
Sobolev space.
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Theorem 5 (Yarotsky, 2017)

Assume that f ∈ Cr([0, 1]d) and max|α|≤r ess supx∈[0,1] |Dαf(x)| ≤ 1. Then, there exists a

neural net f̃ of depth at most C(log(1/ε) + 1) and width at most Cε−d/r(log(1/ε) + 1) such
that

sup
x∈[0,1]d

|f̃(x)− f(x)| ≤ ε.

Here, the constant C depends on d, r.

The following theorem concerns the approximation rate for analytic target functions, which is
given in (Wang and E, 2018).
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Remarks

• The preceding result only separate deep and fixed-depth nets for the non-smooth ReLU
activation function.

• If considering smooth activation function, such as, Tanh, we may do not have this
separation. In fact, (Maiorov and Meir, 2000, Mhaskar, 1996) shows that for the Tanh
activation function, depth-3 nets can achieve the same approximation rate as Theorem 5
(up to logarithmic terms).

• Can we achieve the same rate for two-layer nets with some smooth activation
functions?
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Can we obtain separation results for
high-dimensional functions?
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Approximating radial functions

Theorem 6 (Eladn, Shamir, ICML 2016)

Suppose |σ(z)| . (1 + |z|α) for all z ∈ R and some constants α > 0. Then, for d & 1, there
exists µ ∈ P(Rd) and a radial function g(x) = g0(‖x‖) such that

• g0(‖x‖) can be approximated with 3-layer neural network with poly(1/ε, d) parameters.

• For any two-layer net of width at most exp(d),∫
|g0(‖x‖)− f(x)|2 dµ(x) & 1.
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Remarks

• The proof is rather intricate, which heavily utilizes the property of Fourier transform of
two-layer neural nets. Moreover, this result is also unsatisfying in the sense that µ is not
explicit.

• (Daniely, COLT 2017) provides a more explicit construction: f : Sd−1 ⊗ Sd−1 7→ R,

f(x, x′) = sin(d3〈x, x′〉),

and the error is measured with respect to µ = Unif(Sd−1 ⊗ Sd−1). However, this result
needs to restrict the parameter magnitudes of two-layer net is not larger than 2d.
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Barrie of depth separation

The following theorem is from (Vardi, Shamir, 2020)

The reduced problem is open problems and related to the natural-proof barrier in circuit
complexity.
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Summary

• Increasing depth increases the ability to fit oscillations.

• Increasing depth increases the adaptivity to higher-order smoothness.

• exp(d) and poly(d) separation: approximating radial functions.

• Obtain general depth separation results is hard in the sense of circuit complexity.

There are some other separation results which shows that deep networks can be adaptive to
some other notion of smoothness, i.e., Besov space. Please refer to (Suzuki, ICLR 2019) and
(Bresler and Nagaraj, NeurIPS 2020).
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